

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION JUNE 2016

GRADE 9

MATHEMATICS

TIME: 120 minutes

MARKS: 100

12 pages

2

GAUTENG DEPARTMENT OF EDUCATION PROVINCIAL EXAMINATION

MATHEMATICS

TIME: 120 minutes

MARKS: 100

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions and 12 pages.
- 2. Answer ALL questions.
- 3. A non-programmable calculator may be used unless stated otherwise.
- 4. Clearly show ALL calculations, diagrams and graphs, etc. that you have used in determining the answers. Answers only will NOT necessarily be awarded full marks.
- 5. If necessary, round-off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. Use ANSWER SHEETS A and B to answer Questions 1 and 4. Detach these ANSWER SHEETS and submit them together with your ANSWER BOOK.
- 9. Write neatly and legibly.

MULTIPLE-CHOICE QUESTIONS

Answer this question on ANSWER SHEET A. Circle the letter of the correct answer from the 4 possible answers given.

- 1.1 The prime factors of 30 are ...
 - A 1; 2; 3; 5; 12.
 - B 3; 5; 6.
 - C 2; 3; 5.
 - D None of the above.
- 1.2 The number 0,000147560 in scientific notation is ...

$$\begin{array}{lll} A & 0.14756 \times 10^{-3} \\ B & 1.4756 \times 10^{-4} \\ C & 1.4756 \times 10^{4} \\ D & 0.14756 \times 10^{-5} \end{array} \tag{1}$$

1.3
$$1\frac{3}{4}+1\frac{4}{5}=$$

A	$3\frac{11}{20}$.
В	$2\frac{7}{9}$.
С	$2\frac{7}{20}$.
D	$3\frac{7}{9}$.

1.4 0, 034297 correctly rounded-off to 4 decimals is ...

А	0,0342.
В	0,3430.
С	0,0343.
D	0,034.

1.5 Which number is both a square **and** a cube?

Α	64
В	16
С	8

D 4

(1)

(1)

(1)

(1)

1.6	Which number is missing in the sequence	e: $1; \frac{1}{2}; \frac{1}{4};; \frac{1}{16}?$
1.0	when number is missing in the sequence	2'4' 16

А	$\frac{1}{8}$
В	$\frac{1}{10}$
C	$\frac{1}{12}$
D	$\frac{1}{14}$

(1)

(1)

(1)

1.7 $(x-2)^2 =$

A $x^{2}-4$. B $x^{2}-4x+4$. C $x^{2}+4$. D $x^{2}+4x+4$.

1.8 If 3(x-1)(x+2) = 0; then x =

A -1 or 2. B 1 or -2. C 3 or 1 or 2. D 2 or 1.

1.9 The factors of $x^2 + 5x - 6$ are ...

А	(x-3)(x-2).	
В	(x+2)(x+3).	
С	(x+6)(x-1).	
D	(x-3)(x-2).	(1)

1.10 The area of a rectangular figure is 200 m^2 . If the length is doubled, the new area will be ...

А	300 m².
В	400 m².
С	200 m².
D	600 m².

P.T.O.

(1) [**10**]

- 2.1 Calculate the value of $3x^3 2x^2 9x + 2$ if x = -2. (2)
- 2.2 Simplify the following expressions. (Leave your answer in its positive exponential form.)

2.2.1
$$3xy^2 - 5x^2y - 9xy^2 + 8x^2y - 3x^2$$
 (2)

2.2.2
$$2^{x+y} \cdot 2^{x-y}$$
 (1)

2.2.3
$$\frac{-2pq \times (2p^2q^3)^2}{32p^6q^7}$$
(3)

$$2.2.4 \quad (2x-4)(2x+4) \tag{2}$$

2.2.5
$$\frac{2m+4}{m-3} \times \frac{m^2 - 3m + 2}{m^2 - 4}$$
 (4)

2.3 Simplify the following without using a calculator. (Leave your answer in scientific notation.)

$$3,4 \times 10^{-3} + 5,8 \times 10^{-5}$$
 (2)

2.4 Solve for x.

3x - 22	(2)
:	3x - 22	(2

2.4.2
$$x - \frac{x-1}{2} = 3$$
 (3)

2.4.3
$$2^x = 16$$
 (2)

2.5 Factorise fully.

2.5.1 $3a^3 - 9a^2 + 6a$ (4)

2.5.2
$$9x^2 - y^2$$
 (2)

2.5.3
$$t^{2}(x-y) - w^{2}(y-x)$$
 (2)

[31]

Nomvula and Sam decided to apply for motor vehicle finance to buy a car for the amount of R 150 000, 00. The loan is payable over 5 years at 9 % compound interest per annum.

