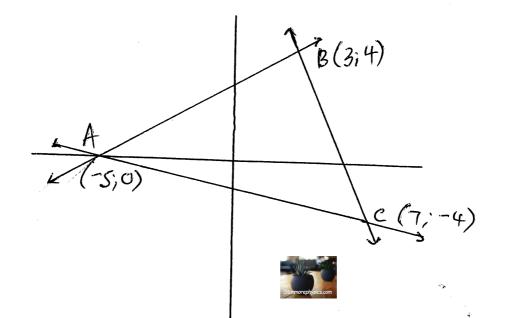


STANMORE SECONDARY SCHOOL

ANALYTICAL GEOMETRY

GRADE 10

COMPILED BY K.H.MOODLEY


The Downloaded from Stanmorephysics com

(2)

The Downloaded from Stanmorephysics com

(2) l'ue between two points.

Distance/length =/(x2-x1)2+(y2-y1)2

$$D_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-5 - 3)^2 + (0 - 4)^2}$$

$$= \sqrt{80} = 4\sqrt{5}$$

$$\int_{BC} = \int (x_2 - x_1)^2 + (y_2 - y_1)^2$$

$$= \int (3 - 7)^2 + (4 - (-4))^2$$

$$= \int_{BC} = 4 \int_{S}$$

$$D_{AC} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(7 - (-5))^2 + (-4 - 0)^2}$$

$$= \sqrt{160} = 4\sqrt{10}$$

-- 1 ABC is a Isosceles triangle MIDPOINT

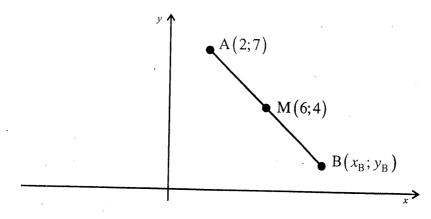
The midpoint of a line segment is the point halfway between two given points. The midpoint is generally denoted as: $M(x_{_{\rm M}};y_{_{\rm M}})$

Midpoint Formula:

$$\mathbf{M}(x_{M}; y_{M}) = \mathbf{M}\left(\frac{x_{1} + x_{2}}{2}; \frac{y_{1} + y_{2}}{2}\right)$$

You can also work with each part of the formula separately to determine the x and y-coordinates of the midpoint:

$$x_{\mathsf{M}} = \frac{x_1 + x_2}{2} \qquad \qquad y_{\mathsf{M}} = \frac{y_1 + y_2}{2}$$


Example 1: Determine the midpoint of line AB if A is the point (5; 6) and B is the point (-3; -2).

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$= M\left(\frac{5 + (-3)}{2}; \frac{6 + (-2)}{2}\right)$$

$$= M(1; 2)$$

Example 2: Determine the coordinates of B, if A is the point (2; 7) and the coordinates of M, the midpoint of AB, are (6;4).

$$x_{M} = \frac{x_{1} + x_{2}}{2}$$

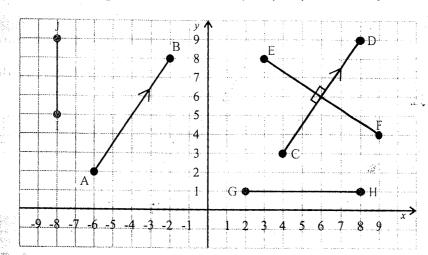
$$y_{M} = \frac{y_{1} + y_{2}}{2}$$

$$0.56 = \frac{2 + x_{B}}{2}$$

$$0.512 = 2 + x_{B}$$

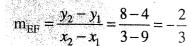
 \therefore B is the point (10;1)

Downloaded from Stanmorephysics.com AVERAGE ORADIENT


(4)

Average gradient is the ratio of the change in y-values (the dependent variable) to the change in x-values (the independent variable).

Average Gradient

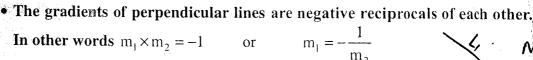

gradient =
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \rightarrow \frac{\text{change in } y}{\text{change in } x}$$

Example: Determine the gradient of lines AB, CD, EF, GH and LJ.

$$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 2}{-2 - (-6)} = \frac{3}{2}$$

$$m_{CD} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 3}{8 - 4} = \frac{3}{2}$$




$$m_{GH} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 1}{8 - 2} = 0$$

 $m_{IJ} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 5}{-8 - (-8)} = \frac{4}{0} = \text{undefined} \rightarrow \text{you cannot divide by } 0$

From the above example it can be seen that:

• Parallel lines have equal gradients. $\longrightarrow M_{l_1} = M_{l_2}$

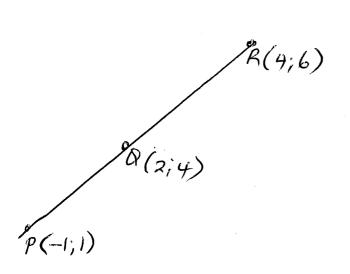
- The gradient of a horizontal line is always equal to 0.
- The gradient of a vertical line is undefined.

Mab = ya-yb or Mab = yb-ya NB! Xa = >Cb

A) BRAMPLEI (PARACLEL LINES) A(6;-2); N(3;5); P(1;9) and Q(4;2). Show that AN//PQ.

