

#### Lesson 1: Internal Resistance



Video Series

GRADE

12

Nelson Mandela Metropolitan University











CAPS Physical Science

# **Electric Circuit**

An electric circuit is a combination of electrical components connected to one another, enabling electrical charge to flow through the circuit. For the charge to flow:

- A power source is needed;
- The circuit must be closed (completed).

Remember that when the switch is:

- open, the switch prevents charges from flowing since it breaks the circuit
- *closed*, the switch allows charges to pass through.



Coulomb of charge is **a very large charge**.

The charge on an electron was found to be:  $q_e = 1,6x10^{-19}$  C. Number of electrons constituting 1 C of charge:

$$=\frac{1 C}{1,6\times 10^{-19}C}$$

$$= 6,25 \times 10^{18}$$

= 6 250 000 000 000 000 000

LAW OF CONSERVATION OF CHARGE: The net (total) charge of an isolated system remains constant during any physical process. Charges cannot be created or destroyed.

# Current

# **CURRENT** is defined as the **RATE OF FLOW OF CHARGE**, i.e. how much charge flows past a particular point (*flow of charge*) per unit time (*rate*).

| Electric Current = $\frac{charge\ flowing\ past\ a\ point}{time\ elapsed}$ |                                                                                             |                                                |                                                                                                             |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| nto symbols, as<br><b>ORMULA</b>                                           | $I = \frac{Q}{\Delta t}$                                                                    | Q = chargonargonargonargonargonargonargonargon | ge - in coulomb (C)<br>ent - in ampere (A)<br>taken / elapsed                                               |
|                                                                            | $Q = I \times \Delta t$ $I = \frac{Q}{\Delta t} = Q$ $\Delta t = \frac{Q}{I} = \frac{Q}{I}$ | $Q \div \Delta t$<br>$Q \div I$                | Direction of current<br>is from + to –<br>(although current in<br>metal conductors is<br>actually electrons |

flowing from - to +)

#### Ammeter



100 Jaudandund

# Electrical E<sub>p</sub>



The chemical reaction within the cell moves the electrons

from the positive to the negative pole.

During this reaction, chemical potential energy is

transformed into **ELECTRICAL POTENTIAL ENERGY**, which is supplied to the circuit.

# emf



The **voltmeter** has a **very high resistance**, blocking current from passing through it.

The emf is determined by the physical properties of the cell, such as size and chemical composition.

POTENTIAL DIFFERENCE: The difference in electrical potential energy between two points in an electric field
– the work done per unit charge to move charge between the two points.



into symbols, as **FORMULA** 

$$V = W/Q$$

Q = charge - in coulomb (C) V = p.d. - in volt (V) W = energy - in joule (J)



$$W = V \times Q$$
  

$$V = \frac{W}{Q} = W \div Q$$
  

$$Q = \frac{W}{V} = W \div V$$

Also called: VOLTAGE

# Resistance

#### Resistance is **OPPOSITION TO** the **FLOW** of electric charge

Resistance (symbol: R) ...

- is measured in **OHM** ( $\Omega$ )
- the resistance across the length of the steel rod is 1 Ω (ohm) if a potential difference of 1 V (volt) is necessary to move 1 A (ampere) of charge across it.

# Factors that influence the resistance of a conductor:

- Type of material
- Length (longer, more resistance)
- Width (wider, less resistance)
- Temperature (hotter, more resistance)





1. Determine the resistance of  $R_3$ .

1:2

 $1\Omega$  : x

 $V_{total} = V_1 + V_2 + V_3$  $V_3 = 4 V$  $V_1 : V_3$ then 2 V : 4 V 1:2 OR  $V_3 = 4 V$  $R_3 = \frac{V_3}{I_3}$  $= \frac{4V}{V_3}$  $I_{tot} = \frac{V_1}{R_1}$  $=\frac{2V}{2}$ 2*A* 1Ω = 2 A = 2 Ω

9 V  $A_2$  $R_1 : R_3$  $R_1 = 1\Omega R_2 = 1,5\Omega R_3$  $x = 2\Omega$ 2 V 3 V Series circuits are **POTENTIAL** 

**DIVIDERS**. The **bigger the resistance**, the greater the potential difference over it. **Current** in a series circuit is the same through all components.

- Name advantages and disadvantages of series circuits.
   Advantages:
  - More cells in series provide more energy to charges and increase the current.

#### **Disadvantages:**

- If one cell is flat or one bulb / resistor blown, the current is interrupted.
- All lights (resistors) must be turned on or off at once.
- More resistors in series increase the total resistance and decrease the current.



4. Find the equivalent resistance in this circuit.

 $\frac{1}{R1} + \frac{1}{R2}$ R3 Rp 0,2Ω 30**Ω** 5Ω  $+\frac{150}{30\Omega}$  $\frac{1}{30\Omega}$ 30**Ω** 157 30**Ω** R  $\frac{R_p}{2} = \frac{30\Omega}{2}$ 157  $R_p = 0,19 \Omega$ 

Note that the equivalent resistance of resistors in parallel is smaller than the smallest resistance!





8. Determine how much energy is transferred to bulb  $R_3$  in 4 minutes.

\6 V

5Ω

<u>0,2</u>Ω

**.**30|Ω

e

R.

 $R_2$ 

- $W_{3} = V_{3} \cdot Q_{3}$ =  $V_{3} \cdot I_{3} \cdot \Delta t$ = 6 V x 0,2 A x 240 s = 288 J
- What will happen to the bri the lamps if a conducting will happen to the bri the lamps if a conducting will be tween point F
   Explain.

W

V

All lamps would die, since PQ creates a **short cut / short circuit**, causing the current to flow through PQ instead of through the other circuit components.

10. Give advantages and disadvantages of parallel circuits. Advantages:

- The equivalent resistance of parallel resistors is smaller than the smallest individual resistance and therefore increases the current.
- If a cell is flat or a resistor / bulb is blown, the current can still continue.
- Lights (resistors) can be turned on or off individually.
- Cells in parallel last longer, since each cell only have to supply a part of the charges with energy.

#### **Disadvantage:**

• Cells in parallel do not provide the unit charge with more energy.

11. Determine the total resistance in the circuit.



= 12 V

Remember that the equivalent resistance of 2 identical resistors in parallel = half of each resistance.

2Ω

R

= 1+2+1

= 4

3 A

e

2Ω

 $R_{2}$ 

# **Key Concepts 1**

Serie circuits are **POTENTIAL DIVIDERS**.

Parallel circuits are **CURRENT DIVIDERS**.

Resistance of circuit components are influenced by:

- Type of metal
- Length
- Width
- Temperature

**CURRENT** is defined as the **RATE** OF FLOW OF CHARGE.  $I = \frac{Q}{\Delta t}$ 

**POTENTIAL DIFFERENCE:** The work done per unit charge to move a unit charge between two points. V = W

**RESISTANCE** is the measure of the potential difference needed per unit of current passing through the resistor.

$$R = V/I$$

# Key Concepts 2

When doing calculations on electric circuits:

 Always pair information according to the applicable resistor, e.g. (

$$I_3 = \frac{V_3}{R_3} \qquad \qquad I_{tot} = \frac{V_{tot}}{R_{tot}}$$

- Remember that
  - current in a series circuit is the same at all p(v)

А

Parallel resistors

R2

e

- p.d. is the same over all parallel components



- Memorise the various definitions
- Review the exercises you had difficulty with ...
- and do some additional exercise ...
  - as given in your workbooks that accompany this video series or from your school textbook

Continue your learning by watching the **next video lesson** in this series: Lesson 2: Internal Resistance



# PhinisheD