

education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

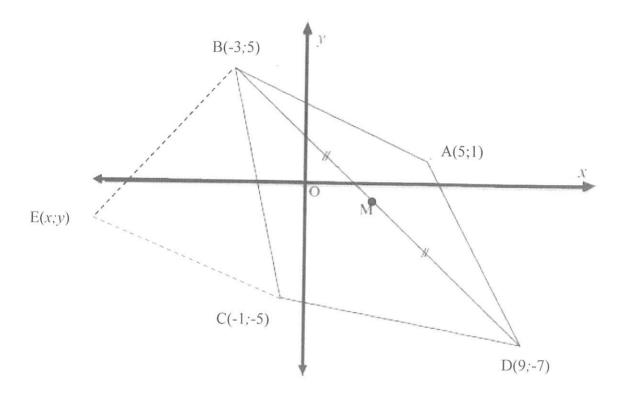
GRADE 10

MATHEMATICS COMMON TEST SEPTEMBER 2018

MARKS:

75

IME: 1½ hours


This question paper consists of 7 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera, which you have used in determining the answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. Write neatly and legibly.

ABCD is a quadrilateral with vertices A(5; 1), B(-3; 5), C(-1; -5) and D(9; -7).

- 1.1 Determine the distance AB. (2)
- 1.2 Calculate the gradient of BD. (2)
- 1.3 Determine the equation of BD in the form y = ... (3)
- 1.4 Determine the co-ordinates of M, the midpoint of BD. (3)
- 1.5 Prove that $A\hat{M}B = 90^{\circ}$. (3)
- Find the co-ordinates of E(x;y) such that ABEC is a parallelogram. (4) [17]

2.1 A newly married couple bought furniture and kitchen appliances, on hire-purchase, for R70 000. They paid a cash deposit of 20%. The balance will be paid off over 5 years at an interest rate of 22% p.a. and a monthly insurance fee of R120.

Calculate their monthly repayments. (4)

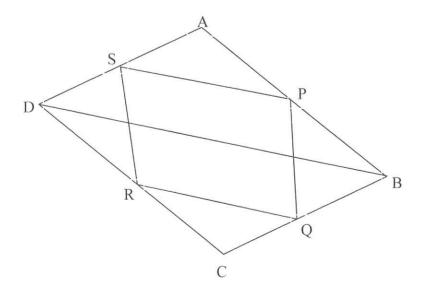
2.2 Calculate how many years it will take for an investment, earning 7.5% p.a. simple interest to triple in value.

(4)

2.3 In a certain country, the rate of inflation has remained unchanged for the past 8 years. Currently, a 100g bar of chocolate costs R10.98. 8 years ago the same bar of chocolate cost R7.25. What is the rate of inflation, as a percentage, in this country.

(3)

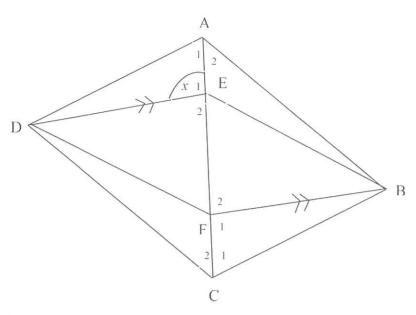
2.4 Use the given exchange rates to answer the questions:


\$1:R9,10 and £1:R11,25

Calculate:

2.4.1	how many rand (R) is \$ 152	(1)
2.4.2	how many pounds (£) is R3500	(1)
	how many dollars (\$) is £ 250	(2)
		[15]

QUESTION 3

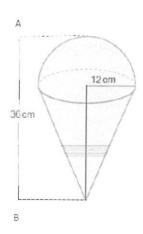

3.1 P, Q, R and S are the midpoints of AB, BC, CD and DA, respectively. BD is drawn. Give reasons for all statements.

Prove that PS || QR

(4)

3.2 ABCD is a parallelogram. Let: $\hat{E}_1 = x$

Prove:


$$3.2.1 \hat{E}_1 = \hat{F}_1 (3)$$

3.2.2
$$\triangle AED \equiv \triangle CFB$$
 (4)

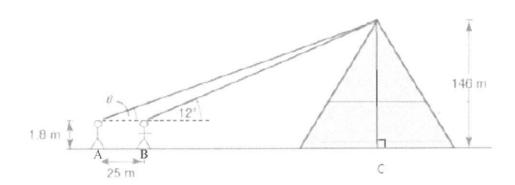
QUESTION 4

An ice-cream vendor wants to paint the model of an ice-cream cone that is attached to the roof of his van. It consists of a hemisphere and a cone. AB = 36cm.

