

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

MATHEMATICS

COMMON TEST

MARCH 2018

NATIONAL SENIOR CERTIFICATE

GRADE 10

MARKS: 50

TIME:

1 hour

This question paper consists of 5 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera, which you have used in determining the answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. Write neatly and legibly.

1.1 Determine the product of the following expressions:

1.1.1
$$(2r+p)(4r^2-2rp-2rp+p^2)$$
 (2)

$$1.1.2 \quad \left(a + \frac{\sqrt{5}}{a^x}\right) \left(a - \frac{\sqrt{5}}{a^x}\right) \tag{2}$$

1.2 Simplify the following expressions fully:

1.2.1
$$\frac{ax^2 - a^2x}{x^2 - a^2} \times \frac{x^2 + ax - bx - ab}{ax}$$
 (4)

1.2.2
$$\frac{1}{m^3} - \frac{1}{mn^2}$$
 (3)

QUESTION 2

2.1 **Without using a calculator, s**implify the following expression fully:

$$\frac{18^n \times 8^{n-1}}{9^n 4^{2n-3}} \tag{3}$$

2.2 Solve for x in the following equations:

$$2.2.1 \quad x^{\frac{3}{2}} = 512 \tag{2}$$

$$2.2.2 \quad 3^{2002} - 3^{2000} = 8.3^{x} \tag{3}$$

2.3 Given: $4^{x+y} = 64$ and $3^{x-y-1} = 1$

2.3.1 Show that if
$$4^{x+y} = 64$$
, then $x+y=3$ (2)

2.3.2 Show that if
$$3^{x-y-1} = 1$$
, then $x - y = 1$ (1)

2.3.3 Hence or otherwise, find the value of
$$3^x.5^y$$
 (4)

[15]

Solve for x: 3.1

$$3.1.1 8x^2 + 14x - 15 = 0 (2)$$

$$3.1.2 t = 2\pi \sqrt{\frac{x}{g}} (2)$$

$$3.1.3 \quad (x-1)(y+3) = 0$$

$$3.1.3.1 \quad if \quad y = -3 \tag{1}$$

$$3.1.3.2 \quad if \quad v = 4 \tag{1}$$

3.2 Solve for
$$t: -8 \le -2t < 18$$
. Write your answer in interval notation. (2)

QUESTION 4

An interior decorator wants to decorate a bathroom wall with patterns of grey and white tiles as shown below:

- (1)Write down the number of tiles used in pattern 4 and pattern 5. 4.1
- Determine the n-th term, T_n that represents the number of tiles used in each pattern. (2)4.2
- Calculate how many tiles she will need for the 200th pattern. (2)4.3
- Calculate in which pattern there will there be 1000 tiles. (2)4.4

5.1 Use the length of the sides in the figure drawn below to write down the following ratios.

$$5.1.1 \sin \alpha$$
 (1)

$$5.1.2 \cot \beta$$
 (1)

5.2 Simplify the following WITHOUT the use of a calculator

$$\frac{\cos 30^{\circ}}{\cos ec 60^{\circ}}.$$
 (3)

5.3 Two trees AB and CD are planted on flat ground. The angle of elevation of their tops from a point X on the ground is 40°. The horizontal distance between X and the shorter tree is 8m and the distance between the tops of the two trees is 20m.

Calculate the height of the tall tree.

(4)

[9]

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

MATHEMATICS

COMMON TEST

MARCH 2018

MARKING GUIDELINE

SENIOR CERTIFICATE NATIONAL

GRADE 10

20 MARKS:

TIME:

1 hour

This marking guideline consists of 5 pages.

Mathematics (Marking G. . .ine)

NSC- Grade 10 2

Common Test March 2018

QUESTION 1

$ (4r^{2} - 2rp + p^{2})(2r + p) $ $= 8r^{3} + p^{3} $ $ (a + \frac{\sqrt{5}}{a^{3}}) (a - \frac{\sqrt{5}}{a^{3}}) $ $= a^{2} - \frac{5}{a^{2}x} $ $= \frac{ax^{2} - a^{2}x}{x^{2}} \times \frac{x^{2} + ax - bx - ab}{ax} $ $= \frac{ax(x - a)}{(x - a)(x + a)} \times \frac{x(x + a) - b(x + a)}{ax} $ $= \frac{ax(x - a)}{(x - a)(x + a)} \times \frac{(x + a)(x - b)}{ax} $ $= x - b $ $= x - b $ $= \frac{1}{m^{3} n^{2}} - \frac{1}{m^{3}} $ $= \frac{1}{m^{3} n^{2}} - \frac{1}{m^{3}} $ $= \frac{1}{m^{3} n^{2}} - \frac{1}{m^{3} n^{2}} $ $= \frac{(n - m)(n + m)}{m^{3} n^{2}} $		$48r^3 + p^3$	$\checkmark a^2 \checkmark -\frac{5}{a^{2x}} \tag{2}$		$\checkmark ax(x-a)$	$\checkmark (x-a)(x+a)$ $\checkmark (x+a)(x-b)$ $\checkmark (x-b)$	(4)	✓ m^3n^2 denominator ✓ $n^2 - m^2$ numerator ✓ answer
	$(4r^2 - 2rp + p^2)(2r + p)$	$=8r^3+p^3$	$\left(a + \frac{\sqrt{5}}{a^{x}}\right)\left(a - \frac{\sqrt{5}}{a^{x}}\right)$ $= a^{2} - \frac{5}{a^{2x}}$	$\frac{ax^2 - a^2x}{x^2 - a^2} \times \frac{x^2 + ax - bx - ab}{ax}$	$= \frac{ax(x-a)}{(x-a)(x+a)} \times \frac{x(x+a)-b(x+a)}{ax}$	$= \frac{ax(x-a)}{(x-a)(x+a)} \times \frac{(x+a)(x-b)}{ax}$	q - x =	$=\frac{1}{m^3} - \frac{1}{mn^2}$ $=\frac{n^2 - m^2}{m^3 n^2}$ $= \frac{(n - m)(n + m)}{n^3 n^2}$

