

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

MARCH 2018

MARKS: 75

TIME: 1½ hours

N.B. This question paper consists of 5 pages and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

5; 12; 21; 32; ... is a Quadratic Sequence.

- 1.1 Write down the next term of the sequence. (1)
- 1.2 Determine the n^{th} term of the sequence. (4)
- 1.3 Which term of the above sequence is 1152? (4)
- 1.4 Prove that none of the terms in the sequence are perfect squares. (3)

 [12]

QUESTION 2

2; 5; 8; 11;... is an Arithmetic Sequence.

- 2.1 Determine the first term that will be greater than 2012. (3)
- 2.2 Calculate the sum of the first 671 terms of the sequence. (3)

- 3.1 Prove that the sum to *n* terms of a Geometric series is given by $S_n = \frac{a(1-r^n)}{1-r}$. (4)
- The first term of a geometric series is 12, the last term is $\frac{3}{256}$ and the sum of the series is $\frac{6141}{256}$. Determine the common ratio and the number of terms of the series. (6)

The graphs below are $f(x) = \frac{1}{3}x^2$ and $g(x) = -\frac{1}{x+1} + 3$. A(a; b) and B(c; d) are points(s) of intersection f and g.

- 4.1 Write down the equations of the asymptotes of g. (2)
- 4.2 If y = x + c is a line of symmetry to the graph of g, calculate the value(s) of c. (2)
- 4.3 Write down the range of f. (1)
- 4.4 Calculate the value(s) of x for which $g(x) \ge 0$. (4)
- 4.5 Write down the x value(s) for which f(x) = g(x), $x \ge -1$. (2)
- 4.6 Determine the value(s) of x if $f(x) \le g(x)$, for the interval $x \ge -1$. (2)
- 4.7 If h(x) = -f(x+2) + 1, then write down the new equation of h in the form $h(x) = a(x+p)^2 + q$. (2)
- 4.8 Use your graph to determine the maximum value of $3^{h(x)+3}$. (2)
- 4.9 Determine the value(s) of k for which $\frac{1}{3}(x+5)^2 = k$ has one root equal to 0. (2)

[19]

- 5.1 Sketch the graph of $f(x) = 3^{-x}$ on a set of axes in your answer book. (2)
- 5.2 Write down the equation of the inverse of f in the form $y = \dots$ (2)
- Sketch f^{-1} on the same set of axes indicating the intercepts with the axes and the line of symmetry with the graph of f. (3)
- 5.4 Write down the equation of g(x) if $g(x) = f^{-1}(-x)$. (2)
- 5.5 Determine the value(s) of x for which $f^{-1}(x) \ge -1$. (4)

QUESTION 6

- How long will it take for a motor vehicle to depreciate to half its original value if the rate of depreciation is 12,35% p.a., on the diminishing balance method? (Give your answer in years and months).
- On the 1 July 2017, a businessman wanted to buy a new house that costs R900 000. He took out a loan to the value of the house with a bank at an interest rate of 10,25% p.a. compounded monthly for 20 years. The bank allowed the businessman to start repayment towards the loan in three months time and indicated that his first instalment will be deducted on the 1 October 2017.
 - 6.2.1 Calculate the value of the loan on 1 September 2017. (2)
 - 6.2.2 Determine the monthly repayments if he now makes 238 monthly payments. (3)
 - 6.2.3 If he does not make the 100th, 101st, and 102nd payments, calculate the new instalment that he will have to make to settle the loan in the fixed time period. (7)

TOTAL MARKS: 75

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n$$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \neq 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$v = mx + c$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\sin(\alpha + \beta) = \sin(\alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta)$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Education

KwaZulu-Natal Department of Education

REPUBLIC OF SOUTH AFRICA

MATHEMATICS

COMMON TEST

MARCH 2018

MEMORANDUM

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 75

TIME:

1.5 hours

This memorandum consists of 9 pages.