NB (If two strought lines are parallel, their gradients are equal)

•
$$M_{AN} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_n - y_a}{x_n - x_a} = \frac{s - (-2)}{3 - 6} = \frac{7}{-3}$$


· MAN = MPQ = -7 : AN//PQ

B) ExAMPLE 2! (COLLINEAR)

If P(-1,1), Q(2,4), and R(4,6) are 3 points on a Cartesian plane. Show that P, Q and R are Collinear.

NB! (if points are collinear, they lie on the same straight line. If P, a and R are collinear, then MPR = MOR = MPR.)

o Mpq =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{4-1}{2-(-1)} = \frac{3}{3} = 1$$

" Mqr = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{6-y}{4-2} = \frac{2}{2} = 1$

" Mpr = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{6-1}{4-(-1)} = \frac{5}{5} = 1$

MRQ = MOR = MPR = 1

' P. Q are R are Collinear.

(C) PERPENSICULAR LINES

Downloaded from Stanmorephysics.com MLax MLb = -1

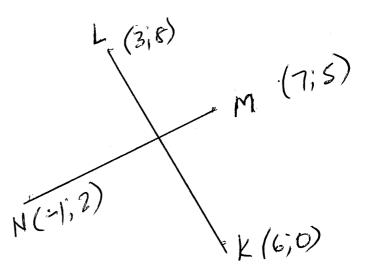
(b)

NB: EXAMILES OF GRADIENTS OF PERPENDICULAR LINES

" If M a = 4/7 then Mlb = -7/4, since (4) x (74) = -1

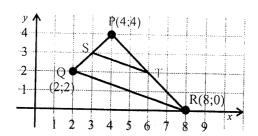
= It MLa = -5/2 then Mlb = 2/5 since (-5/2) x (2/4) = -1

• If MLa = 3 then MLb = -1/3 since (3) x (-1/3) = -1


EXAMPLE 3:

If K(6,0), L(3,8), M(7,5) and N(-1,2), show that

6 MKL =
$$\frac{y_2 - y_1}{2_1 - 2}$$
 = $\frac{8}{3}$


"
$$M_{MN} = \frac{y_2 - y_1}{5(2 - \chi)} = \frac{5 - 2}{7 - (-1)} = \frac{3}{8}$$

KLIMN

 ΔPQR with vertices P(4;4), Q(2;2) and R(8;0) is sketched below.

- a) Determine the coordinates of S and T, if they are the midpoints of PQ and PR respectively.
- b) Show that the points P, T and R are collinear.
 Collinear points are points that lie on the same straight line.
- c) Prove that ST is half the length of QR.

a) Midpoint of PO:

$$S\left(\frac{x_2+x_1}{2}; \frac{y_2+y_1}{2}\right) = S\left(\frac{4+2}{2}; \frac{4+2}{2}\right) = S(3;3)$$

Midpoint of PR:

$$T\left(\frac{x_2+x_1}{2}; \frac{y_2+y_1}{2}\right) = T\left(\frac{4+8}{2}; \frac{4+0}{2}\right) = T(6;2)$$

 \therefore S is the point (3;3) and T is the point (6;2)

b) For P, T and R to be collinear the gradient of PT must be equal to the gradient of TR.

$$m_{PT} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{4 - 6} = -\frac{2}{2} = -1$$

$$m_{TR} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 0}{6 - 8} = -\frac{2}{2} = -1$$

 $m_{\rm PT} = m_{\rm TR}$

... the points P, T and R are collinear

c) QR = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(8-2)^2 + (0-2)^2}$ = $\sqrt{40} \to \sqrt{40} = \sqrt{4 \times 10}$ = $2\sqrt{10}$ units

ST =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(6-3)^2 + (2-3)^2}$
= $\sqrt{10}$ units

 $\therefore ST = \frac{1}{2}QR$

When given information or even the graph, it is often important to be able to determine the equation (mathematical model) of the linear function. For the equation y = mx + q the value of m (the gradient) and q(c) (vertical translation) must be determined. These values are then substituted back into the equation. Since there are two unknowns, two "bits" of information must be given.

To find m, the gradient:

Find m by using the relevant method

To find q:

feature of the graph. The last value required in any equation is often found by substituting a given point for x and y into the equation found so far, and hence solve for q. Remember this is the vertical translation, so if it is given, use it.

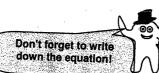
EXAMPLE 1

Determine the equation of the straight line passing through (-1, -2) and (-5, 6).

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{6 - (-2)}{-5 - (-1)}$$

$$m = \frac{6 + 2}{-5 + 1}$$


• Equation so far:
$$y = -2x + q$$

Using(-1;-2)
$$x = -1$$
; $y = -2$
-2 = -2(-1) + q

$$-2 = 2 +$$

$$-4=q$$

$$v = -2x - 4$$

Remember this is the

A(-1,-2)

EXAMPLE 2

Find the equation of the straight line passing through (4; -1) perpendicular to

• Determine m:

First find the gradient of the given line -4-y=2x.

$$4 - y = 2x.$$

$$y = -2x + 4 \quad \therefore m = -2$$
For perpendicular lines
$$\begin{cases} m_1 \times m_2 = -1 \\ \therefore -2 \times m_2 = -1 \\ m = \frac{-1}{2} = \frac{1}{2} \end{cases}$$

• Equation so far:
$$y = \frac{1}{2}x + q$$

Using(4;-1)
$$x = 4$$
; $y = -1$
 $-1 = \frac{1}{2}(4) + q$
 $-1 = 2 + q$
 $-3 = q$
∴ $y = \frac{1}{2}x - 3$

