STANMORE SECONDARY

SCHOOL

FINANCIAL MATHEMATICS

GRADE 11

FINANCIAL MATHS
SIMPLE AND COMPOUND INTEREST
$S I=A(P(1+i \times n)$ - SIMPLE INTEREST.
$A=$ accumulated amount; $P=$ principal amount
$n=$ tine period $; i=$ interest rate $=i / 100$

1. Calculate the SI. on R2000 at $8,5 \%$ pa. for 6 years.
2. Peter deposited R400 in a bank and recerved an accumulated amount of R600 after 2 years. What was the annual interest rate if the simple interest is charged.
COMPOUND INTEREST
$C I=A=P(1+4 / 100)^{n}$ - compounded annually $C I: A=P(1+4 / 400)^{4 n}$ - compounded quarterly
CI: $A=P(1+i / 200)^{2 n}$ compounded - compounded monthly.
$n=$ time period $; i=$ interest rate
1) Calculate the amount if $R 12000$ is invested for 3 years at 14% pa. compounded annually.
2) John invested a lump sum for 20 years ago at an interest rate of $14,5 \%$ compounded annually. How much did he invest of the current value is $R 92000$.
3. Calculate r the value of insrotment of R50000 after 3 years

4. Como unsento Rio enherctanca at an entered suet \& $11,5 \%$ compounded montblys. apes 15 yeas his investment

5. R10000 is nested unto a pension fend. The total
 yeans. Calculate ike ammonal interest rate if uaterest was compounded annually.
6. R10000 is invested at 9\% pa. compounded monthly. How long will it take for the money to doable itself.
7. R10000 is invested un a band for 12 yo at a rale of 9% pea. Compounded monthly. After 5 yo the rete changer A 10% pa. and it in now compounded semi- anna ally. Find the value of the investment at the and of $12 y$ yo.
8. John departs R12000 wo the bank at a rate of 8% per anus compounded monthly for 20 years. However, after 4 years be Alepainto al further hemp sem of R30000 and then after another 5 yeas ha deposit R10 000. How much is his mosey worth offer 20 years of the enterser sate remenci. th same.

Nominal and Effective rate of interim.
A nominal rate of interest is the quoted rates per annumi even though. the interest. may be compounded over pernods shorter then a year (eg. da ely, monthly, quastariy) An effective rat of interest is the rat at whits He interest ab roues at the end of each year as of menterset is calculated once
Formula: Let supper a amount of Pis invested at a nominal entered rate of inom pa. calachatad whee tomes a year. Let iviff interest seta.

$$
\begin{aligned}
P\left(1+i_{\text {ff }}\right)^{\prime} & =P\left(1+\frac{i_{m o m}}{m}\right)^{m} \\
1+i_{\text {eff }} & =\left(1+\frac{i_{\text {som }}}{m}\right)^{m}
\end{aligned}
$$

NOMINAL AND EFFECTIVE RATE OF INTEREST

1. An amount of R15000 is invested' \therefore for 7 you at a nominal intersect rate of $10 \% p . a$. compounded nomstrly Calculate the effective suet of internat.
2. An mount of R20000 is invested for 8 yon at a normal interest rat of $9,3 \%$ pa. compoundeal quarterly. Calalat ME affection rate of interest.

Simple Decay
Straight hone depreciation or, constant percentages method. This means the same amount is removed, every year. For excromble" subpar a machine carting R5000' is Odepracrinted at in constant amount af 20% per year. this ne am that every ger the shachure lares 20% abut is Rloso of velar. $A=P(1-n . r)$.
(1.) A machine costing R2000 is depreciated at 10% par. on a straight lina basis. What in it value after 4 years?
(2) A car cost R150000 is depreciated by the straight line method over 5 years. What is the value after 5 years.
(3) A car depreciates according to the straight line method to a value of R200000 after 6 years. If it costs R600000, whet is the rate of depreciation.
(4.) The book value of a car is R164000 four years afteict war purchased. The vale of depreciation is 18% on a straight line basis. Calculate the purchase price of the car.
(s) A machine costing R 5800 is deprecated by the straight lina method at 15% pa. After how many years does et take to reach half ctr value.

Compoand Decay
Compound. Dreany mecicos that U.the sama percentage is xomoved from the xoderemy balane.

$$
A=p\left(1-e_{i}\right)^{n}
$$

1. Amachene costing R.2000 is depreciatere at 10% p.a ou a rechueving balasice basis. What is ato vialae oftor 5 yperas.
2. The vilue of a mackine is sedereat to R10500 four yews iffers it was parchased. what was the purchave pria of \% machian y the orte of sepreccetion is 21% p.a. colcalatist on a redureage balaric:
3. The Sierap veluer of a munibur is R57 000 frove jearso agtor: it was pecrehasel for R302 s00. Deprociation II wosted out on a reduexry bolance. Calculats the nat of depociation.
4. A mackisis costing $R 35000$. has a scrap value of $\bar{R} 7000$
wer in yeass al a compound depreciatran rats of $17,5 \%$ wor in yeass al it sempound depreciatian ratis of $17,5 \%$ p.a. Find n.
5. al one stage there were 2500 tegeres in a certain juing lan ind y yos labes the nusaber drobled.
6. find the rate of deprociation.
5.2. Gfter hou momep yeans anll there be just one hegr left at thes Orate. yeas anll there be feent one hear

