

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

PHYSICAL SCIENCES
INFORMAL TEST 2
APRIL 2019
MARKING GUIDELINE

UMLAZI DISTRICT

GRADE 12

TIME: 1 hour

MARKS: 50

This MARKING GUIDELINE consists of 3 pages.

QUESTION ONE: MULTIPLE CHOICE		
1.1	A	
1.2	B	
1.3	C	
1.4	A C	EVO 40
1.5		5X2= 10
QUESTION TWO		
2.1	Change in concentration/amount of reactants or products per unit time (1 or)	(1)
2.2.1	Collision between reactant particles that lead to the formation of products	(1)
2.2.2	Sufficient kinetic energy√; correct orientation√ Increase in concentration increases the number of particles per	(2)
2.2.3	given volume√. This increases the number of collisions per unit time√. This leads to an increase in the number of effective	
	collisions per unit time $\sqrt{\ }$. Hence increase in concentration increases reaction rate $\sqrt{\ }$	(4)
2.3.1	Rate = $-\Delta$ (reactants)/time $$ = $-(0.8-1.40)/120$	(·)
	= 0.005 mol/min	(4)
2.3.2	·	(- /
	Moles of oxygen present = 0,3 mol√	
	Mass $O_2 = n \times RM$	
	$= 0.3 \times 32 $	
	= 9,6 g $$	(5)
QUESTION THREE		
3.1	6 kJ/mol	(1)
3.2	-6 kJ/mol	(1)
3.3	13 kJ/mol	(1)
3.4	20 kJ/mol	(1)
3.5	10 kJ/mol	(1)
QUESTION FOUR		
4.1	When the equilibrium in a closed system is disturbed, the system	
	will re-instate a new equilibrium by favouring the reaction that will	
	oppose the disturbance	(1)
4.2.1	Turns blue	(1)
	Pink	(1)
4.2.3	Turns blue√	
	Increase in temperature favours the endothermic reaction to	
	reduce the stress√. Since reverse reaction is endothermic it will be	
	favoured√ leading to more CoCℓ₄⁻ions√	(4)
4.2.4	Turns blue	(1)

Copyright Reserved Please Turn Over

QUESTION FIVE

5.1 $H_2(g) +$ $I_2(g) \rightleftharpoons$ 2HI (g) INITIALLY: 2 2 0 1,56 √ 3,12√ CHANGE : 1,56 AT EQUI 0,44 0,44 3.12 [EQUI] : 0,22 0,22 1,56√

$$Kc = [HI]^{2} / [H_{2}][I_{2}] \sqrt{$$

$$= (1,56)^{2}/(0,22)(0,22) \sqrt{}$$

$$= 50,28\sqrt{}$$
(6)

- 5.2.1 REMAINS THE SAME $\sqrt{}$ (1)
- 5.2.2 INCREASES $\sqrt{}$. Concentration of reactants increase $\sqrt{}$ (2)
- 5.2.3 REMAINS THE SAME. √ Increase in pressure does not affect the equilibrium position of this reaction √ 2 moles of reactants forming 2 moles of products (2)

Copyright Reserved Please Turn Over