Surface Area of Sphere = $4\pi r^2$ Surface Area of Cone = $\pi r^2 + \pi rs$

Calculate the total surface area of the ice-cream cone that he will need to paint

5.1 The table contains the maths results for Class A:


Exam percentage	Frequency
$0 \le x < 20$	5
$20 \le x < 40$	9
$40 \le x < 60$	12
$60 \le x < 80$	15
$80 \le x < 100$	8

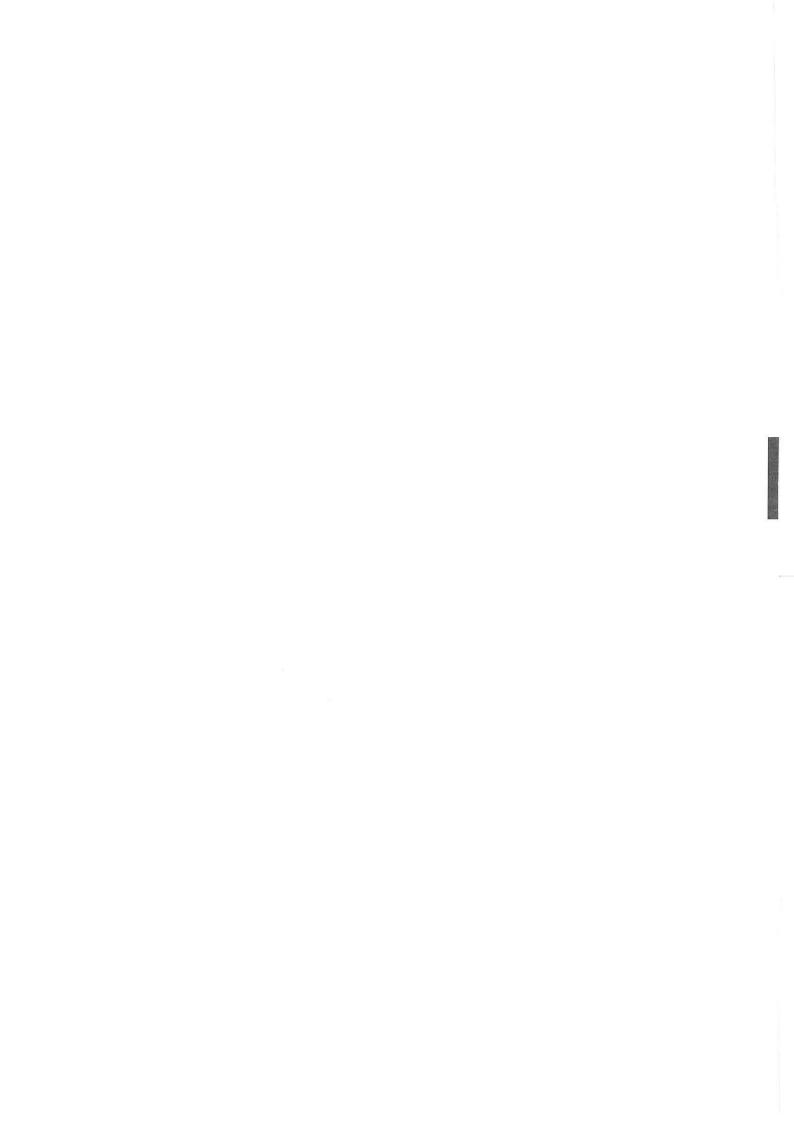
- 5.1.1 Write down the modal class. (1)
- 5.1.2 Write down the interval containing the median for the data. (1)
- 5.1.3 Construct a histogram to represent the information. (3)
- 5.2 The data set shows the June Exam marks (in percentages) of a Grade 10 class.