FINANCE. CIROWTH AND DECAY.
EXAMPLE (COMPOUND INTEREST)

1. Invested R2000 at 11% pea. compounded monthly. a) How much will you receive after 8 years. SOLUTION:

$$
\begin{array}{r}
\begin{array}{rl}
A=P(1+i)^{n} \rightarrow A ? & f=R 2000 ; \\
n=8 \text { years } \times 12 \text { months }=96 \\
i=11 \% \div 12 \text { months }=\frac{0,11}{12} \text { or } \frac{11}{1200} \\
A=2000\left(1+\frac{0,11}{12}\right)^{8 \times 12} \text { or } A=2000(1+11 / 1200) 8 \times 12
\end{array} \\
=R \frac{4802,508219}{} \simeq R 4802,51
\end{array}
$$

2. Invested R25000 for 5 years, calculate the vale of investment of interest rates are:
a) 11% compounded quarterly
b) 11% compounded bl-annually
a) $A=?, P=R 25000, n=$ syeas $\times 4=20$ quarter;

$$
\begin{aligned}
& i=11 \% \div 4=\frac{0.11}{4} \text { or } \frac{11}{400} \\
& A=25000\left(1+\frac{0.11}{4}\right)^{5 \times 4} \text { or } A=25000\left(1+\frac{11}{400}\right) 5 \times 4 \\
&=R 43010,71078 \\
& \approx R 43010,71
\end{aligned}
$$

b) $A=? P=R 25000, n=5$ years $\times 2=10$ halves

$$
\begin{aligned}
i & =11 \% \div 2=\frac{0.11}{2} \text { or } \frac{11}{200} \\
A=25000(1+2)^{5 \times 2} \text { or } A & =25000\left(1+\frac{11}{200}\right)^{5 \times 2} \\
& =R 42703,61146 \simeq R 42703,61
\end{aligned}
$$

Calculating the Vallie of P, i and N
Example 1 - (calculating of value) - Principal value
John kequed R28500 after δ years, how much was invested if the rate $12,5 \%$ pa. compounded interest.

$$
\begin{aligned}
& A=R 28500, P=? ; n=8 \text { year }, i=12,5 \% \text { pa. } \\
& 28500=P\left(1+\frac{12.5}{100}\right)^{8} \\
& \therefore \quad \frac{28500}{\left(1+\frac{125}{100}\right)^{8}}=P \\
& \quad \frac{R 1107,71}{}=P
\end{aligned}
$$

Example 2 (calculating the i value). Interest Rate
After 6 years, you received R125400 after inverting R64900. What is the intriest rate of the interest is compounded quarterly.

$$
\begin{aligned}
& A=125400, P=64900 ; n=6 \text { yrs } \times 4=24 \text { quarters; } i=? \\
& 125400=64900(1+i / 400) 6 \times 4 \\
& \frac{125400}{64900}=(1+L / 400)^{24} \leftarrow\left(\frac{A}{P}\right) \\
& 24 \sqrt{\frac{125400}{6490}}=1+i / 400 \quad \leftarrow \sqrt[n]{\frac{A}{P}} \\
& 1,0278-1=1 / 400 \leftarrow(4 \text { decimal places }) \\
& 010278 \times 400=i \\
& 11,12 \%=i \\
& \xrightarrow{2}=
\end{aligned}
$$

3. Example 3- (Calculating the "n" value) - Perrin of INVESTMENT

R2500 was invested at 8% compounded bi-anmually. How long died it take to teach an amount of \& 13200 .

$$
\begin{aligned}
& 13200 \\
& A=13200, P=2500, i=8 \% \div 2=\frac{0.08}{2} \text { or } 8 / 200 \\
& n=? \\
& 13200=2500(1+8 / 200) \\
& \frac{13200}{2500}=(1+8 / 200)^{n} \\
& \therefore n=\log (1+8 / 200) \\
& \therefore n=42,42-\text { halves } \\
& \therefore n=\frac{42,42}{2} \text { (convert to hap ives to } \\
&=21,21 \text { years years) } \\
& \therefore \approx 22 \text { years }
\end{aligned}
$$

NOMINAL AND EFFECTME INTEREST RATE
What is the effective rate if the nominal rate is 7.5% pa compounded monthly.

$$
\begin{aligned}
& 1+i_{\text {effective }}=\left(1+i_{\text {nominal }}\right)^{n} \\
& 1+i_{\text {eff }}=\left(1+\frac{7.5}{1200}\right)^{12} \\
& 1+i_{\text {eft }}=1,07763 \\
& \therefore i_{\text {eff }}=1,07763-1 \\
& i=0,07763 \times 100 \\
& =7,76 \%
\end{aligned}
$$

Convert a nommal rate of 9% p. compounded monthly to effective quarterly interest rate.

$$
\begin{aligned}
& (1+\text { ieffectioe })^{n}=\left(1+i_{\text {nominal }}\right)^{n} \\
& \left(1+\frac{i e l l}{400}\right)^{4}=\left(1+\frac{9}{1200}\right)^{12} \\
& 1+\frac{i e f f}{400}=\sqrt[4]{\left(1+\frac{9}{1200}\right)^{12}} \\
& 1+\frac{i \text { eff }}{400}=1,0226 \\
& \frac{i e f t}{400}=1,0226-1 \\
& i \text { eft }=0,026 \times 400 \\
& \therefore i \text { eff }=9,06 \%
\end{aligned}
$$

Tine line
Investovents with time and interest rate changer Invested R10000 at $6,5 \%$ pa compounded quarter, 6 for 10 years. After 3 years the interest rate changed to $7,2 \%$ pa compounded monthly. After 5 years, the interest rate changed to $7,5 \%$ pa. compounded bi-annua lyly. How much aid you receive after 10 years.