DETERMINE EQUATION OF PARALLEL LINES LCD/
Equation of AB: y= mx+c

MAB =
$$\frac{y_2-y_1}{7c_2-x_1} = \frac{6-(-2)}{4-(-2)} = \frac{8}{6} = \frac{4}{3}$$
 (-4,6)

"" MCD = 4/3 (LCD// LAB)

A(-2,-2)

Meth vortino ! 3. Find the perimeter of a b M-1,2); Q(1,6) and M-1,2)

C(-4,8) and D(2,0)

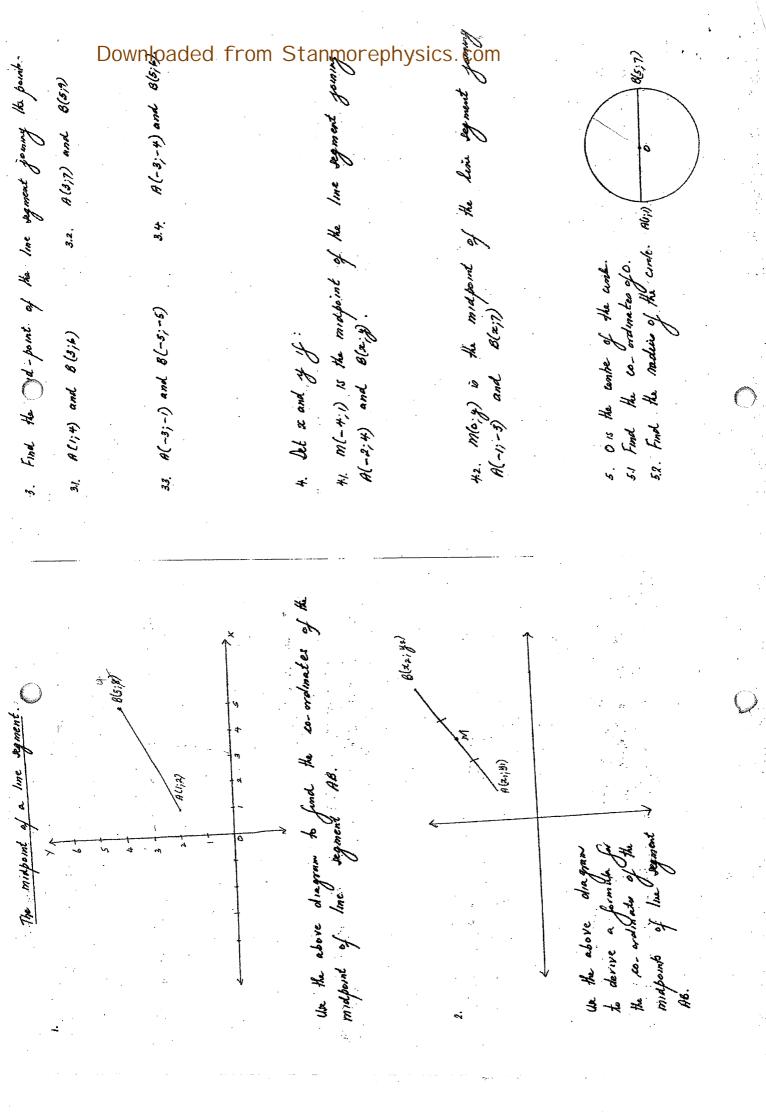
E(-3,0) and Flora

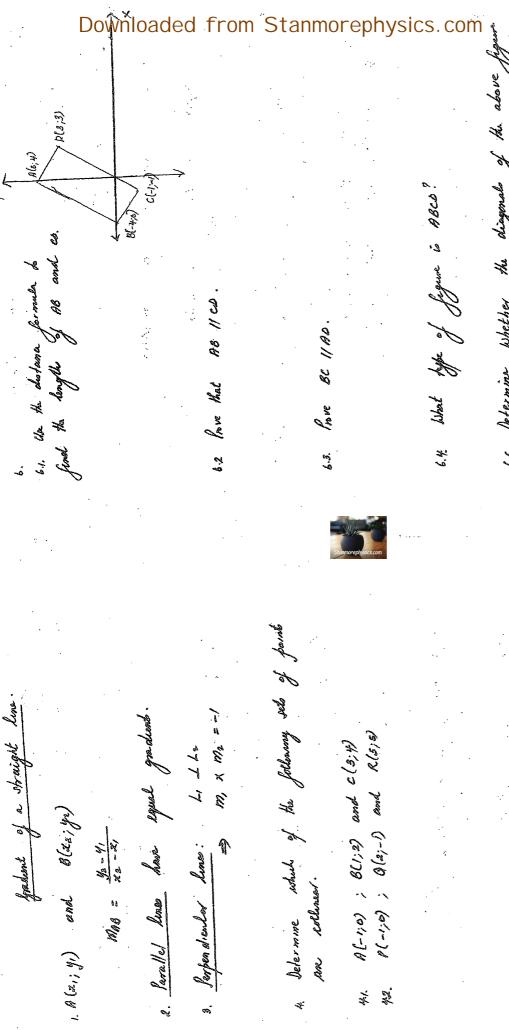
*, *,

1(-1,7) 0 (-2,-3) 1,7

la-ordinate

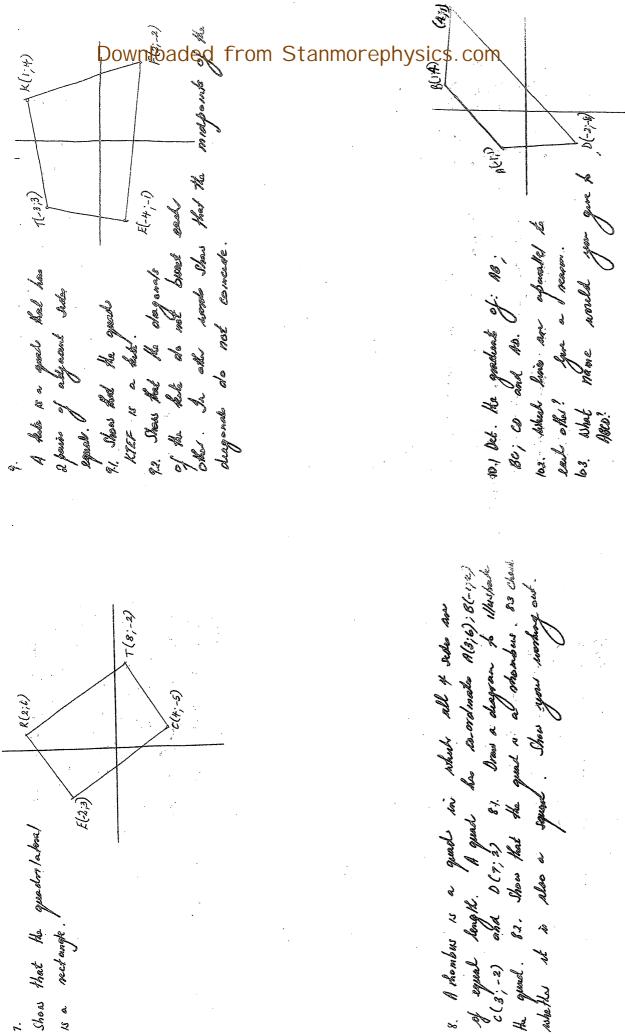
Distance formula:


; B (x2; 42)


1. Find the distant between early pair of points:

(x2-xy2 + (42-4))2

11. A (2;3); B (5;7)

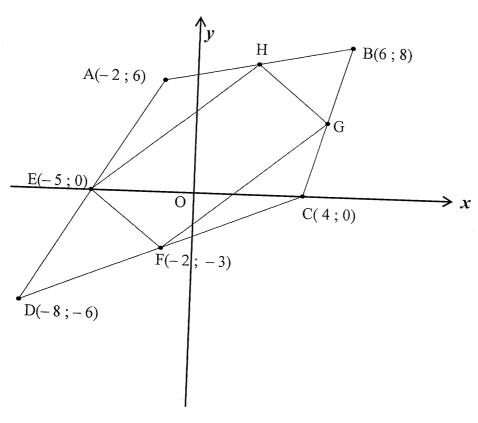

12. A (0;1) and C (6;9)

6.5. Determine whether the disgonals of the above figure boxet each other in other words determine whether the mudgoints of the classonal cornects.

