MATHEMATICS

MATERIAL FOR GRADE 12

Trigonometry

Downloaded from Stanmorepfysics.com

QUESTION 1

In the diagram below, ABC is an isosceles triangle. D lies on BC .
$\mathrm{AB}=A C=a$ units
$\mathrm{AD}=D C=b$ units
$\widehat{B}=\theta$.

1.1 Determine, without reasons, the size of $\mathrm{A} \widehat{D} \mathrm{C}$ in terms of θ.
1.2 Prove that:
$\cos 2 \theta=\frac{a^{2}}{2 b^{2}}-1$
1.3 Hence, determine the value of θ if $a=3$ and $b=2$
(Rounded off to two decimal digits.)

Downloaded from Stanmorepfysics.com

QUESTION 2

Simplify the following without using a calculator.
2.1 $\cos 56^{\circ} \cos 26^{\circ}+\cos 146^{\circ} \sin \left(-26^{\circ}\right)$
$2.2 \frac{\tan \left(180^{\circ}+x\right) \cos \left(360^{\circ}-x\right)}{\sin \left(x-180^{\circ}\right) \cos \left(90^{\circ}+x\right)+\cos \left(720^{\circ}+x\right) \cos (-x)}$
2.3 Prove the identity : $\frac{\cos 2 x+\cos ^{2} x+3 \sin ^{2} x}{2-2 \sin ^{2} x}=\frac{1}{\cos ^{2} x}$

Downloaded from Stanmorepfysics.com

QUESTION 3

Consider the function $f(x)=\sin 2 x$ for $x \in\left[-90^{\circ} ; 90^{\circ}\right]$

3.1 Write down the period of f.
3.2 Sketch the graph of $g(x)=\cos \left(x-15^{\circ}\right)$ for $x \in\left[-90^{\circ} ; 90^{\circ}\right]$ on the diagram sheet provided for this sub-question.
3.3 Solve the equation: $\sin 2 x=\cos \left(x-15^{\circ}\right)$ for $x \in\left[-90^{\circ} ; 90^{\circ}\right]$
3.4 Find the values of x for which $f(x)<g(x)$.

Downloaded from Stanmorepfysics.com

QUESTION 4

4.1.1 Simplify the following expression to a single trigonometric function:

$$
\begin{equation*}
\frac{2 \sin \left(180^{\circ}+x\right) \sin \left(90^{\circ}+x\right)}{\cos ^{4} x-\sin ^{4} x} \tag{5}
\end{equation*}
$$

4.1.2 For which value(s) of $x, x \in\left[0^{\circ} ; 360^{\circ}\right]$ is the expression in 4.1 undefined?
4.2 Evaluate, without using a calculator: $\quad \frac{\cos 347^{\circ} \cdot \sin 193^{\circ}}{\tan 315^{\circ} \cdot \cos 64^{\circ}}$
4.3 Prove the following identity: $\frac{\cos 3 x}{\cos x}=2 \cos 2 x-1$

Downloaded from Stanmorepfysics.com

QUESTION 5

The graphs of $f(x)=-2 \cos x$ and $g(x)=\sin \left(x+30^{\circ}\right)$ for $x \in\left[-90^{\circ} ; 180^{\circ}\right]$ are drawn in the diagram below.
5.1 Determine the period of g.
5.2 Calculate the x-coordinates of P and Q , the points where f and g intersect.
5.3 Determine the x-values, $x \in\left[-90^{\circ} ; 180^{\circ}\right]$, for which:
5.3.1 $\quad g(x) \leq f(x)$
5.3.2 $f^{\prime}(x) . g(x)>0$

Downloaded from Stanmorepfysics.com

QUESTION 6

$A B$ is a vertical tower of p units high.
D and C are in the same horizontal plane as B , the foot of the tower.
The angle of elevation of A from D is $x . \mathrm{B} \widehat{D} C=y$ and $\mathrm{D} \hat{C} \mathrm{~B}=\theta$.
The distance between D and C is k units.