QUESTION 2

-	
$9n4^{2n-3}$	510-11
$= \frac{(3^2.2)^n \times (2^3)^{n-1}}{(3^2)^n \cdot (2^3)^{n-2}}$	/ prime bases
x 23n-3	raising powers
	< answer

Copyright Reserved

Please turn over

	$x = 2^{\circ}$
✓ answer	$x^{\frac{3}{2} \times \frac{3}{3}} = (2^9)^{\frac{1}{3}}$
✓ 2 prime base	$x \stackrel{\text{i.i.s.}}{=} 2^{y}$
0	$\frac{2.2.1}{x^2} = 512$

[15]		+5	
(4)	✓ answer	$3^{\times}.5^{\vee} = 3^{2}.5^{1}$	
	✓ y = 1	2+y = 3 $y = 1$	
	$\checkmark x = 2$	2x = 4 $x = 2$	
ously	✓ solving simultaneously (any method)	x+y=3(1) x-y=1(2) (1) + (2)	2.3.3
(1)		$ \begin{array}{c} x - y - 1 = 0 \\ x - y = 1 \end{array} $	
	₹ 36	$3^{N-n-1} = 3^{n}$	2.3.2
(2)		$\begin{array}{c} x + y = 3 \end{array}$	
₩ ¹	✓ 2 common base ✓ equating exponents	$(2^{2})^{x+y} = 2^{6} or 4^{x+y} = 4^{3}$ $2^{2^{x+2}y} = 2^{6} or x+y=3$ $7^{x+2}y = 6$	
		$4^{x+y} = 64$	2.3.1
(3)	✓ answer	$3^{2000} = 3^{\times}$ x = 2000	
	✓ bracket i.e. (3^2-1)	$3^{2000}(8) = 8.3^{\circ}$	
	✓ 3 ²⁰⁰⁰ .3 ²	$3^{20003}^{2} - 3^{2000} = 8.3^{x}$ $3^{2000}^{2} - 3^{2000} = 8.3^{x}$	
		2,20012 2,20000 _ Q 2 x	333

Mathematics (Marking Guideline,

NSC- Grade 10

Common Test March 2018

QUESTION 3

3 (2)	$\checkmark x = 1$ $\checkmark -9 < t \le 4$ $\checkmark (-9, 4]$	$x = 1$ $-8 \le -2t < 18$ $-9 < t \le 4$ $(-9; 4]$	3.2
	✓ x∈R	$4\pi^{-}$ 3.1.3.1 $x \in R$	3.1.3
	✓ dividing by 2π or squaring both sides ✓ answer	$t = 2\pi \sqrt{\frac{x}{g}}$ $\frac{t}{2\pi} = \sqrt{\frac{x}{g}}$ $x = \frac{gt^2}{2\pi}$	3.1.2
	$\checkmark \text{ factors}$ $\checkmark x = \frac{3}{4} \text{ or } -\frac{5}{2}$	$8x^{2} + 14x - 15 = 0$ $(4x - 3)(2x + 5) = 0$ $x = \frac{3}{4} \text{ or } -\frac{5}{2}$	3.1.1

QUESTION 4

[7]			
(2)		There will be 1000 tiles in pattern 333.	
	✓ answer	n = 333	
		3n = 999	
	✓ substitution	3n+1=1000	4.4
(2)			
	✓ answer	= 601 tiles	
	✓ substitution	$T_{200} = 3(200) + 1$	4.3
(2)			
	√3n √+1	$T_n = 3n + 1$	4.2
(1)			
	✓ 13 and 16	13 tiles and 16 tiles	4.1

Copyright Reserved

NSC- Grade 10 5

Common Test March 2018

		3	(3)
✓ WN/ KN	\rangle \frac{LM}{MN}	\(\frac{1}{3}\)	, = 3 4
$\sin \alpha = \frac{MN}{KN}$	$\cot \beta = \frac{LM}{MN}$	$\frac{\cos 30^{\circ}}{\cos e c 60^{\circ}}$ $= \frac{\sqrt{3}}{2}$	$=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$ $=\frac{3}{4}$
5.1.1 sin	5.1.2 cot	2.2.2 α cos	= = = = = = = = = = = = = = = = = = = =

Height of Short Tree	
$\cos 40^\circ = \frac{8}{cx}$	✓ cos 40°
$\therefore cx = \frac{8}{\cos 40^{\circ}}$	using correct trig ratio
cx = 10,44m	✓ 10,44 <i>m</i>
Height of Tall Tree	CA 30 44
$\sin 40^\circ = \frac{height \ of \ tall \ tree}{30.44}$	20,44,11
	V CA 19,57m
height of tall tree = $\sin 40^{\circ} \times 30.44$	
= 19.57 <i>m</i>	(4)

TOTAL MARKS: 50