METHoD 1

$$
\begin{aligned}
& A=10000\left(1+\frac{6.5}{400}\right)^{3 \times 4}\left(1+\frac{7.2}{1200}\right)^{2 \times 12}\left(1+\frac{2.5}{200}\right)^{5 \times 2}=R 20241,34 \\
& A E T H 0 D 2 \\
& A=10000\left(1+\frac{6.5}{400}\right)^{3 \times 4}=R 12134,07 \text { - First } 3 \text { years } \\
& A=12134,07\left(1+\frac{7.2}{1204}\right)^{2 \times 12}=R 14007,42 \text { - next } 2 \text { years } \\
& A=14007,42\left(1+\frac{7.5}{200}\right)^{5 \times 2}=R 20241,34 \text {-next S years }
\end{aligned}
$$ \therefore adds up to 10 years

Mr Nardoo invested $R 74000$ at 8% pa compounded monthly for 10 years. After 3 years, Mir Nacidoc withdrew R25000 from his initial investment. Apter 5 years interest rate changed to $8,5 \%$ pa compounded bi-annually. After 8 years, Mr Naidoo returned R25000 into the investment. How much and Mr Nandoo get after 10 years.

$$
\begin{aligned}
& A= 74000(1+8 / 1200)^{3 \times 12}=R 93997,54 \quad \text { (3years) } \\
& \therefore R 93997,54-R 25000=R 68997,54 \\
& A=68997,54(1+8 / 1200))^{2 \times 12}=R 80926,38 \text { (} 2 \text { years) } \\
& A= 80926,38(1+8,5 / 200)^{3 \times 2}=R 103883,49 \text { (3yeas) } \\
& \therefore R 103883,49+R 25000=R 128883,49 \\
& A= 128883,49\left(1+\frac{8,5}{200}\right)^{2 \times 2}=\frac{R 152230,45 \text { (2 years) }}{\text { Tola 1 yeas }=10 \text { yeas }}
\end{aligned}
$$

SIMPLE AND COMPound D DECAY
$A=P(1-i n)$-simple decay $\quad A=P(1-c)^{n}$ - reducing balance method.
Example l

1) A cor cost $R 350000$ depreciates at 12% p. an con simple interest). What the value of cars after 6 years.

$$
A=P\left(1-i x_{n}\right) \quad \therefore A=350000\left(1-\frac{12 \times 6}{100}\right)=R 98000 .
$$

2) A truck valued at $R 800000$ deprecates cot 11% pa. (on a reducing balance method). What is the value of the truck after 5 years.

$$
A=P(1-c)^{n} \Rightarrow A=800000\left(1-\frac{11}{100}\right)^{5}=R 446724,75
$$

PAST YEAR PAPERS
 QUESTIONS
 \&
 ANSWERS

8.1 Calculate the effective interest rate per annum if an investment earns $9,5 \%$ interest per annum, compounded monthly.
8.2 The value of a house increased to R764 050,60 over a period of 5 years due to inflation. The price of the house increased at a rate of 5% p.a. compounded annually. Calculate the original price of the house.
8.3 Kamvelihle invested R28 000 into a savings account that pays interest at $7,5 \%$ p.a. compounded monthly for the first 4 years and 11% p.a. compounded quarterly thereafter. At the end of the $4^{\text {th }}$ year, he withdrew R7 300.
8.3.1 Calculate his balance at the end of the $7^{\text {th }}$ year of his investment.
8.3.2 Assuming that at the end of 7 years, his balance is R42 181, 59, Kamvelihle wants his investment to grow to R80 000 in another 5 years' time. How much must he deposit into the account immediately to achieve this goal if the bank offers 8% p.a. interest compounded monthly?
Write your answer correct to the nearest rand.

QUESTION 7 RC/NOVEMBER 2019

7.1 The value of a laptop depreciates on a reducing balance method, at a rate of $13,4 \%$ p.a. Calculate the original value of the laptop given that it had depreciated toR7 210 over a period of 5 years.
7.2 Calculate the effective interest rate if an investment offers a nominal interest rate of $8,2 \%$ p.a. compounded quarterly.
7.3 Allen invested an amount of R20 000 on 1 January 2015, at an interest rate of $10,3 \%$ p.a. compounded monthly. At the start of the second year, he deposited R15 000 into the same account but the interest rate increased to $11,5 \%$ p.a. compounded monthly. At the end of the third year, he withdrew a certain amount of money from his savings and kept the rest of the money in his account for a further 2 years at an interest rate of $16,8 \%$ p.a. compounded quarterly.
7.3.1 What was the balance of his investment on 31 December 2015?
7.3.2 How much money, to the nearest rand, did he withdraw at the end of the third year, given that his final bank balance at the end of the fifth year was R30 183, 64 ?