6.1.1 Express p in terms of DB and x.
6.1.2 Hence prove that: $p=\frac{k \sin \theta \tan x}{\sin y \cos \theta+\cos y \sin \theta}$
6.2 Find BC to the nearest meter if $x=51,7^{\circ}, y=62,5^{\circ}, p=80 \mathrm{~m}$ and $k=95 \mathrm{~m}$.

Downloaded from Stanmorepfysics.com

QUESTION 7

In the diagram below, $\mathrm{P}(-15 ; m)$ is a point in the third quadrant and $17 \cos \beta+15=0$.

7.1 WITHOUT USING A CALCULATOR, determine the value of the following:

$$
\begin{equation*}
\text { 7.1.1 } m \tag{3}
\end{equation*}
$$

7.1.2 $\sin \beta+\tan \beta$

7.1.3 $\cos 2 \beta$
7.2 Simplify:

$$
\begin{equation*}
\frac{\sin \left(180^{\circ}-x\right) \cdot \cos \left(x-180^{\circ}\right) \cdot \tan \left(360^{\circ}-x\right)}{\sin (-x) \cdot \cos \left(450^{\circ}+x\right)} \tag{7}
\end{equation*}
$$

7.3 Consider the identity: $\frac{\sin x+\sin 2 x}{1+\cos x+\cos 2 x}=\tan x$
7.3.1 Prove the identity.
7.3.2 Determine the values of x for which this identity is undefined.

Downloaded from Stanmorepfysics.com

QUESTION 8

Consider: $f(x)=\cos 2 x$ and $g(x)=\sin \left(x-60^{\circ}\right)$
8.1 Use the grid provided to sketch the graphs of f and g for $x \in\left[-90^{\circ} ; 180^{\circ}\right]$
on the same set of axes. Show clearly all the intercepts on the axes and the coordinates of the turning points.
8.2 Use your graphs to determine the value(s) of x for which $\mathrm{g}(x)>0$.

QUESTION 9

In the diagram, $\triangle \mathrm{ABC}$ is given with $\mathrm{BC}=10$ units, $\hat{B}=30^{\circ}$ and $\sin (\mathrm{B}+\mathrm{C})=0,8$.

Determine the length of AC, WITHOUT USING A CALCULATOR.

Downloaded from Stanmorepfysics.com

QUESTION 10

10.1 If $\sin 31^{\circ}=p$, determine the following, without using a calculator, in terms of p :
10.1.1 $\sin 149^{\circ}$
10.1.2 $\cos \left(-59^{\circ}\right)$
10.1.3 $\cos 62^{\circ}$
10.2 Simplify the following expression to a single trigonometric ratio:

$$
\begin{equation*}
\tan \left(180^{\circ}-\theta\right) \cdot \sin ^{2}\left(90^{\circ}+\theta\right)+\cos \left(\theta-180^{\circ}\right) \cdot \sin \theta \tag{6}
\end{equation*}
$$

10.3 Consider: $\frac{\sin 2 x+\sin x}{\cos 2 x+\cos x+1}=\tan x$
10.3.1 Prove the identity.
10.3.2 Determine the values of x, where $x \in\left[180^{\circ} ; 360^{\circ}\right]$, for which the above identity will be invalid.

Downloaded from Stanmorepfysics.com

QUESTION 11

11.1 Determine the general solution of : $\sin \left(x+30^{\circ}\right)=\cos 3 x$.
11.2 In the diagram below, the graph of $f(x)=\sin \left(x+30^{\circ}\right)$ is drawn for the interval $x \in\left[-30^{\circ} ; 150^{\circ}\right]$.

11.2.1 On the same system of axes sketch the graph of g, where $g(x)=\cos 3 x$, for the interval $x \in\left[-30^{\circ} ; 150^{\circ}\right]$.
11.2.2 Write down the period of g.
11.2.3 For which values of x will $f(x) \geq g(x)$ in the interval $x \in\left(-30^{\circ} ; 150^{\circ}\right)$?

QUESTION 12

In the diagram below, A, B and C are in the same horizontal plane. P is a point vertically above A . The angle of elevation from B to P is α.
$\mathrm{A} \hat{\mathrm{C}} \mathrm{B}=\beta, \mathrm{A} \hat{\mathrm{B}} \mathrm{C}=\theta$ and $\mathrm{BC}=20$ units.