what is the goodent of the line passing throught

PAST YEAR PAPERS

QUESTIONS &


ANSWERS

Downloaded from Stanmorephysics.com

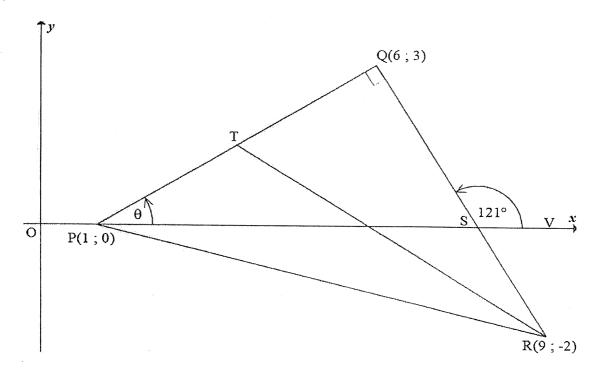
NOVEMBER 2019

QUESTION 2

In the diagram below, H and G are the midpoints of AB and BC respectively. The coordinates of A(-2; 6), B(6; 8), C(4; 0), D(-8; -6), E(-5; 0) and F(-2; -3) are given. The diagram is not necessarily drawn to scale.

- 2.1 Show by calculation that AB = BC.
- 2.2 If it is further given that AD = DC, what type of quadrilateral is ABCD? Motivate your answer.
- 2.3 Determine the coordinates of G and H.
- 2.4 If line BD is drawn and it is also given that EH|| BD, prove that $\Delta AEH|||\Delta CDB||$.

