

Lesson 1: Internal Resistance

Electric Circuits

Electric Circuit

An electric circuit is a combination of electrical components connected to one another, enabling electrical charge to flow through the circuit. For the charge to flow:

- A power source is needed;

light bulb

- The circuit must be closed (completed).

Remember that when the switch is:

- open, the switch prevents charges from flowing since it breaks the circuit
- closed, the switch allows charges to pass through.

Unit of Charge

Charge (symbol Q) is measured in units called COULOMBS (C).
One coulomb of charge is a very large charge.
The charge on an electron was found to be: $q_{e}=1,6 \times 10^{-19} \mathrm{C}$. Number of electrons constituting 1 C of charge:

$$
\begin{aligned}
& =\frac{1 C}{1,6 \times 10^{-19} C} \\
& =6,25 \times 10^{18} \\
& =6250000000000000000
\end{aligned}
$$

LAW OF CONSERVATION OF CHARGE: The net (total) charge of an isolated system remains constant during any physical process. Charges cannot be created or destroyed.

Current

Current is defined as the Rate of Flow Of Charge, ie. how much charge flows past a particular point (flow of charge) per unit time (rate).

Electric Current $=\underline{\text { charge flowing past a point }}$ time elapsed

into symbols, as Formula

$$
I=\mathbf{Q} / \Delta t
$$

$\mathrm{Q}=$ charge - in coulomb (C)
$I=$ current - in ampere (A)
$\Delta t=$ time taken / elapsed

$$
Q=I \times \Delta t
$$

Direction of current is from + to -

$$
I=Q / \Delta t=Q \div \Delta t
$$

(although current in

$$
\Delta t=\boldsymbol{Q}_{I}=Q \div I
$$ metal conductors is actually electrons flowing from - to +)

Ammeter

Electric Current is measured with an quncletevin anapanal(Af) ammeter connected in

 Al battery without an externa first so as notto damane?

Ampere

Electrical Ep

The ordinary cell has 2 poles or terminals: a positive and a negative.

Electrons taken in

Electrons supplied

Using symbols:

The chemical reaction within the cell moves the electrons from the positive to the negative pole.

During this reaction, chemical potential energy is transformed into Electrical Potential Energy, which is supplied to the circuit.

The maximum amount of electrical E_{p} being supplied per unit of charge Note that the voltmeter ed the Electromotive Force (e is connected with When th
b an external circuit, a

+ to + and - to - .
he cell, will ter the emf.

Using symbols:

The voltmeter has a very high resistance, blocking current from passing through it.
The emf is determined by the physical properties of the cell, such as size and chemical composition.

Potential Difference

Potential Difference: The difference in electrical potential energy between two points in an electric field

- the work done per unit charge to move charge between the two points.

$$
\text { Potential difference }=\frac{\text { work done }}{\text { amount of charge }}
$$

into symbols, as Formula

$$
\mathbf{v}=\boldsymbol{W} / \mathbf{Q}
$$

$$
\mathrm{Q}=\text { charge }- \text { in coulomb }(\mathrm{C})
$$

$$
\mathrm{V}=\mathrm{p} . \mathrm{d} .- \text { in volt }(\mathrm{V})
$$

$$
\mathrm{W}=\text { energy }- \text { in joule }(\mathrm{J})
$$

$$
\begin{aligned}
& W=V \times \boldsymbol{Q} \\
& \boldsymbol{V}=W / \boldsymbol{Q}=W \div \boldsymbol{Q} \\
& \boldsymbol{Q}=W / V=W \div V
\end{aligned}
$$

Also called: VOLTAGE

Resistance

Resistance is Opposition to the FLow of electric charge
Resistance (symbol: R) ...

- is measured in онм (Ω)
- the resistance across the length of the steel rod is 1Ω (ohm) if a potential difference of 1 V (volt) is necessary to move 1 A (ampere) of charge across it.

Factors that influence the resistance of a conductor:

- Type of material
- Length (longer, more resistance)
- Width (wider, less resistance)
- Temperature (hotter, more

Class Exercise 1/1

1. Determine the resistance of R_{3}.

$$
\begin{aligned}
& \mathrm{V}_{\text {total }}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \\
& \mathrm{~V}_{3}=4 \mathrm{~V} \\
& \mathrm{~V}_{1}: \mathrm{V}_{3} \quad \text { then } \\
& 2 \mathrm{~V}: 4 \mathrm{~V} \quad
\end{aligned}
$$

$$
\begin{gathered}
R_{1}: R_{3} \\
1: 2
\end{gathered}
$$

$$
1 \Omega: x
$$

$$
x=2 \Omega
$$

$$
\begin{array}{rlrl}
\mathrm{V}_{3} & =4 \mathrm{~V} & \\
\mathrm{I}_{\text {tot }} & =\frac{V_{1}}{R_{1}} & \mathrm{R}_{3} & =\frac{V_{3}}{I_{3}} \\
& =\frac{2 V}{1 \Omega} & & =\frac{4 V}{2 A} \\
& =2 \mathrm{~A} & & =2 \Omega
\end{array}
$$

Series circuits are Potential

 DIVIDERS.The bigger the resistance, the greater the potential difference over it.
Current in a series circuit is the same through all components.

Class Exercise 1/2

2. Name advantages and disadvantages of series circuits. Advantages:

- More cells in series provide more energy to charges and increase the current.