November 2019
8.1 The purchase price of a car five years ago was R200 000. The current book value of the car is R85 000. Using the reducing-balance method of deprecation, calculate the annual rate of depreciation.
8.2 An amount of money was invested at a rate of $8,5 \%$ p.a., compounded quarterly. Calculate the effective interest rate per annum of this investment.
8.3 Susan made an initial deposit of R28 000 into an investment account. Three years later she made another deposit of R12 000. She withdrew R6 500 from the account 5 years after the initial deposit was made. The interest rate for the first 4 years was 12% p.a., compounded monthly. Thereafter the interest rate changed to $12,9 \%$ p.a., compounded half-yearly.
8.3.1 Calculate how much Susan had in this investment account 2 years after
the initial deposit was made.
8.3.2 How much will the investment be worth 8 years after the initial deposit
was made?

NOVEMBER 2018

7.1 Calculate the effective interest rate per annam il an investment cars interest at a rate of $11,5 \%$ pa., compounded monthly.

Karabo bought a computer for R 4700 . The value of the computer depreciated at a rate of 18% pa. Using the reducing-balance method, calculate the book value of the computer 4 years after it was bought.

Nhlanhla made an initial deposit of $R 20000$ into an investment account that paid interest at the rate of $7,2 \%$ pa., compounded quarterly. After 2 years the interest rate changed to $7,8 \%$ pa., compounded monthly. Foul years after his initial deposit,
Nhlanhla withdrew $R 2500$ from his imsesment. Nhlanhla withdrew R2 500 from his investment.
7.3.1 Calculate how much Nhlamha had in this ins estment account 2 years after
the initial deposit was made.
7.3.2

How much will the investment be worth 7 years after the initial deposit
was made?

QUESTION 7 NOVEMBER 2017

7.1 A company bought machinery costing R80 000. Using the reducing balance method, the machinery had a book value of R20 000 after 5 years.

Calculate the rate of depreciation.
7.2 Calculate the effective interest rate if interest is compounded at 5% p.a., compounded
quarterly.
7.3 Sipho invested R30 000 for 6 years. The investment earned interest at 12% p.a., compounded monthly for the first two years. Thereafter the interest rate changed to $10,8 \%$ p.a., compounded semi-annually for the rest of the period.

Calculate the value of the investment at the end of 6 years. (No other transactions
were made on the account.)
7.4 Mary deposited R25 000 into a savings account with an interest rate of 18% p.a., compounded monthly. Mary withdrew R8 000 from the account 2 years after depositing the initial amount. She deposited another R4 000 into this account $31 / 2$ years after the initial deposit.
initial deposit in this account?

Mathematics /P1
CAPS - Grade 11
DBE/November 2016

QUESTION 8

8.1 A machine costs R25 000 in 2016. Calculate the book value of the machine after
8.2 pa. according to the reducing balance method.

The nominal interest rate of an investment is $12,35 \%$ p.a., compounded monthly.
8.3 The value of a property increased from R145000 to R221292,32 over 6 years.
8.4 property over 6 years. Calculate the effective interest rate.

Calculate the average annual rate of increase of the property over 6 years.
Tebogo made an initial deposit of R15 000 into an account that paid interest at $9,6 \%$
p.a., compounded quarterly. Six months later she withdrew R5 000 from the account.

How much does she have in the account 3 years after her R3 500 into this account.

QUESTION 6

6.1 The price of a new school bus is R540 000. The value of the bus decreases at 11% per annum according to the diminishing-balance method. Calculate the value of the bus after 8 years.
6.2 Determine the effective interest rate if an investment earns interest at a nominal interest rate of $11,5 \%$ per annum, compounded quarterly.
6.3 Vishnu and Landi receive R15000 each. They decide to invest the money for a period of 8 years as follows:

Vishnu: Simple interest at $8,7 \%$ per annum. At the end of the 8 years Vishnu receives a cash bonus of 3% on the principal amount.
Landi: Interest at 6,9\% per annum, compounded monthly.
6.3.1 Calculate the value of Vishnu's investment after 8 years, including the cash bonus.
6.3.2 Calculate the value of Landi's investment after 8 years.
6.4 James invests a certain amount for 5 years. The investment earns interest at 12% per annum, compounded monthly, for the full term. James withdraws R2 000 from the account after 18 months. After 5 years the value of the investment is R23 564.

What amount did James initially invest?