- 5.2.1 Calculate the range of the data set. (1)
- 5.2.2 Determine:
 - 5.2.2.1 the median (1)
 - 5.2.2.2 1st and 3rd quartiles. (2)
- 5.2.3 Write down the 5 number summary. (2)
- 5.2.4 Draw a box and whisker diagram for the given data set. (2)
- 5.2.5 Determine in which percentile you would find the learner that obtained a mark of 73%. (2)

[15]

The Great Pyramid at Giza is 146m high. Two people A and B are looking at the top of the pyramid the angle of elevation of the top of the pyramid from B is 12°. The distance between A and B is 25m.

If both A and B are 1.8m tall, calculate:


6.1 the distance on the ground from B to the centre of the base of the pyramid, indicated as point C.

(4)

the angle of elevation, θ of the top of the pyramid from A.

(4) [8]

TOTAL MARKS: 75

education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

SEPTEMBER 2018

MEMORANDUM

MARKS:

1½ hours TIME:

This memorandum consists of 6 pages.

Please turn over

Copyright reserved

2 GRADE 10 Marking Guideline

Common Test September 2018

		•
-	,	
()
	_	
į	2	
	5	
ē	5	,

1.1	$AB = \sqrt{(x_1 - x_1)^2 + (y_1 - y_1)^2}$	
	$= \frac{1}{(-1-5)^2 \cdot (5-1)^2}$	9
	(1-c)+(c-1)	into dist. formula
1.0	100	answer (2)
7:1	$m = \frac{y_2 - y_1}{2}$	
	$x_2 - x_1$	
	$m_{AC} = \frac{5+7}{3}$	Va correct sub into grad formula
		✓ ca answer (2)
1.3	$y - y_1 = m(x - x_1)$	$v-v_1=m(x-x_1)$ or $v=mx\pm c\sqrt{a}$
	y + 7 = -1(x - 9)	Ca correct sub into equation formula
	y = -x + 2	✓ ca answer (3)
4.	$M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$	
	2 2	✓a midpoint formula
	$M_{BD}(\frac{-3+9}{2};\frac{5-7}{2})$	a correct sub into midpoint formula
	$M_{BD}(3;-1)$	
1.5	V, - V,	answer (3)
	$m = \frac{x_2 - x_1}{x_2 - x_1}$	
	$m = \frac{1+1}{1+1}$	
	5-3	
	11	✓ ca gradient
	$m_{_{AM}} \cdot m_{_{BM}} = (-1)(1)$	
		$^{\bullet} m_{_{4M}} . m_{_{8M}} = -1$
	$\therefore AM \perp BD$	Conclusion
	$A\hat{M}B = 90^{\circ}$	Concresion (3)
9.7	$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$	
	$M_{RC}(\frac{-3+1}{2};\frac{5-5}{2})$	
	$M_{RC}(-1.0)$	" midpoint of BC
	$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$	
	M = (x+5, 5-7)	
	AE (2 , 2)	
	$\frac{x+3}{2} = -1$ $\frac{y+1}{2} = 0$	equating x-co-ordinates and y- co-ordinates
	E(-';-1)	(4)
		14/

3 GRADE 10 Marking Guideline

Co....ion Test September 2018

QUESTION 2

	R309,07 ✓ ca answer		
	$\frac{250 \times 11,25}{9,10} \checkmark a$	$\frac{250 \times 11,25}{9,10} = R309,07$	2.4.3
	£311,11 ✓ a answer	$\frac{R3500}{R11,25} = £311,11$	2.4.2
	R1383,20 ✓ a	$\$152 \times R9,10 = R1383,20$	2.4.1
	$r = 5,33\% \checkmark$ ca answer	=0,0533 r=5,33%	
	✓ ca simplification	$i = \sqrt[8]{\frac{10,98}{7,25}} - 1$	
ound int	✓ a correct sub. into compound interest formula	$A = P(1+i)^{n}$ $10.98 = 7.25(1+i)^{8}$	2.3
	27 years ✓ ^{ca} answer	$2 = \frac{7.5}{100}n$ $= 26.27 \text{ years}$ $= 27 \text{ years}$	
	✓ ca simplification	$3 = 1 + \frac{7.5}{100}n$	
interest	\checkmark ^a $A = 3P$ \checkmark ^a correct sub. into simple interest formula	$A = P(1+in)$ $3x = x(1+\frac{7.5}{100}n)$	
		Let $P = x$	2.2
	60√a no. of payments R2080,00 ✓ ^{ca} answer	$Monthly instalments = \frac{117600}{60} + 120$ $= R2080,00$	
-	R117600 V ^{cs} final amount	$= 56000(1 + \frac{22}{100} \times 5)$ $= R117600$	
		A = P(1+in)	
	R56000 ✓a loan amount	$\frac{80}{100} \times 70000 = R56000$	2.1