Downloaded from Stanmorephysics.com


NOVEMBER 2019

QUESTION 2

2.1	A(-2;6), $B(6;8)$ and $C(4;0)$
	$d_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(6 - (-2))^2 + (8 - 6)^2}$
	$=2\sqrt{17}$
	$d_{BC} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(4 - 6)^2 + (0 - 8)^2}$
	$= 2\sqrt{17}$
	\therefore AB = BC.
2.2	ABCD is a kite
2.3	adjacent sides are equal $A(-2;6)$, $B(6;8)$ and $C(4;0)$
2.3	Midpoint of BC = $\left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right)$
	$= \left(\frac{-2+6}{2}; \frac{8+6}{2}\right) = G(2;7)$
	Midpoint of AB = $\left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right)$
	$= \left(\frac{4+6}{2}; \frac{0+8}{2}\right) = H(5;4)$
2.4	$B\hat{A}D = B\hat{C}D$ (opposite \angle 's of a kite are =)
	$A\hat{E}H = E\hat{D}B$ (corresponding \angle 's, EG DB)
	but $E\hat{D}B = B\hat{D}C$ (diagonals of a kite)
	$\therefore A\hat{E}G = B\hat{D}C$
	∴ΔAEG ΔCDB. (A A A)

QUESTION 2

In the diagram below, P(1; 0), Q(6; 3) and R (9; -2) are the vertices of a triangle such that PQ = QR and $PQ \perp QR$. T is a point on PQ such that T is the midpoint of PQ. S is the point of intersection of RQ and the x-axis. V is a point on the x-axis such that $Q\hat{S}V = 121^{\circ}$. $Q\hat{P}S = \theta$

2.1 Determine the:

- 2.1.1 Length of PQ. Leave your answer in surd form. (2)
- 2.1.2 Gradient of PQ (2)
- 2.1.3 Coordinates of T (2)

2.2 Calculate the:

- 2.2.1 Area of ΔQTR (3)
- 2.2.2 Size of θ , with reasons (2)
- 2.2.3 Coordinates of S (3)
- Determine, with reasons, the gradient of the line through T and the midpoint of PR. (3)
 [17]

Mathemati	Mathematics/P2/Wiskundu/V2 CAPS/KABV - Gradc/Graad 10 Marking Guidelines/Nasienrigbme	DBE/November 2018	
QUESTI 2.1.1	QUESTIONVRA4G2 2.1.1 PQ = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
**************************************	$= \sqrt{(1-6)^2 + (0-3)^2}$ Answer only: 2/2 marks $= \sqrt{55 + 6}$	✓ subst./verv.	The Village Annual Assessment
	$-\sqrt{25+2}$ $=\sqrt{34}$	✓ answer/antwoord	(2)
2.1.2	$m_{i(q)} = \frac{y_2 - y_1}{x_2 - x_1}$		
	$= \frac{3-0}{6-1}$ Answer only: 2/2 marks	✓ subst./verv.	w sedenski popozoran ili kila s
* ************************************		answer/antwoord () ()	(2)
2.1.3	. γ _T = .		The second of th
	٥ .		According to the later among
**************************************	- 1		**************************************
	$T\left(\frac{7}{2}:\frac{3}{2}\right)$	<pre>/ x-value/x-waarde / y-value/y-waarde // y-value/y-waarde</pre>	
2.2.1	$QR = QP = \sqrt{34}$	$\sqrt{QR} = \sqrt{34}$	
4 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	$QT = \frac{1}{2}PQ$ $QROF$	<u> </u> -	
	$QT = \frac{1}{2}\sqrt{34}$	$\sqrt{QT} = \frac{1}{2}\sqrt{34}$	
THE COLUMN TWO STATES AND A STATE OF THE COLUMN TWO STATES AND A STATES AND A STATE OF THE COLUMN TWO STATES AND A STATES AND A STATE OF THE COLUMN TWO STATES AND A S	$QT = \sqrt{\left(\frac{7}{2} - 6\right)^2 + \left(\frac{3}{2} - 3\right)^2}$	***************************************	-
	$QT = \frac{\sqrt{34}}{2}$		108*1480********************************
	Area of $\Delta QTR - \frac{1}{2}(QR)(QT)$	✓ answer/antwoord (3)	· ·
The University of the Control of the	$=\frac{1}{2}\left(\sqrt{34}\right)\left(\frac{1}{2}.\sqrt{34}\right)$		
THE STATE OF THE PROPERTY.	$=\frac{17}{2}$ = 8,5 sq units/eenhede		· · · · · · · · · · · · · · · · · · ·
	OR/OF		
7/17/8-14/04-19/8-19		ann an	
			A STATE OF THE STA

Please turn over/Bluui om asseblief

Copyright reserved! Kopiereg voorbehou

Copyright reserved! Kopiareg voorbehou

	OP - OP - 134		
	VIV = √IV = √34		> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Area of $\triangle QTR = \frac{1}{2}$ Area of $\triangle QPR$	ıQPR) W
	$-\frac{1}{4}\left(\frac{1}{2}, OR.OP\right)$	Q.	nlo
	2(2	(_	oa L
	$= \frac{1}{2} \times \frac{1}{2} \cdot (\sqrt{34}) \left(\sqrt{34} \right)$)(√34)	5 734 34
	$= \frac{17}{2} \text{ sq units/eenhede}$	eenhede	√ answer/antwoora √ (3)
2.2.2	$\theta = 121^{\circ} - 90^{\circ}$ (ext / -31°)	(ext / Nbuitehoek van Δ)	√ reason √ answer/untwoordO
**************************************	ORIOF		m
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9°	(Z str line/hoek op reguitlyn)	\(\lambda \in \text{Sum Whinnelloft} \) \(\text{van } \text{A} \) \(
	$\theta = 31^{\circ}$ (Z sum Δ/bin	(Z sum Albinnehoek van A)	✓ answer/antwoor (2)
2.2.3	$\cos \theta = \frac{PQ}{PS}$	$\sin Q \hat{S} P = \frac{PQ}{PS}$	ma ଇ
Arry () Manage of	√34 √34	134 500 - V34	6
	COSSI - PS OR/OF		sin QSP = PQ as
	$PS = \sqrt{34}$	$PS = \frac{\sqrt{34}}{\sin 50^{\circ}}$,
	PS = 6,80	PS = 6,80	sic
	S(6,8+1;0)		/ x-valuc/x-waarde
	S(7,8; 0)		✓ y-value/y-waarde
	OR/OF.		0
	$m_{QR} = -\frac{5}{3}$		$m^{so_{m} = m_{os}} \wedge$
	3-0 5		0 - å >
	6-x = 3 9 = -30 + 5x		
	x = 7.8		• x-value/x-waarae (3)
an to come again an	OR/OF		
-	$m_{QR} = -\frac{5}{3}$		
	Equation of QR		
	$y-3=-\frac{5}{2}(x-6)$		