YOVEMBER 2015

QUESTION 8

8.1 A school buys tablets at a total cost of R140000. If the average rate of inflation is $6,1 \%$ per annum over the next 4 years, determine the cost of replacing these
tablets in 4 years' time.
8.2 An investment earns interest at a ratc of 7% per annum, compounded semi-annually. Calculate the effective annual interest rate on this investment.
8.3 A savings account was opened with an initial deposit of R24 000. Eighteen months
later R7 000 was withdrawn from the account. Calculate how much moncy will be in
the savings account at the end of 4 years if the interest rate was $10,5 \%$ pa.,
compounded monthly.
8.3 A savings account was opened with an initial deposit of R24 000. Eighteen months
later R7 000 was withdrawn from the account. Calculate how much moncy will be in
the savings account at the end of 4 years if the interest rate was $10,5 \%$ p.a.,
compounded monthly.
8.3 A savings account was opened with an initial deposit of R24 000. Eighteen months
later R7 000 was withdrawn from the account. Calculate how much moncy will be in
the savings account at the end of 4 years if the interest rate was $10,5 \%$ p.a.,
compounded monthly.
8.3 A savings account was opened with an initial deposit of R24 000. Eighteen months
later R7 000 was withdrawn from the account. Calculate how much moncy will be in
the savings account at the end of 4 years if the interest rate was $10,5 \%$ p.a.,
compounded monthly.
8.4 A car costing R198 000 has a book value of R102 755,34 after 3 years. If the
value of the car depreciates at r\% value of the car depreciates at $r \%$ p.a. on a reducing balance, calculate r.

QUESTION 8/VRAAG 8

8.1	$\begin{aligned} i_{e f f} & =\left(1+\frac{i_{n o m}}{m}\right)^{m}-1 \\ & =\left(1+\frac{0.095}{12}\right)^{12}-1 \\ & =0,099247 \ldots \\ \therefore r & =9,92 \% \end{aligned}$	\checkmark formula / formule \checkmark substitution / vervanging \checkmark answer / antwoord (3)
8.2	$\begin{aligned} & A=P(1+i)^{n} \\ & \mathrm{R} 764050,60=P(1+0,08)^{5} \\ & P=\frac{764050.60}{(1+0.08)^{5}} \\ &=\mathrm{R} 520000 \end{aligned}$	$\begin{align*} & \checkmark A=\mathrm{R} 764050,60 \\ & \checkmark \text { substitution / vervanging } \\ & \checkmark \text { answer / antwoord } \tag{3} \end{align*}$
8.3 .1	$\begin{aligned} A & =\left[28000\left(1+\frac{0,075}{12}\right)^{48}-\mathrm{R} 7300\right]\left(1+\frac{0,11}{4}\right)^{12} \\ & =(\mathrm{R} 37760,78-\mathrm{R} 7300)\left(1+\frac{0,11}{4}\right)^{12} \\ & =\mathrm{R} 30460,78\left(1+\frac{0,11}{4}\right)^{12} \\ & =\mathrm{R} 42181,59 \end{aligned}$	$\begin{aligned} & \checkmark 28000\left(1+\frac{0,075}{12}\right)^{48} \\ & \checkmark-R 7300 \\ & \checkmark \times\left(1+\frac{0,11}{4}\right)^{12} \end{aligned}$ \checkmark simplification/vereenvoudiging \checkmark answer / antwoord
8.3.2	$\begin{aligned} & A=P(1+i)^{\prime \prime} \\ & \begin{aligned} & A=\mathrm{R} 42181,59\left(1+\frac{0,08}{12}\right)^{60} \\ &=\mathrm{R} 62844,06 \end{aligned} \\ & \mathrm{R} 80000-\mathrm{R} 62844,06 \\ & =\mathrm{R} 17155,94 \\ & \begin{aligned} \therefore A & =P(1+i)^{\prime \prime} \\ \mathrm{R} 17155,94 & =P\left(1+\frac{0,08}{12}\right)^{60} \\ P & =\frac{17155,94}{\left(1+\frac{0,08}{12}\right)^{60}} \\ & =\mathrm{R} 11515,25 \end{aligned} \end{aligned}$ \therefore He needs to deposit R11515/ Hy moet RII 515 deponeer	\checkmark substitution into correct formula vervanging in korrekte formule \checkmark R62 844,06 \checkmark R17 155,964 \checkmark method/metode \checkmark answer / antwoord

QUESTION 7/VRAAG 7

7.1	$\begin{aligned} & A=P(1-i)^{\prime \prime} \\ & 7210=P(1-0,134)^{5} \\ & 7210=0,4870678 P \\ & \therefore P=R 14802,87 \end{aligned}$	```\(\checkmark\) formula / formule \(\checkmark n=5\) \(\checkmark\) substitutionintocorrectformula vervanging in korrekte formule \(\checkmark\) answer / antwoord```
7.2	$\begin{align*} i_{e f f} & =\left(1+\frac{i_{n e m}}{n}\right)^{n}-1 \tag{4}\\ & =\left(1+\frac{0,082}{4}\right)^{4}-1 \\ & \approx 0,0846 \\ \therefore & r_{e f f} \approx 8,46 \% \end{align*}$	$\checkmark n=4 \checkmark$ substitution/vervanging
7.3.1	$\begin{aligned} A & =P(1+i)^{n} \\ & =R 20000\left(1+\frac{0,103}{12}\right)^{12} \\ & \approx R 22160,09 \end{aligned}$	$\checkmark i=\frac{0.103}{12} \text { and } / e n \checkmark n=12$ \checkmark substitutionintocorrectformula vervanging in korrekte formule \checkmark answer / antwoord
7.3.2	Let themoneythathewithdrewbex / Laat die geld wat hy onttrek het x wees Balanceatstart of 2nd year / Balans aan die begin van 2de jaar $\begin{aligned} & R 22160,09+R 15000=R 37160,09 \\ & {\left[\left(R 37160,09\left(1+\frac{0.115}{12}\right)^{24}\right)-x\right]\left[\left(1+\frac{0.168}{4}\right)^{8}\right]=R 30183,64} \\ & (46718,49558-x)=\frac{30183.64}{\left(1+\frac{0.686}{4}\right)^{8}} \\ & -x=\frac{30183,64}{\left(1+\frac{0,168}{4}\right)^{8}}-46718,49558 \\ & -x=-24999,9939 \\ & \therefore x=R 25000,00 \end{aligned}$	$\begin{aligned} & \checkmark R 22160,09+R 15000 \\ & \checkmark\left(R 37160,09\left(1+\frac{0.115}{12}\right)^{24}\right) \\ & \checkmark \text { subtractingx } / \text { trek } x \text { af } \\ & \checkmark \\ & \left\lfloor\left(R 37160,09\left(1+\frac{0.115}{12}\right)^{24}\right)-x\right]\left(\left(1+\frac{0.168}{4}\right)^{8}\right\} \end{aligned}$ \checkmark equatingto / stel gelyk aan R 30 183,64 \checkmark answer / antwoord
		$\begin{array}{r} (6) \\ {[17]} \end{array}$

