

Basic Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

PHYSICAL SCIENCES P2: CHEMISTRY

COMMON TEST

MARCH 2015

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 50

TIME : 1 hour

This question paper consists of 9 pages

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- 1. This question paper consists of FIVE questions.
- 2. Answer **ALL** the questions in the ANSWER BOOK.
- 3. This question paper consists of **TWO** sections:

SECTION A

(8 marks)

SECTION B

(42 marks)

- 4. Start EACH question on a NEW page in the ANSWER BOOK.
- 5. Number the answers correctly according to the numbering system used in this question paper.
- 6. Leave ONE line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 7. Give brief motivations, discussions, et cetera where required.
- 8. Write neatly and legibly.

SECTION A

QUESTION 1: MULTIPLE-CHOICE

Four possible options are provided as answers to the following questions. Each question has only ONE correct answer. Choose the answer and write ONLY the letter (A - D) next to the question number (1.1 - 1.4) in the ANSWER BOOK.

1.1 Consider the reaction:

This reaction can be classified as ...

A. hydration

B. substitution

C. dehydration

D. hydrogenation (2)

1.2 H H H

| | | |

H-C-C-C-H

| | |

H H CH₃

The name of the above compound is:

A. propane

B. 3-methylpropane

C. butane

D. 1-methylpropane. (2)

1.3 Which one of the following statements concerning PROPANE is INCORRECT?

A. It has a higher boiling point than ethane.

B. Its general formula is C_nH_{2n} .

C. It is a saturated compound.

D. Its reaction with oxygen is strongly exothermic.

(2)

1.4 P	olymers are n	nade of giant	molecules	composed of	repeating	units calle	d
-------	---------------	---------------	-----------	-------------	-----------	-------------	---

A isomers.

B hydrocarbons.

C both A and B.

D monomers.

(2)

[8]

TOTAL SECTION A:

[8]

SECTION B

QUESTION 2

The letters **A** to **F** in the table below represent organic compounds.

A	В
HC≡CCH₂CH₃	CH₃CH₂CHCH₃
	OH
С	D
CH_3 $\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	O ∥ CH₃CCH₃
E	[m]
H H C C I H H H	CH ₃ CH ₂ CH ₂ CHCH ₃ CH ₃

- 2.1 Write down the IUPAC name of compound **A**. (2)
- 2.2 Draw the structural formula for an isomer of **B** that is a <u>tertiary alcohol</u>. (2)
- 2.3 In the above compounds, identify the alkene (write down **ONLY** the letter). (1)
- 2.4 Write down the IUPAC name of compound of **D**. (2)
- 2.5 Draw the structural formula for a functional isomer of compound **D**. (2)
- 2.6 Write down the general formula for the group of compounds to which A belongs. (1)
- 2.7 Name the type of polymerisation that produces **E**. (1)
- 2.8 Name the products formed from the combustion of **A**. (2)

2.9 A student uses bromine water to distinguish between compounds C and F. She adds bromine water to each in two different test tubes. The test tubes are labelled **X** and **Y**. She makes the following observations for each of the test tubes:

6

NSC

- X: decolourises bromine water immediately.
- Y: decolourises bromine water only after placing the test tube in the sunlight.
- 2.9.1 Which compound, C or F, is in test tube X? (1)
 2.9.2 Name the type of reaction taking place in test tube Y. (Choose from: Addition, Substitution or Elimination) (1)
 2.9.3 Write down the structural formula of the organic product formed in test
- tube Y. (2)

 2.9.4 Why would chlorine water NOT be suitable to conduct this investigation? (2)

 [19]

QUESTION 3

Esters are formed from the reaction of an alcohol and a carboxylic acid.

- 3.1 Write down the IUPAC name of the above ester. (2)
- 3.2 Write down the NAME of the:
 - 3.2.1 carboxylic acid and the (1)
 - 3.2.2 alcohol that is used in the synthesis of this ester. (1)
- 3.3 Name the catalyst that is used in this reaction. (1)
- 3.4 What is the **NAME or FORMULA** of the inorganic product that is formed during this reaction? (1)
- 3.5 Draw the structure of the carboxylic acid which is an isomer of the above ester (2)
- 3.6 The polymerisation of ethene to produce polythene is represented by the equation below:

$$nCH_2 = CH_2 \rightarrow -[CH_2 - CH_2]_n -$$

- 3.6.1 Define the term *macromolecule*. (1)
- 3.6.2 Name **ONE** industrial use of polythene. (1) [10]

QUESTION 4

Three hydrocarbons (A, B and C) with a molecular formula C_5H_{12} are used to investigate the effect of **chain length** on the **boiling point** of hydrocarbons. The results obtained are given in the table below.