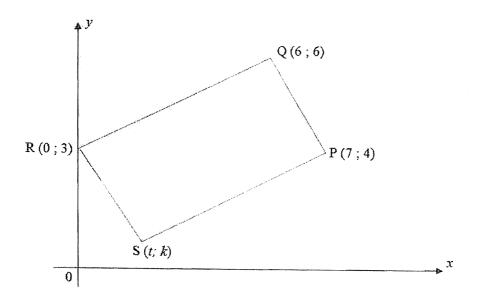
	$y = -\frac{7}{3}x + 13$		equation of
	$0 = -\frac{5}{2}x + 13$		QR/verhouding van <u>O</u> R
	x = 7.8		$\sqrt{y} = 0$
	\$(7,8;0)		x-value/x-waarde

Downloaded from Stanmorephysics.com

2.3 $m_{QR} = \frac{3 - (-2)}{6 - (9)}$ $= -\frac{5}{3}$ $m_{r-inidpoint} = m_{QR} \text{ (Midpoint Theorem)}$ $m_{r} \text{ undpoint } = -\frac{5}{3}$ ORUOF $Midpoint PR <math>\left(\frac{9 + 1}{2}; \frac{-2 + 0}{2}\right)$ Midpoint PR (5; -1) Midpoint PR (5; -1) Midpoint OF PR (5; -1) $= -\frac{5}{2} - (-1)$ $m_{r} \text{ and ten } p_{R} = \frac{7}{2} - (-1)$ $= -\frac{5}{3}$ $\sqrt{\text{answer}}$ (3)

DBE/November 2018

S


Aathomatics/P2/Wiskunde/V2

CAPS/KABV – Gradc/Graad 10 – Marking Guidelines/Nusienriglyne

QUESTI	QUESTION/VRAAG3		
3.1.1	$\tan(90^{\circ} - R) = \frac{PR}{QP} OR/OF \frac{q}{r}$	✓ answer/antwoord	[
3.1.2) sec ()	✓ answer/antwoord	3
	OR/OF cosec R	✓ answer/antwoord	3
	OR/OF cosec (90° – Q)	✓ answer/antwoord	€ :
	OR/OF sec (90° – R)	✓ answcr/antwoord	E E
3.2.1	$OS := \sqrt{(-3)^2 + (-4)^2} $ (Pythagoras) Answer only: 2/2 marks -5	✓ subst./verv. ✓ answcr/antwoord	
			3

QUESTION 3

In the diagram below, P(7; 4), Q(6; 6), R(0; 3) and S(t; k) are the vertices of quadrilateral PQRS.

3.1 Calculate the length of PQ. Leave your answer in surd form. (2)

3.2 If
$$T\left(\frac{7}{2}, \frac{7}{2}\right)$$
 is the midpoint of QS, determine the coordinates of S. (3)

3.3 If the coordinates of S are (1; 1), show that PR = QS. (2)

3.4 Show that $QR \perp RS$. (4)

3.5 Hence, what type of special quadrilateral is PQRS? Motivate your answer. (2)

3.6 Calculate the size of RŜQ. (3)

[16]

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

QUESTION/VRAAG2

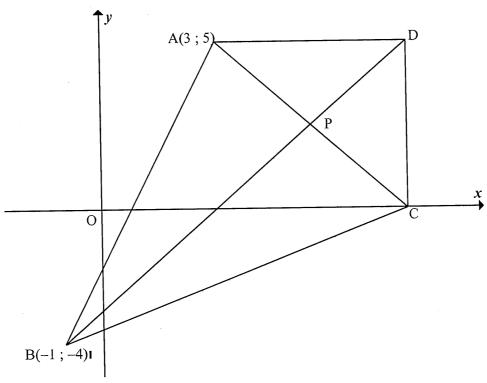
2.1	30 days/dae	/answ.lantw.	Ε
2.2	28 ≤ T < 32	√ answ./antw.	9 5
2.3	The mean/Gemiddeld $(\overline{X}) = \frac{44 + 104 + 270 + 170 + 266 + 126}{30}$	✓ addition/optel ✓30	3
	$= \frac{980}{30}$ $= 32,666$	У answ./antw.	(3)
2.4	= 32.01 C. $9 + 5 + 7 + 3 = 24 days/dae$	✓ addition/antel	
	% of number of days/getal dae = $\frac{24}{30} \times 100$. answ./antw.	
	%08 =		(2)
			2