Disadvantages:

- If one cell is flat or one bulb / resistor blown, the current is interrupted.
- All lights (resistors) must be turned on or off at once.
- More resistors in series increase the total resistance and decrease the current.

Class Exercise 1/3

4. Find the equivalent resistance in this circuit.

$$
\begin{aligned}
\frac{1}{\boldsymbol{R p}} & =\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3} \\
& =\frac{1}{5 \Omega}+\frac{1}{0,2 \Omega}+\frac{1}{30 \Omega} \\
& =\frac{6}{30 \Omega}+\frac{150}{30 \Omega}+\frac{1}{30 \Omega} \\
\frac{1}{R_{p}} & =\frac{157}{30 \Omega}
\end{aligned}
$$

$$
\frac{\boldsymbol{R}_{p}}{\mathbf{1}}=\frac{30 \Omega}{157}
$$

$$
\mathrm{R}_{\mathrm{p}}=0,19 \Omega
$$

Note that the equivalent resistance of resistors in parallel is smaller than the smallest resistance!

Class Exercise 1/4

5. Give the readings on V_{2} and V_{3}. Explain your answer. $\mathrm{V}_{2}=6 \mathrm{~V}$ and $\mathrm{V}_{3}=6 \mathrm{~V}$

$$
\underbrace{}_{\text {total }}=\mathbf{V} 1=\mathbf{V} 2=\ldots, H H H H
$$

Potential difference is the same over all parallel components.

31,58 A
6. Determine the current through resistor R_{3}.

$$
\begin{aligned}
I_{3} & =\frac{V_{3}}{R_{3}} \\
& =\frac{6 V}{30 \Omega} \\
& =0,2 \mathrm{~A}
\end{aligned}
$$

why this is so small, y to X . rent is divided

Parallel circuits are current dividers.

The smallest branch current passes through the biggest resistor.

Class Exercise 1/5

8. Determine how much energy is transferred to bulb R_{3} in 4 minutes.

$$
\begin{aligned}
W_{3} & =V_{3} \cdot Q_{3} \\
& =V_{3} \cdot I_{3} \cdot \Delta t \\
& =6 \mathrm{~V} \times 0,2 \mathrm{~A} \times 240 \mathrm{~s} \\
& =288 \mathrm{~J}
\end{aligned}
$$

9. What will happen to the bri the lamps if a conducting n connected between point F Explain.
All lamps would die, since PQ creates a short cut / short circuit, causing the current to flow through PQ instead of through the other circuit components.

Class Exercise 1/6

10. Give advantages and disadvantages of parallel circuits. Advantages:

- The equivalent resistance of parallel resistors is smaller than the smallest individual resistance and therefore increases the current.
- If a cell is flat or a resistor / bulb is blown, the current can still continue.
- Lights (resistors) can be turned on or off individually.
- Cells in parallel last longer, since each cell only have to supply a part of the charges with energy.

Disadvantage:

- Cells in parallel do not provide the unit charge with more energy.

Class Exercise 1/7

11. Determine the total resistance in the circuit.

$$
\frac{1}{R \boldsymbol{p}}=\frac{1}{R 1}+\frac{1}{R 2}
$$

$$
=\frac{1}{2 \Omega}+\frac{1}{2 \Omega}
$$

$$
=\frac{2}{2 \Omega}
$$

$$
\frac{R_{p}}{1}=\frac{2 \Omega}{2}
$$

$$
R_{\text {total }}=R_{p}+R_{4}+R_{5}
$$

$$
=1+2+1
$$

$$
R_{p}=1 \Omega
$$

$$
R=2 \Omega
$$

10. Determine the readi equivalent resistance of 2

$$
\begin{aligned}
\mathrm{V}_{\text {tot }} & =\mathrm{I}_{\text {tot }} \times \mathrm{R}_{\text {tot }} \\
& =3 \mathrm{~A} \times 4 \Omega \\
& =12 \mathrm{~V}
\end{aligned}
$$

identical resistors in parallel = half of each resistance.

Key Concepts 1

Serie circuits are Potential Dividers.
Parallel circuits are Current Dividers.
Resistance of circuit components are influenced by:

- Type of metal
- Length
- Width
- Temperature

Current is defined as the Rate of Flow Of Charge.
 $$
I=\mathbf{Q} / \Delta t
$$

Potential Difference: The work done per unit charge to move a unit charge between two points.

$$
\mathbf{v}=\boldsymbol{W} / \mathbf{Q}
$$

Resistance is the measure of the potential difference needed per unit of current passing through the resistor.

$$
\mathbf{R}=\mathbf{V} / \mathbf{I}
$$

Key Concepts 2

When doing calculations on electric circuits:

- Always pair information according to the applicable resistor, e.g.

$$
\mathrm{I}_{3}=\frac{V_{3}}{R_{3}} \quad \mathrm{I}_{\text {tot }}=\frac{V_{\text {tot }}}{R_{\text {tot }}}
$$

- Remember that
- current in a series circuit is the same at all $p\left(V_{2}\right)^{\text {; }}$
- p.d. is the same over all parallel components

Series resistors

$$
R_{\text {total }}=R_{p}+R_{4}+R_{5}
$$

Parallel resistors

$$
\frac{1}{R p}=\frac{1}{R 1}+\frac{1}{R 2}
$$

- Memorise the various definitions
- Review the exercises you had difficulty with ...
- and do some additional exercise ...
- as given in your workbooks that accompany this video series or from your school textbook

Continue your learning by watching the next video lesson in this series:
Lesson 2: Internal Resistance