1.1	45	A✓	(1)
1.2	5 12 21 32		
	1D 7 9 11		
	2D 2 2		
	$2a = 2 \therefore a = 1$ $3a + b = 7 \therefore b = 4$ $a + b + c = 5 \therefore c = 0$ $T_n = n^2 + 4n$	$A \checkmark a$ value $CA \checkmark b$ value $CA \checkmark c$ value $CA \checkmark answer$ OR	
	OR		(4)
	$T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$	A√formula	
	$= 5 + (n-1)(7) + \frac{(n-1)(n-2)}{2}(2)$	A✓substitution into correct formula	
	$= 5 + 7n - 7 + n^2 - 3n + 2$	CA√simplifying	(4)
- Company	$= n^2 + 4n$	CA√answer	
1.3	$n^2 + 4n = 1152$	My equating to 1152	
	$n^2 + 4n - 1152 = 0$	CA√standard form	
	$n^{2} + 4n - 1152 = 0$ $(n+36)(n-32) = 0$	CA√factors	
	(n+36)(n-32) = 0 $n = -36 or n = 32$ n/a $n = -36 or n = 32$ n/a $n = -36 or n = 32$ n/a	CA ✓ n values and rejecting	(4)
1.4	Suppose $n^2 + 4n = n^2$ $4n = 0$	$M\checkmark$ equating n^{th} term to n^2	
/	$4n = 0$ $n = 0$ But $n \in N$	$A\checkmark$ value of n	
	2	A MILL	
general d	Therefore no such n exists and no terms are perfect squares in the sequence.	A√reason	(3)
	e de la companya della companya della companya della companya de la companya della companya dell		[12]

2.1	$T_n = 3n - 1$	$A \checkmark n^{\text{th}} \text{ term} = 3n - 1$	
	3n-1 > 2012 or $3n-1 = 2012$	A✓ setting up inequality /equation	
	3n > 2013 $3n = 2013$		
	n > 671 $n = 671$		
	The 672 nd term will be the first term to be	CA√ answer	
	greater than 2012.		(3)
2.2	$S = \frac{n}{n} [2a + (n-1)d]$	A✓ S _n formula	
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	A \checkmark substitution of a , n and d into	
	$S_{671} = \frac{671}{2} [2(2) + 670(3)]$	correct formula	
	= 675697	CA✓answer	(3)
	OR	OR	
	$T_n = a + (n-1)d$		
	$T_{671} = 2 + (671 - 1)(3) = 2012$		
	$S_n = \frac{n}{2} [a + T_n]$	$A \checkmark S_n$ formula	
	2	A \checkmark substitution of a , n and T_n into	
	$S_{671} = \frac{671}{2} [2 + 2012]$	correct formula CA√answer	
	= 675697	2.2 3.3.1101	
			(3)
			[6]

3.1	$S_n = a + ar + ar^2 + + ar^{n-2} + ar^{n-1} \rightarrow (1)$	A✓ setting up equation 1	
	$rS_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n \to (2)$	A√ setting up equation 2	
	$(1) - (2): S_n - rS_n = a - ar^n$	A√ subtraction LHS and RHS	
	$S_n(1-r) = a(1-r^n)$	A✓ factorizing LHS and RHS	(4)
	$S_n = \frac{a(1-r^n)}{1-r}$		No. 7
. 4	1-r		

8) If Cenn (1)-(1) & Continued - Man
Sin = 9 (4/1-1) Full
MARK

3.2	a = 12
0.2	() PRESENT TRANSPORT

 $ar^{n-1} = \frac{3}{256}$ $12r^{n-1} = \frac{3}{256}$ \to (1)

 $S_n = \frac{12(1-r^n)}{1-r} = \frac{6141}{256} \longrightarrow (2)$

From (1):

 $\frac{12r^n}{r} = \frac{3}{256} \quad \Rightarrow 12r^n = \frac{3r}{256} \quad \to (3)$

Substituting (3) into (2)

 $\frac{12 - \frac{3r}{256}}{1 - r} = \frac{6141}{256}$

 $12 - \frac{3r}{256} = \frac{6141}{256} - \frac{6141r}{256}$

 $\frac{3072}{256} - \frac{3r}{256} = \frac{6141}{256} - \frac{6141r}{256}$

6138r = 3069

 $r = \frac{1}{2}$

 $12\left(\frac{1}{2}\right)^n = \frac{3\left(\frac{1}{2}\right)}{256}$

 $\left(\frac{1}{2}\right)^n = \frac{1}{2048} = \left(\frac{1}{2}\right)^{11}$ n = 11

OR

A√ setting up equation

A✓ setting up equation

A \checkmark making $12r^n$ the subject

 $CA \checkmark$ substitution of $12r^n$ into (2)