QUESTION/VRAAG 3

L		
3.1	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	177
	$=\sqrt{(7-6)^2+(4-6)^2}$	v subst./verv.
	$=\sqrt{(1)^2+(-2)^2}$	Vansuv loube
	= \frac{2}{5}	(2)
3.2	$\mathcal{M}_{QS} = T(x; y)$	
	$\left(\frac{L}{L}, \frac{L}{L}\right) = \left(\frac{L}{L}, \frac{L}{L}\right)$	$\sqrt{6+x} = \frac{7}{\sqrt{1+x}}$
	$\begin{pmatrix} 2 & 2 \end{pmatrix} = \begin{pmatrix} \overline{2}, \overline{2} \end{pmatrix}$	2 2
	$6+x_{2}$ 7 $6+y_{2}$ 7	$\frac{1}{\sqrt{1 + y^2}} = \frac{1}{\sqrt{1 + y^2}}$
	$\frac{2}{2} - \frac{2}{2} = \frac{2}{2}$	7 7
	x=1 $y=1$	✓ answ./antw.
	S(1;1)	(3)

Downloade, answ./antw.	d from Sta	-2	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$	√Rectangle/Reghoek W ✓reason/rede (2)	$\checkmark \checkmark \cos R\$Q = \frac{\sqrt{5}}{5\sqrt{2}}$ $\checkmark \operatorname{answ}/\operatorname{cantw}.$ (3)
$PR = \sqrt{(x_p - x_R)^2 + (y_p - y_R)^2}$ $= \sqrt{(7 - 0)^2 + (4 - 3)^2}$ $= \sqrt{50}$ $= 5\sqrt{2}$ $= 7,07$ OR/OF	$QS = \sqrt{(x_s - x_Q)^2 + (y_s - y_Q)^2}$ $= \sqrt{(1 - 6)^2 + (1 - 6)^2}$ $= \sqrt{50}$ $= 5\sqrt{2}$ $= 7,07$ $\therefore PR = QS$	$m_{QR} = \frac{6 - 3}{6 - 0} = \frac{1}{2}$ $m_{RS} = \frac{3 - 1}{0 - 1} = -2$ $m_{QR} \times m_{RS}$	$= \frac{1}{2} \times -2$ $= -1$ $m_{QR} \times m_{RS} = -1$ $\therefore QR \perp RS$	Rectangle./Reghoek. The diagonals are equal and one of the interior angles is equal to 90". Die hoeklyne is gelyk en een van die binnehoeke is gelyk aan 90°.	$\cos R\hat{S}Q = \frac{\sqrt{5}}{5\sqrt{2}}$ $R\hat{S}Q = 71,57^{\circ}$
დ 		3.4		3.5	3.6

Mathematics P2/Wiskunde V2


CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienriglyne

DBE/November 2017

3 CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienriglyne

QUESTION 3

- 3.1 Show that a triangle ABC, with vertices A(1; 1); B(3; 6) and C(6; 3), is an isosceles triangle. (4)
- In the diagram below, ADCB is a kite with A(3; 5) and B(-1; -4). AD = DC and AB = BC. D is a point such that AD is parallel to the x-axis and AD = 5 units. CD is perpendicular to the x-axis. The diagonals intersect at P.

(2) Show that the coordinates of C are (8; 0). 3.2.1 (2) Write down the coordinates of point P. 3.2.2 (2) Calculate the gradient of line BD. 3.2.3 (2) Calculate the length of line AC. 3.2.4 (3) Calculate the area of the kite ADCB. 3.2.5 [15]

3 CAPS/KABV – Grade/Graad 10 – Memorandum

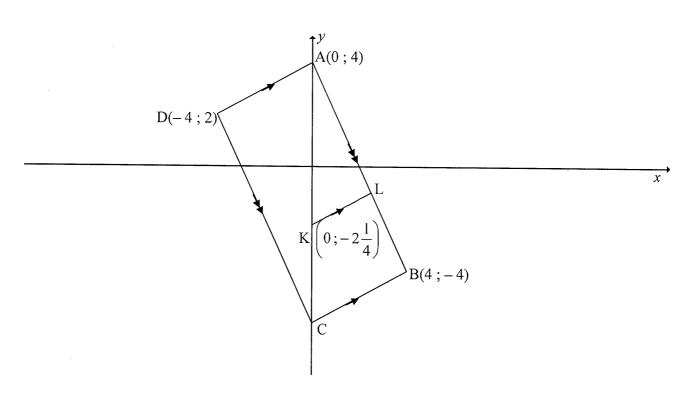
Mathematics/P2/Wiskunde V2

QUESTION 2/VRAAG 2

4 CAPS/KABV – Grade/Graad 10 – Memorandum Mathematics/P2/Wiskunde V2

2.1	Modal class(<i>Module klas</i>)		
	$100 \le x < 110$	• answer/antwoord (1)	
2.2	$110 \le x < 120$	✓ ✓ answer/antwoord (2)	
2.3	Estimate Mean IQ of students/ $Geskatte$ gemiddelde IK $= \frac{3480}{30}$ $= 116$	✓ 3480 ✓ 30 ✓ answer/antwoord (3)	