QUESTION/VRAAG 8

8.1	$\begin{aligned} \mathrm{A} & =\mathrm{P}(1-i)^{n} \\ 85000 & =200000(1-i)^{5} \\ i & =1-\sqrt[5]{\frac{85000}{200000}} \\ i & =15,73 \% \end{aligned}$	\checkmark substitution/verv. \checkmark rewrite in terms of i/ skryf in terme van i \checkmark answer/antw.
8.2	$\begin{align*} 1+i_{e f f} & =\left(1+\frac{i_{m o m}}{m}\right)^{m} \\ 1+i_{e f f} & =\left(1+\frac{0,085}{4}\right)^{4} \\ i_{e f f} & =\left(1+\frac{0,085}{4}\right)^{4}-1 \\ i_{e f f} & =8,77 \% \tag{3} \end{align*}$	\checkmark formula/form. $\checkmark i=\frac{0,085}{4}$ \checkmark answer/antw.
8.3.1	$\begin{aligned} \mathrm{A} & =\mathrm{P}(1+i)^{n} \\ & =28000\left(1+\frac{0,12}{12}\right)^{2 \times 12} \\ & =\mathrm{R} 35552,57 \end{aligned}$	\checkmark substitution/verv. \checkmark answer/antw.
8.3.2	$\begin{aligned} A= & 28000\left(1+\frac{0,12}{12}\right)^{12 \times 4}\left(1+\frac{0,129}{2}\right)^{2 \times 4}+ \\ & 12000\left(1+\frac{0,12}{12}\right)^{12}\left(1+\frac{0,129}{2}\right)^{2 \times 4}-6500\left(1+\frac{0,129}{2}\right)^{2 \times 3} \\ & =\text { R87 } 267,25 \end{aligned}$ OR/OF	$\begin{aligned} & \checkmark \frac{0,12}{12} \text { and } n=48 \\ & \checkmark \frac{0,129}{12} \text { and } n=8 \\ & \checkmark \\ & 12000\left(1+\frac{0.12}{12}\right)^{12}\left(1+\frac{0.129}{2}\right)^{2 \cdot 4} \\ & \checkmark-6500\left(1+\frac{0,129}{2}\right)^{2 \times 3} \end{aligned}$ \checkmark answer/antw.

QUESTION/VRAAG 7

7.1	$1+i_{e f f}=\left(1+\frac{i_{n o m}}{m}\right)^{m}$	\checkmark formulafform.
	$1+i_{c f f}=\left(1+\frac{0,115}{12}\right)^{12}$	$\checkmark i=\frac{0,115}{12}$
	$\begin{aligned} & i_{e f f}=\left(1+\frac{0,115}{12}\right)^{12}-1 \\ & i_{e f f}=12,13 \% \end{aligned}$	\checkmark answer/antw.
7.2	$\begin{aligned} \mathrm{A} & =\mathrm{P}(1-i)^{n} \\ & =4700(1-0,18)^{4} \\ & =\mathrm{R} 2124,97 \end{aligned}$	\checkmark formula/form. \checkmark substitution/verv. \checkmark answer/antw.
7.3.1	$\begin{aligned} \mathrm{A} & =\mathrm{P}(1+i)^{n} \\ & =20000\left(1+\frac{0,072}{4}\right)^{2 \times 4} \\ & =\mathrm{R} 23068,12 \end{aligned}$	\checkmark formula/form. \checkmark substitution/verv. \checkmark answer/antw.
7.3.2		(3)
	$\begin{aligned} & =23068,12\left(1+\frac{0,078}{12}\right)^{2 \times 12} \\ & =\mathrm{R} 26949,12 \end{aligned}$	$\checkmark \frac{0,078}{12} \text { and } n=24$
	$\begin{aligned} & \mathrm{R} 26949,12-\mathrm{R} 2500 \\ = & \mathrm{R} 24449,12 \\ \mathrm{~A}= & \mathrm{P}(1+i)^{n} \end{aligned}$	\checkmark A(after 2 years)-R2 500
	$=24449.12\left(1+\frac{0,078}{12}\right)^{3 \times 12}$	$\checkmark n=36$
		\checkmark answer/antw.
		(4)