CA ✓ r value

CA ✓ n value

OR

(6)

iviatiic	illatics	March Con	nmon Test 201
	a = 12		
	$ar^{n-1} = \frac{3}{256} 12r^{n-1} = \frac{3}{256} \to (1)$	A✓ setting up equation	
	$S_n = \frac{12(1-r^n)}{1-r} = \frac{6141}{256} $ \rightarrow (2)	A√setting up equation	
	From (1):		
	$\frac{12r^n}{r} = \frac{3}{256} \Rightarrow r^n = \frac{1}{1024}r \to (3)$	$A\checkmark$ making r^n the subject	
	Substituting (3) into (2)		
	$\frac{12\left(1 - \frac{1}{1024}r\right)}{1 - r} = \frac{6141}{256}$	$CA\checkmark$ substitution of r^n into (2)	
	$\frac{1 - \frac{1}{1024}r}{1 - r} = \frac{6141}{3072}$		
	$\frac{1024}{1-r} = \frac{0141}{3072}$		
	1 6141 6141		
	$1 - \frac{1}{1024}r = \frac{6141}{3072} - \frac{6141}{3072}r$		
	$\frac{6141}{3072}r - \frac{1}{1024}r = \frac{6141}{3072} - 1$		
	$\frac{6141}{3072}r - \frac{3}{3072}r = \frac{6141}{3072} - \frac{3072}{3072}$		
	$\frac{6138}{3072}r = \frac{3069}{3072}$		
	$r=\frac{1}{2}$		
	/ ⁻ 2	CA ✓ r value	
	$(1)^n$ $(1)(1)$ 1		
	$\left(\frac{1}{2}\right)^n = \left(\frac{1}{2^{10}}\right)\left(\frac{1}{2}\right) = \frac{1}{2^{11}}$		
	n = 11	$CA \checkmark n$ value	(6)
			[10]

OUESTION 4

4.1)	x=-1 Don't allow $p=-1$	A✓ vertical asymptote	
		A√horizontal asymptote	(2)
4.2	y = x + c	A√substituting (-1;3)	
	3 = -1 + c	$CA \checkmark c$ – value	(2)
	c = 4		
4.3	$y \ge 0$ or $y \in [0, \infty)$	A√answer	(1)
4.4	$\frac{-1}{x+1} + 3 \ge 0$ If a candidate		
	1	A√determining LCD and	
	$\frac{-1+3x+3}{x+1} \ge 0$ cross multiplies by	numerator	
	$1 (\lambda \pm 1) \Omega \Pi V - U/4 = 1$		
	x+1	CA√simplification	(4)
	$x < -1$ or $x \ge -\frac{2}{2}$	CA ✓ CA ✓ answers	
		OP LANGE	
	$x < -1 or x \ge -\frac{2}{3}$ $OR \qquad (1 \le 1 $	day a graph may	
	$-\frac{1}{m+1} + 3 = 0$	A√ setting up equation to calculate	
	$3 = \frac{1}{3}$	x – intercept	
	$3 = \frac{1}{x+1}$		
	3x + 3 = 1		
	3x = -2		
	$x = -\frac{2}{3}$	$CA \checkmark x$ – value	15
	V V2		
	$x < -1$ or $x \ge -\frac{2}{3}$	CA✓CA✓answers	(4)
	y = a or $y = a$		
	x = a or $x = c$	A \checkmark A \checkmark answers $A \checkmark A \checkmark answers$	(2)
	If Candidates solved simultaneously -	Eurl 1	The state of the s
	have irrational roots - full marks	WITTPUT SOLVIO	
4.5		***************************************	
	$a \leq x \leq c$	AA✓✓ critical values, inequality	(2)
e e e e e e e e e e e e e e e e e e e	If Candidates solved simultaneously	There warms	
×	have irrational roots - full marks	My My,	
4.6	Committee Total Indiana		
4.7	$h(x) = -\frac{1}{2}(x+2)^2 + 1$	$A(2)$ $49 = \frac{1}{3}(x + 1)$ (2) (2) (2) (2) (2) (2)	2 = k
/L V	$h(x) = -\frac{1}{3}(x+2)^{2} + 1$ Max value of $h(x) = 1$ CA $\frac{3}{6} + \frac{3}{4} = 81 \text{ CA}$	= 10+5	13 = K
7 0	3h(1)+3 04 01 14	(1) (2) (2) (2)	25/
	= 3 = 81 VI	Cantale	3

Mathematics

7

March Common Test 2018

4.7	$h(x) = -\frac{1}{3}(x+2)^2 + 1$	AA✓✓answer	(2)
4.8	Maximum value of $h(x) = 1$ Therefore maximum value of $3^{h(x)+3}$ = $3^4 = 81$	CA ✓ 1 CA ✓ 81	(2)

4.9	$\frac{1}{3}(x+5)^2 = k$ $\frac{1}{3}(0+5)^2 = k$	Answer only full marks	A√substituting	
	$\frac{25}{3} = k$		A√answer	(2)
				[19]