12.1 Write AP in terms of AB and α.
12.2 Prove that $\mathrm{AP}=\frac{20 \sin \beta \tan \alpha}{\sin (\theta+\beta)}$
12.3 Given that $\mathrm{AB}=\mathrm{AC}$, determine AP in terms of α and β in its simplest form.

Downloaded from Stanmorephysics.com

QUESTION 13

If $90^{\circ}<\mathrm{A}<360^{\circ}$ and $\tan \mathrm{A}=\frac{2}{3}$, determine without the use of a calculator.
13.1
$13.1 \quad \sin \mathrm{~A}$
1
13.1. $\quad \cos 2 \mathrm{~A}-\sin 2 \mathrm{~A}$

2
13.2 Given that $\sin x=\mathrm{t}$, express the following in terms of t, without the use of calculator.
13.2. $\cos \left(x-90^{\circ}\right)$

1
13.2. $\sin 2 x$

2

Downloaded from Stanmorepfysics.com

QUESTION 14

Calculate without the use of a calculator:

$$
\frac{\cos ^{2} 208^{\circ}}{\tan 118^{\circ} \cdot \sin 124^{\circ}}
$$

14.2 Calculate the general solution of θ where $\sin \theta \neq 0$ and

$$
\begin{equation*}
1-\cos 2 \theta=8 \sin \theta \cdot \sin 2 \theta \tag{6}
\end{equation*}
$$

QUESTION 15

The graph of $h(x)=a \tan x$; for $x \in\left[-180^{\circ} ; 180^{\circ}\right], x \neq-90^{\circ}$, is sketched below.

15.1 Determine the value of a.
15.2 If $f(x)=\cos \left(x+45^{\circ}\right)$, sketch the graph of f for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$, on the diagram provided in your ANSWER BOOK.
15.3 How many solutions does the equation $h(x)=f(x)$ have in the domain $\left[-180^{\circ} ; 180^{\circ}\right]$?

Downloaded from Stanmorepfysics.com

QUESTION 16

Triangle PQS represents a certain area of a park. R is a point on line PS such that QR divides the area of the park into two triangular parts, as shown below.
$\mathrm{PQ}=\mathrm{PR}=x$ units, $\mathrm{RS}=\frac{3 x}{2}$ units and $\mathrm{RQ}=\sqrt{3} x$ units.

16.1 Calculate the size of $\widehat{\mathrm{P}}$.
16.2 Determine the area of triangle QRS in terms of x.

QUESTION 17

17.1 In the diagram below, $\mathrm{P}(2 \sqrt{3} ;-2)$ is a point in the Cartesian plane, with reflex angle $\mathrm{QOP}=\alpha \cdot \mathrm{Q}$ is the point on the $x-$ axis so that $\mathrm{OPQ}=90^{\circ}$

Calculate without measuring:
17.1.1 β.
17.1.2 the length of OP.
17.1.3 the co-ordinates of Q .
17.2 If $\cos \alpha+\sqrt{3} \sin \alpha=k \sin (\alpha+\beta)$.

Calculate the values of k and β.

Downloaded from Stanmore pfysics.com

QUESTION 18

18.1 On the same system of axes, sketch the graphs of $f(x)=3 \cos x$ and $g(x)=\tan \frac{1}{2} x$ for $-180^{\circ} \leq x \leq 360^{\circ}$. Clearly show the intercepts with the axes and all turning points.

Use the graphs in 18.1 to answer the following questions.
18.2 Determine the period of g.
18.3 Determine the co-ordinates of the turning points of f on the given interval. (2)
18.4 For which values of x will both functions increase as x increases for $-180^{\circ} \leq x \leq 360^{\circ}$?
18.5 If the y-axis is moved 45° to the left, then write down the new equation of f in the form $y=\ldots$...