HYDROCARBON	BOILING POINT (°C)
Α	36:
В	28
C	10

4.1	What is a hydrocarbon?	(1)
4.2	Are these hydrocarbons saturated or unsaturated? Give a reason for your answer.	(2)
4.3	Write down a possible structural formula for B.	(2)
4.4	Explain why hydrocarbon C has the lowest boiling point. In the explanation refer to the MOLECULAR STRUCTURE of the compound, INTERMOLECULAR FORCES and the ENERGY required.	(3)
4.5	How will the vapour pressure of compound A compare to that of butan-1-ol? (Write down only HIGHER THAN or LOWER THAN or EQUAL TO) .	(1) [9]

QUESTION 5

Consider the following two organic reactions:

Br | B: CH₃CH₂CHCH₃ + NaOH_(aq) heat

5.1 Write down the IUPAC name of the major organic product in reaction A. (2)

5.2 In terms of the types of reactions, how is reaction A differ from reaction B? (2)

[4]

TOTAL SECTION B = [42]

GRAND TOTAL = [50]

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

PHYSICAL SCIENCES P2: (CHEMISTRY)

MEMORANDUM

COMMON TEST - MARCH 2015

NATIONAL SENIOR CERTIFICATE

GRADE 12

29 MARKS:

1 hour TIME: N.B. This memorandum consists of 4 pages including this page.

Physical Sciences/P2

(])

March 2015 Common Test

\ \ \ \

QUESTION 1

S

1.2

<u>}</u> B/ \ 5.

4.

QUESTION 2

[80]

8

Ø Ø

(2) $\overline{\Omega}$

2.1 butv-1-ynev

н - С - Н Н Н-С - Н 2.2

8

 Ξ

 \overline{S}

8

ر د 2.3 propanone 🗸 🗸 2.4 2.5

C,H2n-2

 Ξ

 Ξ

<u>8</u>

 $\widehat{\Xi}$ Ξ

Addition < 2.7

2.8 carbon dioxide and water /

2.9.1 CV

2.9.2 Substitution <

Copyright Reserved

Please Turn Over

A.3 He had bounded to four other atoms. 4.3 He he had bounded to four other atoms. 4.3 He he he had he had to four other atoms. 4.3 Molecular structure: Compound C has more substituents than A and B has increased branching / has a decreased surface area. Intermolecular forces: Less or weaker intermolecular forces / London forces. Energy Less energy required to break intermolecular forces / London forces. (1) 4.5 Higher than \(\) 6.1 but \(\text{-}2 \cdot \) 5.2 A : dehydrohalogenation / elimination \(\) 8.2 A : dehydrohalogenation / elimination \(\) (2) B : hydrolysis / substitution \(\) (2)
H — C — H H — H — H H — C — C — C — C — C — C — H Molecular structure: Compound C has more substituents than A and B / has increased branching / has a decreased surface area. Intermolecular forces: Less or weaker intermolecular forces / London forces. Energy Less energy required to break intermolecular forces/ London forces. Higher than Higher than A: dehydrohalogenation / elimination B: hydrolysis / substitution B: hydrolysis / substitution
H—C—C—C—C—H */*
Molecular structure: Compound C has more substituents than A and B / has increased branching / has a decreased surface area. Intermolecular forces: Less or weaker intermolecular forces / London forces. Energy Less energy required to break intermolecular forces/ London forces. Higher than Higher than A: dehydrohalogenation / elimination B: hydrolysis / substitution B: hydrolysis / substitution
Compound C has more substituents than A and B / has increased branching / has a decreased surface area. Intermolecular forces: Less or weaker intermolecular forces / London forces. Energy Less energy required to break intermolecular forces/ London forces. Higher than Higher than A: dehydrohalogenation / elimination B: hydrolysis / substitution B: hydrolysis / substitution
Intermolecular forces: Less or weaker intermolecular forces / London forces. Energy Less energy required to break intermolecular forces/ London forces. Higher than Higher than A: dehydrohalogenation / elimination B: hydrolysis / substitution
Energy Less energy required to break intermolecular forces/ London forces. Higher than but 2-ene A: dehydrohalogenation / elimination B: hydrolysis / substitution
STION 5 but <-2-ene
is TION 5 but√-2-ene√ A: dehydrohalogenation / elimination ✓ B: hydrolysis / substitution ✓
but√-2-ene√ A : dehydrohalogenation / elimination ✓ B : hydrolysis / substitution ✓
A: dehydrohalogenation / elimination / B: hydrolysis / substitution /

Please Turn Over