- 3.1 Use the formula on ANNEXURE A to calculate the total amount payable at the end of the 5 years. (3)
- 3.2 Calculate the monthly instalments that will be paid.
- 3.3 The previous owner bought the car for R 120 000,00 and sold it for R 150 000,00. Calculate the percentage profit made by the owner. (3)

QUESTION 4

It takes the Gautrain 2 hours to travel a certain distance at an average speed of 150 km/h. The following table shows other options as well:

Average speed (km/h)	a	150	300	С
Time travelled in hours	4	2	b	$2\frac{1}{2}$

- 4.1 Determine **a**, **b** and **c** by showing all calculations.
- 4.2 Plot the graph using the table and answers from Question 4.1. Use ANSWER SHEET B to answer this question.
- 4.3 By using the graph that you have drawn for Question 4.2, determine how long it will take to cover the distance at an average speed of 100 km/h.

(2) [**12**]

(6)

(4)

(3)

[9]

The following patterns are constructed by laying out matches in a patter. Study the diagram below to answer the questions that follow.

- 5.1Determine the number of matchsticks in the next figure if the pattern is continued.(1)5.2Describe the pattern rule in your own words.(1)
- 5.3 Write the general term of the pattern in the form $T_n =$. (2)
- 5.4 Use your answer to Question 5.3 to determine the number of matchsticks in the 20^{th} figure. (2) [6]

QUESTION 6

- 6.1 Calculate y. (3)
- 6.2 Calculate *x*.

(3)

(3) [9]

6.3 Construct a special angle of 30° without using a protractor.

In the given figure ABI | ED, AC = CE, BC = CD , $\hat{C}_1 = 60^\circ$ and $\hat{C}_1 = \hat{E}$.

7.1	Prove, with reasons, that $\triangle ABC \equiv \triangle EDC$.	(4)
7.2	Calculate <i>x</i> .	(3)

 $\begin{array}{c} 12 \quad \text{Calculate } x. \end{array} \tag{3} \\ [7] \end{array}$

QUESTION 8

In the diagram below it is proven that $\Delta KLM \mid \mid \mid \Delta ONM$.

8.1	Calculate the length of NO (x).	(2)
-----	---------------------------------	-----

8.2 Calculate the length of LO (y). (3)

(5) [**5**]

Refer to ANNEXURE A for formulae to answer this question.

Study the diagram above of the entertainment area at a family resort. The grey area is made up of a shallow children's pool and a deep adults' pool. There is a triangular-shaped grass area, where visitors can relax. The dimensions of the space are as follows:

AB is 30 m, AE is 20 m, EC is 46 m and AD is perpendicular to EC.

		TOTAL:	100
9.3	Determine the perimeter of the entire entertainment area. (Make use of the width as stated in Question 9.2.)		(5) [11]
9.2	Determine the area of the entire pool if the width is given as 12 m.		(4)
9.1	Calculate the width of the entire swimming pool (AD).		(2)

ANNEXURE A

QUESTION 3.1

$$A = P(1+i)^n$$
 or $A = P\left(1 + \frac{r}{100}\right)^n$

QUESTION 9

Full circle:Area = πr^2 Perimeter = $2\pi r$	л = 3,14
$\frac{\text{Rectangle:}}{\text{Area} = l \times b}$ $\text{Perimeter} = 2(l+b)$	
$\frac{\text{Triangle:}}{\text{Area} = \frac{1}{2}b \times h}$ Perimeter = Side ₁ + Side ₂ +	Side ₃

Name and Surname: _____Grade : _____

ANSWER SHEET A

QUESTION 1

1.1.	A	B	С	D
1.2.	Α	B	С	D
1.3.	Α	B	С	D
1.4.	Α	B	С	D
1.5.	Α	B	С	D
1.6.	Α	B	С	D
1.7.	A	B	C	D
1.8.	Α	B	С	D
1.9.	A	B	С	D
1.10.	A	B	С	D

Name and Surname: _____Grade : _____

ANSWER SHEET B

QUESTION 4