Downloaded from Stanmorepfysics.com

QUESTION 19

19.1 Determine the general solution of:
$\cos 54^{\circ} \cdot \cos x+\sin 54^{\circ} \cdot \sin x=\sin 2 x$
19.2 ABCD is a trapezium with $\mathrm{AD} \| \mathrm{BC}, \mathrm{BA} D=90^{\circ}$ and $\mathrm{B} \hat{C D}=150^{\circ}$.

CD is produced to E . F is point on AD such that BFE is a straight line, and $\mathrm{CBE}=\alpha$
The angle of elevation of E from A is $\theta, \mathrm{BC}=x$ and $\mathrm{CE}=18-3 x$.

19.2.1 Show that: $B E=\frac{A B \cos \theta}{\sin (\alpha-\theta)}$
19.2.2 Show that the area of $\Delta \mathrm{BCE}=\frac{9}{2} x-\frac{3 x^{2}}{4}$
19.2.3 Determine, without the use of a calculator, the value of x for which the area of $\triangle B C E$ will be maximum.
19.2.4 Calculate the length of BE if $x=3$.

Downloaded from Stanmorepfysics.com

QUESTION 20

The graphs below represent the functions of f and g.
$f(x)=\sin 2 x$ and $g(x)=c \sin d x, x \in\left[0^{\circ} ; 180^{\circ}\right]$

20.1 Determine the value(s) of x, for $x \in\left[0^{\circ} ; 180^{\circ}\right]$ where:
20.1.1 $g(x)-f(x)=2$
20.1.2 $f(x) \leq 0$
20.1.3 $g(x) . f(x) \geq 0$
$20.2 f$ in the graph drawn above undergoes transformations to result in g and h as given below. Determine the values of a, b, c and d if
20.2.1 $g(x)=c \sin d x$
20.2.2 $h(x)=a \cos (x-b)$

Downloaded from Stanmorepfysics.com

QUESTION 21

THIS QUESTION HAS TO BE ANSWERED WITHOUT THE USE OF A

 CALCULATOR:21.1 Simplify fully:
6.1.1 $\frac{\sin 140^{\circ} \cdot \tan \left(-315^{\circ}\right)}{\cos 230^{\circ} \cdot \sin 420^{\circ}}$
6.1.2 $\frac{\sin 15^{\circ} \cdot \cos 15^{\circ}}{\cos \left(45^{\circ}-x\right) \cos x-\sin \left(45^{\circ}-x\right) \sin x}$
21.2.1 Express $\cos ^{2} A$ in terms of $\cos 2 A$
21.2.2 Hence show that $\cos 15^{\circ}=\frac{\sqrt{\sqrt{3}+2}}{2}$
21.3 Calculate x when $\sin 2 x=\cos (-3 x)$ for $x \in\left[-90^{\circ} ; 90^{\circ}\right]$

QUESTION 22

Quadrilateral ABCD is drawn with $\mathrm{AB}=\mathrm{BC}=10 \mathrm{~cm}, \mathrm{AC}=10 \sqrt{3} \mathrm{~cm}, \mathrm{CD}=19,27 \mathrm{~cm}$ and $C \widehat{A D}=74,47^{\circ}$.

22.1 Calculate the size of $A \hat{B} C$.
22.2 Determine whether ABCD is a cyclic quadrilateral. Justify your answer with the necessary calculations and reasons.

Downloaded from Stanmorepfysics.com

QUESTION 23

23.1 Determine the value of $\frac{\cos \left(180^{\circ}+x\right) \cdot \tan \left(360^{\circ}-x\right) \cdot \sin ^{2}\left(90^{\circ}-x\right)}{\sin \left(180^{\circ}-x\right)}+\sin ^{2} x$
23.2 23.2.1 Prove the identity: $\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})=2 \sin \mathrm{~A} \sin \mathrm{~B}$
23.2.2 Hence calculate, without using a calculator, the value of

$$
\begin{equation*}
\cos 15^{\circ}-\cos 75^{\circ} \tag{4}
\end{equation*}
$$

23.3 Find the value of $\tan \theta$, if the distance between $\mathrm{A}(\cos \theta ; \sin \theta)$ and $\mathrm{B}(6 ; 7)$ is $\sqrt{86}$.