Mathematics

4 GRADE 10 Marking Guideline

Common Test September 2018

QUESTION 3

	.: DEBF	3.2.3 DE BF DE = BF		AD = B($E_1 = F_1 (proven)$	$A_1 = C_1$	3.2.2 In AAED	$\therefore \hat{E}_{1} = \hat{F}_{1}$	$F_1 = x (a)$	$F_2 = 180^\circ$	$\hat{E}_2 = 180^{\circ}$	$3.2.1 \qquad \hat{E}_1 = x$.: PS QR	∴QR BD	CQ = BQ	In ABCD	∴ PS BD	AP = BP	AS = DS
	:. DEBF is a parm (one pair opp sides both = &)	(given) F (corres. sides $\equiv \Delta s$)	= Δ($AD = BC(opp.sides\ parm)$	proven)	$A_1 = C_1 \left(alt angles AD \parallel BC \right)$	In ΔAED and ΔCFB		$F_1 = x (adj.anglesstr.line)$	$F_2 = 180^{\circ} - x $ (alt.angles $DE \parallel BF$)	$\hat{E}_2 = 180^{\circ} - x \ (adj.angles str.line)$			3D (midpt th)	R (given) Q (given)		sD (midpt th)		S (given)
	✓ a reason	✓ a S & R		✓° S&R	Vª S&R	√a S&R			✓ªS&R	Vª S&R	√a S&R				√2 S&R	✓ a both statements	× 5 & 70		✓ a both statements
(3) [14]			(4)					(3)						(4)					

Mathematics

QUESTION 4

5 GRADE 10 Marking Guideline

Common Test September 2018

6 GRADE 10 Marking Guideline

Mathematics

Common Test September 2018

 $\pi \times 12 \times 26.83 \checkmark$ ca sub. into correct 9 904,78 cm / ca answer 1916,25cm ✓ ca answer 1011,47 × ca answer 24 🗸 a pythagorus formula $= \pi \times 12 \times 26.83$ Slant height (s) of Cone = $\sqrt{(24)^2 + (12)^2}$ $=\frac{4\pi(12)^2}{}$ = 904.78 cmTotal Surface Area = 904,78 + 1011,47 = 26,83 cm =1011,47= 1916,25cm Surface area of hemisphere = $\frac{4\pi r^2}{1}$ Surface Area of Cone = πrs

QUESTION 5

(3) \equiv Ξ answer answer answer answer 30 V ca eo / 69 shape y-axis 🗸 x- axis/ , a 05x<20 205x<40 405x<60 605x<80 805x<100 Exam Percentage 10 10 Frequency 15 Median = $\frac{66+72}{2}$ Range = 80-50= 3069 = $50 \le x < 60$ 08 > x < 805.2.1 5.1.3

75 ca answer (2) (2) (2) (2) 75,5 ca answer 61 ca answer 80 max ca 50 min ca √ca whisker ✓ca box $\frac{9}{12}$ \checkmark ca 80 0 69 Box and whisker Diagram Min.Value: 50 Q1: 61 Median: 69 Q3: 75.5 Max.Value: 80 = 75 75th percentile $Q_3 = \frac{73 + 78}{2}$ $Q_1 = \frac{59 + 63}{}$ = 75,5 $\frac{9}{12} \times 100$ = 61 QUESTION 6 04 5.2.2.2 5.1.3 5.1.5 5.1.4

(4) (4) [8] TOTAL MARKS: 75 $\tan(12^\circ) = \frac{139.2}{dist} \checkmark$ ca substitution $\tan \theta = \frac{139.2}{679.88}$ ca substitution answer 11.58° V ca answer 654.88 m 🗸 ca using tan 🗸 a using tan 🗸 a 679.88 V ca 139.2 ✓ a $\tan \theta = \frac{139,2}{679,88}$ $\tan(12^\circ) = \frac{139,2}{dist}$ $\theta = 11,58^{\circ}$ = 654.88 m $dist = \frac{139,2}{\tan(12^\circ)}$ 6.1 6.2

Copyright Reserved

Please turn over

Copyright Reserved