OR/OF

$$
\begin{aligned}
A & =23068,12\left(1+\frac{0,078}{12}\right)^{12 \times 5}-2500\left(1+\frac{0,078}{12}\right)^{12 \times 3} \\
& =R 30871,48
\end{aligned}
$$

$$
\begin{aligned}
& \checkmark i=\frac{0,078}{12} \text { and } n=60 \\
& \checkmark \checkmark-2500\left(1+\frac{0,078}{12}\right)^{12 \times 3} \\
& \checkmark \text { answer/antw. }
\end{aligned}
$$

QUESTION/VRAAG 7

7.1	$\begin{aligned} A & =P(1-i)^{n} \\ 20000 & =80000(1-i)^{5} \\ 0,25 & =(1-i)^{5} \\ \sqrt[5]{0,25} & =1-i \\ i & =1-\sqrt[5]{0,25} \\ i & =0.24214417 \\ i & =24,21 \% \end{aligned}$	\checkmark substitution into correct formula/ verv. in korrekte vorm \checkmark simplification/vereenv \checkmark answer/antw.
7.2	$\begin{aligned} & 1+i_{e f f}=\left(1+\frac{i_{\text {nom }}}{m}\right)^{m \prime} \\ & 1+i_{e f f}=\left(1+\frac{0,05}{4}\right)^{4} \\ & i_{e f f}=0,050945336 \ldots \\ & \text { Effective rate }=5,09 \% \text { p.a. } \end{aligned}$	\checkmark vorm/vorm \checkmark subst/verv \checkmark answer/antw.
7.3	$\begin{aligned} \mathrm{A} & =\mathrm{P}(1+i)^{\prime \prime} \\ & =30000\left(1+\frac{0.12}{12}\right)^{2 \times 12}\left(1+\frac{0.108}{2}\right)^{4 \times 2} \\ & =\mathrm{R} 58017,51 \end{aligned}$	subst/verv in form/vorm $\begin{aligned} & \checkmark\left(1+\frac{0,12}{12}\right)^{2 \times 12} \\ & \checkmark\left(1+\frac{0,108}{2}\right)^{+\times 2} \\ & \checkmark \text { answer/anhs. } \end{aligned}$
7.4	$\begin{aligned} A & =25000\left(1+\frac{0,18}{12}\right)^{5 \times 12}-8000\left(1+\frac{0,18}{12}\right)^{3 \times 12}+4000\left(1+\frac{0,18}{12}\right)^{1.5 \times 12} \\ & =25000\left(1+\frac{0,18}{12}\right)^{60}-8000\left(1+\frac{0,18}{12}\right)^{36}+4000\left(1+\frac{0,18}{12}\right)^{18} \\ & =\text { R } 52636,74 \end{aligned}$ OR/OF	$\begin{aligned} & \checkmark \frac{0,18}{12} \\ & \checkmark 25000\left(1+\frac{0,18}{12}\right)^{5 \times 12} \\ & \checkmark-8000\left(1+\frac{0,18}{12}\right)^{3 \times 12} \\ & \checkmark+4000\left(1+\frac{0,18}{12}\right)^{18} \end{aligned}$ $\checkmark \checkmark$ answer/antw.

QUESTION/VRAAG 8

5.2.2	$\begin{aligned} -5 k-4 & =-219 \\ -5 k & =-215 \\ k & =43 \\ -k^{2}+6 & =-219 \\ k^{2} & =225 \\ k & =15 \\ \therefore k=15 & \end{aligned}$	If ONLY/Indien SLEGS: $\begin{aligned} -k^{2}+6 & =-219 \\ k^{2} & =225 \\ k & =15 \end{aligned}$ 4 marks/punte. If continues and mentions that $k=15$ is uneven; 5 marks. As voortgaan en meld dat $k=15$ is onewe: 5 punte	$\begin{aligned} & \checkmark-5 k-4=-219 \\ & \checkmark \text { answer/antwoord } \\ & \checkmark-k^{2}+6=-219 \\ & \checkmark \text { answer/antwoord } \\ & \checkmark \text { choice/keuse } \end{aligned}$	
				[17]

If expansion that leads to correct answer: 5 marks.
As uitbreiding wat tot korrekte antwoord lei: 5 punte. If ONLY expansion: 2 marks.
Indien SLEGS uitbreiding: 2 punte.

$n=$ uneven	1	3	5	7	9	11	13	15						
T_{n}	5	- 3	-19	-43	-75	-115	-163	-219						
$n=$ even	2	4	6	8	10	12	14	16	18	20	22	24	26	28
T_{n}	-14	-24	-34	-44	-54	-64	-74	-84	-94	-104	-114	- 124	-134	-144
$n=$ even	30	32	34	36	38	40	42	44						
T_{n}	. 154	-164	-174	-184	-194	-204	-214	-224						