QUESTION 24

Consider : $f(x)=\cos \left(x-45^{\circ}\right)$ and $g(x)=\tan \frac{1}{2} x$ for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$
24.1 Use the grid provided to draw sketch graphs of f and g on the same set of axes for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$. Show clearly all the intercepts on the axes, the coordinates of the turning points and the asymptotes.
24.2 Use your graphs to answer the following questions for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$
24.2.1 Write down the solutions of $\cos \left(x-45^{\circ}\right)=0$
24.2.2 Write down the equations of asymptote(s) of g.
24.2.3 Write down the range of f.
24.2.4 How many solutions exist for the equation $\cos \left(x-45^{\circ}\right)=\tan \frac{1}{2} x$?
24.2.5 For what value(s) of x is $f(x) . g(x)>0$

Downloaded from Stanmore pfysics.com

QUESTION 25

In the diagram below, ABCD is a cyclic quadrilateral with $\mathrm{DC}=6$ units, $\mathrm{AD}=10$ units $\mathrm{A} \hat{\mathrm{DC}}=100^{\circ}$ and $\mathrm{CAB}=40^{\circ}$

Calculate the following, correct to ONE decimal place:
25.1 The length of BC
25.2 The area of $\triangle \mathrm{ABC}$

Downloaded from Stanmore pfysics.com

QUESTION 26

26.1 If $\sin 34^{\circ}=p$, determine the value of each of the following in terms of p, WITHOUT USING A CALCULATOR.
26.1.1 $\quad \sin 214^{\circ}$
26.1.2 $\cos 34^{\circ} \cdot \cos \left(-22^{\circ}\right)+\cos 56^{\circ} \cdot \sin 338^{\circ}$
26.1.3 $\cos 68^{\circ}$
26.2 Determine the value of each of the following expressions:
26.2.1 $\frac{\cos \left(90^{\circ}-2 \theta\right) \cdot \sin \theta}{\sin ^{2}\left(180^{\circ}+\theta\right) \cdot \cos \left(720^{\circ}+\theta\right)}$
26.2.2 $\frac{1}{\sin ^{2} 2 x}-\frac{1}{\tan ^{2} 2 x}$

Downloaded from Stanmorepfysics.com

QUESTION 27

In the diagram, the graph of $f(x)=-\sin 2 x$ is drawn for the interval $x \in\left[-90^{\circ} ; 180^{\circ}\right]$.

27.1 Draw the graph of g, where $g(x)=\cos \left(x-60^{\circ}\right)$, on the same system of axes for the interval $x \in\left[-90^{\circ} ; 180^{\circ}\right]$ in the ANSWER BOOK.
27.2 Determine the general solution of $f(x)=g(x)$.
27.3 Use your graphs to solve x if $f(x) \leq g(x)$ for $x \in\left[-90^{\circ} ; 180^{\circ}\right]$
27.4 If the graph of f is shifted 30° left, give the equation of the new graph which is formed.
27.5 What transformation must the graph of g undergo to form the graph of h, where $h(x)=\sin x$?

Downloaded from Stanmorepfysics.com

QUESTION 28

In the diagram below, D, B and C are points in the same horizontal plane. AC is a vertical pole and the length of the cable from D to the top of the pole, A , is p meters. $\mathrm{AC} \perp \mathrm{CD} . \mathrm{A} \widehat{\mathrm{C}}=\theta$; $\mathrm{D} \widehat{\mathrm{C}} \mathrm{B}=\left(90^{\circ}-\theta\right)$ and $\mathrm{C} \widehat{\mathrm{BD}}=2 \theta$.

Downloaded from Stanmorepfysics.com
28.1 Prove that:

$$
\begin{equation*}
\mathrm{BD}=\frac{p \cos \theta}{2 \sin \theta} \tag{5}
\end{equation*}
$$

28.2 Calculate the height of the flagpole AC if $\theta=30^{\circ}$ and $p=3$ meters.
28.3 Calculate the length of the cable AB if it is further given that $\mathrm{A} \widehat{\mathrm{D}} \mathrm{B}=70^{\circ}$

Downloaded from Stanmorepfysics.com