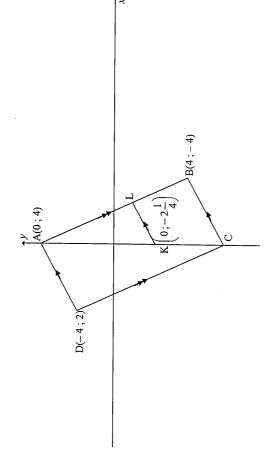
* QUESTION 3/VRAAG 3


3.1	AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(3 - 1)^2 + (6 - 1)^2}$ = $\sqrt{29}$	✓ subst. in corr. formula/vervang in korrekte formule ✓ distance/afstand AB
	AC = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(6 - 1)^2 + (3 - 1)^2}$ = $\sqrt{29}$	✓ subst. in corr. formula/vervang in korrekte formule
	AB = AC ∴ AABC is isosceles/gelykbenig	\checkmark AB = AC (4)
3.2.1	AD is parallel to the <i>x</i> -axis/ <i>AD parallel aan x-as</i> : A and D have the same <i>y</i> -coordinates/ <i>A en D het dieselfde y</i> -koördinate but AD = 5 units/eenhede : D(8; 5) CD is perpendicular to the <i>x</i> -axis/ <i>CD is loodreg met x-as</i>	√coordinates D/ koördinate D
	C and D have the same x-coordinate/C en D het dieselfde x-koôrdinate But C lies on the x-axis./C $l\bar{e}$ op x-as C(8:0)	✓ coordinates C/ koördinate C (2)

0		
	P is midpoint of AC the diagonals of the kite/ P is middelpunt van AC, die hoeklyne van die ruit	DOV openingen /
	$\therefore P = \frac{3+8}{2} ; \frac{5+0}{2}$	
	$P\left(\frac{11}{2};\frac{5}{2}\right)$	åde
3.2.3.	B(-1; -4) D(8; 5)	d
	$m_{bd} = \frac{5+4}{8+1}$	L Substitution/vervang
	1.	✓ answer/antwoord ⇒
1	A(3;5) C(8;0)	Sta
	$AC = \sqrt{(0-5)^2 + (8-3)^2}$	Substitution Vervang
	$=\sqrt{50}$	ıntwoor
7	B(-1; -4) D(8; 5) BD = $\sqrt{(5+4)^2 + (8+1)^2}$	hys
	$=\sqrt{162}$	C length/lengte BD
	Area = $\frac{1}{2}$ (BD.AC)	. CC
	$=\frac{1}{2}(\sqrt{162}.\sqrt{50})$	✓ substitution/ ₩
	= 45	• answer/annyoora (3)

Please turn over/Blaai om asseblief

In the diagram, C is a point on the y-axis such that A(0; 4), B(4; -4), C and D(-4; 2) are vertices of parallelogram ABCD. K is the point $\left(0; -2\frac{1}{4}\right)$ and L is a point on AB such that $KL \mid CB$.


- 3.1 Calculate the length of diagonal DB. (3)
- 3.2 Calculate the coordinates of M, the midpoint of DB. (3)
- 3.3 Calculate the gradient of AD. (3)
- 3.4 Prove that $AD \perp AB$. (3)
- 3.5 Give a reason why parallelogram ABCD is a rectangle. (1)
- Determine the equation of KL in the form y = mx + c. (2)
- Write down, with reasons, the coordinates of C. (3)

[18]

5 CAPS/KABV – Grade/Graad 10 (Memorandum)

4 CAPS/KABV – Grade/Graad 10 (Memorandum) Mathematics/P2/Wiskunde/V2

QUESTION/VRAAG3

DB = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	✓ correct formula/ korrekte formule
$=\sqrt{(-4-4)^2+(2-(-4))^2}$	✓ subst
$=\sqrt{64+36}$	
$=\sqrt{100}$	
= 10	\checkmark answer/antw (3)
$M\left(x_1+x_2,\dots,y_1+y_2\right)$	Correct formula/
•	korrekte formule
$M(-4+4 \cdot 2-4)$	
	✓ x-value/waarde
$\therefore M(0:-1)$	✓ y-value/waarde
	(5)
$m_{AD} = \frac{y_1 - y_2}{x_1 - x_2}$	< correct formula/
x - 1 x 2	korrekte formule
7-+ =	✓ subst into/in
0 - (-4)	gradient form/
= 2 = 1	gradiëntvorm
7 4	✓ answer/antw
	(2)

4.6	$m_{AB} = \frac{y_1 - y_2}{x_1 - x_2}$	Dov
	$=\frac{4-(-4)}{0-4}$	√ subst
	$=\frac{8}{100}$	✓ gradient of A
=	$\therefore m_{AD} \times m_{AB} = \frac{1}{2} \times -2 = -1$	de (w. w. w.)
	∴AD⊥AB 2	1 1
3.5	parallelogram with one internal angle = 90° parallelogram met een binnehoek = 90°	TOT
3.6	$m_{KL} = m_{AD} = \frac{1}{2} \qquad [KL \mid AD]$	V gradient of KIN
	$\therefore y = \frac{1}{2}x - 2\frac{1}{4}$	gradiënt van K
3.7	AC = DB = 10 units [diag of rectangle =/hkle ν regh =] $4 - \nu_C = 10$	✓ R ✓ equation/vg/ M
**		pre
		v answer/antw C
	$= \frac{1}{2}$ [sides of rectangle /sye v regh]	/sics
	$\frac{-4 - y_{\rm C}}{4 - 0} = \frac{1}{2}$ $-8 - 2y_{\rm C} = 4$	Countion/vgl
	C(0:−6)	✓ answer/antw (3)
		[18]