QUESTION 6/VRAAG 6

6.4	OR/OF $\begin{aligned} & P_{1}\left(1+\frac{0,12}{12}\right)^{42}=23564 \\ & P_{1}=\frac{23564}{\left(1+\frac{0.12}{12}\right)^{42}} \\ & P_{2}\left(1+\frac{0.12}{12}\right)^{18}=P_{1}+2000 \\ & P_{2}=\frac{P_{1}+2000}{\left(1+\frac{0.12}{12}\right)^{18}} \\ & P_{2}=\text { R14 } 642,83 \end{aligned}$ Wrong formule/ verkeerde formule: $1 \text { mark/punt for/vir } i$ OR/OF $\begin{aligned} & {\left[x\left(1+\frac{0,12}{12}\right)^{18}-2000\right]\left(1+\frac{0,12}{12}\right)^{42}=23564} \\ & x\left(1+\frac{0,12}{12}\right)^{18}-2000=15514,98340 \\ & x\left(1+\frac{0,12}{12}\right)^{18}=17514,9834 \\ & x=\text { R14642,83 } \end{aligned}$	$\begin{aligned} & \checkmark i=\frac{0,12}{12} \\ & \checkmark 23564\left(1+\frac{0,12}{12}\right)^{-42} \\ & \checkmark+2000 \\ & \checkmark\left(1+\frac{0.12}{12}\right)^{-18} \end{aligned}$ \checkmark answer/antwoord $\begin{aligned} & \checkmark i=\frac{0,12}{12} \\ & \checkmark P_{1}\left(1+\frac{0.12}{12}\right)^{42}=23564 \\ & \checkmark P_{1}+2000 \\ & \checkmark P_{2}\left(1+\frac{0.12}{12}\right)^{18}=P_{1}+2000 \end{aligned}$ \checkmark answer/antwoord $\begin{aligned} & \checkmark i=\frac{0,12}{12} \\ & \checkmark x\left(1+\frac{0.12}{12}\right)^{18}-2000 \\ & \checkmark\left(1+\frac{0,12}{12}\right)^{42} \\ & \checkmark x\left(1+\frac{0.12}{12}\right)^{18}=17514,9834 \end{aligned}$ \checkmark answer/antwoord
		[16]

QUESTION/VRAAG 8

8.1	$\begin{aligned} A & =P(1+i)^{n} \\ & =140000(1+0,061)^{4} \\ & =R 177414,69 \end{aligned}$	$\begin{aligned} & \checkmark 140000 \\ & \checkmark(1+0,061)^{4} \end{aligned}$ \checkmark answer/antwoord
8.2	$\begin{align*} 1+i_{c f f} & =\left(1+\frac{0,07}{2}\right)^{2} \\ 1+i_{c f f} & =(1+0,035)^{2} \\ i_{c t f} & =(1+0,035)^{2}-1 \\ & =0,071225 \tag{3} \end{align*}$ The effective interest rate/Die effekfiewe rentekoers is 7,12\% p.a.	$\begin{aligned} & \checkmark \frac{0,07}{2} \\ & \checkmark 1+i_{c t t}=(1+0.035)^{2} \end{aligned}$ \checkmark answer/antwoord
8.3	$\begin{aligned} A & =24000\left(1+\frac{0,105}{12}\right)^{48}-7000\left(1+\frac{0,105}{12}\right)^{30} \\ & =R 27369,56 \end{aligned}$ OR/OF $\begin{aligned} A & =\left[24000\left(1+\frac{0,105}{12}\right)^{18}-7000\right]\left(1+\frac{0,105}{12}\right)^{30} \\ & =R 27369,56 \end{aligned}$ OR/OF $\begin{aligned} \mathrm{A}_{\text {afifer } 18 \text { mementis }} & =24000\left(1+\frac{0,105}{12}\right)^{18} \\ & =\mathrm{R} 28074,70 \\ \mathrm{R} 28074,70-\mathrm{R} 7000 & =\mathrm{R} 21074,70 \\ \mathrm{~A}_{\text {affer } 4 \text { vearss }} & =21074,70\left(1+\frac{0,105}{12}\right)^{30} \\ & =\mathrm{R} 27369,56 \end{aligned}$	$\begin{aligned} & \checkmark \frac{0,105}{12} \\ & \checkmark \\ & \checkmark \\ & \checkmark=48 \\ & \checkmark \\ & n=30 \\ & \checkmark \text { correct substitution into } \\ & \text { correct formula/korr } \\ & \text { subst in korr formule } \\ & \checkmark \text { answer/antwoord } \\ & \checkmark \frac{0,105}{12} \\ & \checkmark \quad n=18 \\ & \checkmark n=30 \\ & \checkmark \text { correct substitution into } \\ & \text { correct formula/korr } \\ & \text { subst in kurr formule } \\ & \checkmark \text { answer/antwoord } \\ & \\ & \checkmark \frac{0,105}{12} \\ & \checkmark \\ & \checkmark \end{aligned}$
8.4	$\begin{aligned} & 102755,34=198000\left(1-\frac{r}{100}\right)^{3} \\ & \sqrt[3]{\frac{102755,34}{198000}}=1-\frac{r}{100} \\ & 1-\frac{r}{100}=0,8036119818 \\ & -\frac{r}{100}=-0,1963880182 \\ & r=19,64 \% \end{aligned}$	\checkmark formula \checkmark correct substitution into correct formula/korr subst in korr formule $\checkmark n=3$ $\checkmark \sqrt{\frac{102755.34}{198000}}=1-\frac{r}{100}$ \checkmark answer/antwoord
		[16]