5.1	y	f: A✓ shape	
	$y = x$ 0 1 f^{-1}	$A \checkmark y - \text{intercept} = 1$	
	↓		(2)
5.2	$y = \log_{\frac{1}{3}} x = -\log_3 x = \log_3 \frac{1}{x}$	AA✓✓ answer	(2)
5.3	see graph in 5.1 to allocate marks	f^{-1} : CA \checkmark shape	
		$A \checkmark x - \text{intercept at } 1/(1;0)$	
		$A \checkmark y = x \text{ line}$	(3)
5.4	$g(x) = \log_{\frac{1}{3}}(-x) \; ; \; x < 0 \qquad OR$		
	$g(x) = -\log_3(-x); \ x < 0 OR$		
	$g(x) = \log_3\left(\frac{1}{-x}\right); x < 0$	✓✓CACA answer [any form]	(2)

$$\log_{\frac{1}{3}} x \ge -1 \quad \text{or} \quad \log_{\frac{1}{3}} x = -1$$

$$x \le 3 \qquad x = 3$$

$$0 < x \le 3$$

$$CA \checkmark \text{ setting up inequality/equation}$$

$$CA \checkmark x - \text{value} = 3$$

$$CACA \checkmark \text{ critical values and inequality}$$

$$[13]$$

6.1	$A = P(1-i)^n$			
	$\frac{1}{2}P = P(1 - 0.1235)^{n}$ $\frac{1}{2} = (0.8765)^{n}$ $n = \log_{0.8765} \frac{41}{2}$	If $P = \frac{1}{2}P(1-0.1235)^n$	A✓ substitution into correct formula	
	$\frac{1}{1} = (0.8765)^n$	Breakdown - 0/3		
	2 (%)			
	$n = \log_{0.8765} \frac{21}{2}$		M✓ use of logs	
	n = 5,258342252 years			
	Time period will be 5ye	ars and 4 months	CA✓ answer	(3)
	OR		OR	
	$A = P(1-i)^n$			
	$\frac{1}{2}P = P(1 - 0.1235)^n$		A✓ substitution into correct formula	
	$A = P(1-i)^{n}$ $\frac{1}{2}P = P(1-0.1235)^{n}$ $\frac{1}{2} = (0.8765)^{n}$			
	$\log \frac{1}{2} = \log(0.8765)^n$		M✓ use of logs	
	$n = \frac{\log 0,8765}{1}$			
	$n = \frac{\log 0,8765}{\log \frac{1}{2}}$			
	n = 5,258342252 years			
	Time period will be 5 year	ars and 3 months	CA√ answer	(3)
6.2.1	$A = P(1+i)^n$			
	$=900000\left(1+\frac{0{,}1025}{12}\right)^2$		A√substitution into correct formula	
	= R915440,66		CA√answer	(2)
				(-)

Mather	natics	March Common	1031 2010
6.2.2	$P_{v} = \frac{x[1 - (1+i)^{-n}]}{i}$ $915440,66 = \frac{x\left[1 - \left(1 + \frac{0,1025}{12}\right)^{-238}\right]}{\frac{0,1025}{12}}$ $x = R9009,43$	A \checkmark substitution of i and n value into correct formula CA \checkmark substitution of P into correct formula CA \checkmark answer	(3)
6.2.3	Balance outstanding after the 99 th payment: $P_{v} = \frac{x[1 - (1+i)^{-n}]}{i}$ $= \frac{9009,43 \left[1 - \left(1 + \frac{0,1025}{12}\right)^{-139}\right]}{\frac{0,1025}{12}}$ $= R731384,7351$ Value of the loan after 3 months of non - payment: $A = 73138,7351 \left(1 + \frac{0,1025}{12}\right)^{3} = R750287,0104$ The new monthly instalment to settle the loan: $x \left[1 - \left(1 + \frac{0,1025}{12}\right)^{-136}\right]$ $\frac{0,1025}{12}$ $x = R9349,11$	A✓substitution of n=139 into correct formula CA✓ substitution of x into correct formula CA✓ R731384,7351 CA✓substitution into correct formula CA✓ R750287,0104 A✓ substitution n=136 into correct formula CA✓answer	(7)
			[15]

Total Marks: 75

6.2.3. Out. Bal = A - FV $= P(1+i)^{99} - 2C[(1+i)^{99} - 1]$ $=915440,66\left(1+\frac{10,25\%}{12}\right)^{99}-9009,43\left[\left(1+\frac{10,25\%}{12}\right)-1\right]$ = 2124813,805 - 1393428,915= R.731384,8896 Value of Loan for 3 months = 731384,8896 (1+10,25%) of Non-payment = 750287,1688 New Monthly payment = 750287, 1688 x 10,25% $[1-(1+\frac{10,25\%}{12})^{-136}]$ = 9349,108527 = R9349,11

