MATHEMATICS

MATERIAL FOR GRADE 12

Analytical Geometry

QUESTIONS

In the diagram below, P (9; 2); Q (*a*; 10) and R (-4; -4) are the vertices of \triangle PQR. α is the angle between *y*-axis and the line PR.

1.1 Determine the gradient of PR. (3)

1.2 Calculate the size of a, angle between y-axis and the line PR. (4)

1.3 Show that the value of
$$a = 5$$
 if PQ = $4\sqrt{5}$ units and Q (a; 10). (6)

1.4	Determine the equation of a line parallel PR and passing through Q.	(3)
1.5	Calculate the co-ordinates of S (x ; y), if PQSR is a parallelogram and S is a point in the second quadrant.	(4)
		[20]

In the diagram below, the circle with centre O(0;0) cuts the straight line with equation y = -x + 1 at a points C and D(-3; a).

2.2 Hence, show that the equation of the circle is $x^2 + y^2 = 25$. (3)

2.3	Determ	nine the co-ordinates of C. Show ALL your working.	(6)
2.4	Determ	nine, using $D(-3; 4)$:	
	2.4.1	the gradient of OD.	(2)
	2.4.2	the equation of the tangent to the circle at D.	(3)
			[16]

In the diagram below A(0;11), B(12;11) and C(16;3) are the vertices of Δ ABC, with height CD .

		[19]
3.7	Calculate the area of Δ ABC.	(3)
3.6	Determine the equation of the line parallel to AC, passing through D.	(3)
3.5	Does the line in 2.5 pass through B? Justify your answer with relevant calculations.	(2)
3.4	Determine the equation of the perpendicular bisector of AC.	(4)
3.3	Determine the coordinates of M, the midpoint of AC.	(2)
3.2	Write down the coordinates of the point D.	(2)
3.1	Write down the equation and the length of the line AB.	(3)

In the diagram the circle with centre M passes through points V, R(-3;2) and T(5;4). Q is the point (-2; -2) and the lines through RQ and TV meet at P. The inclination angle of PT is α and the angle of inclination of PR is β .

V is the y-intercept of both the circle and line TP.

		[18]
4.4	If $\hat{RPT} = \theta$, calculate θ to ONE decimal place.	(6)
4.3	Determine the coordinates of V.	(4)
4.2	Show, using analytical methods, that PR is a tangent to the circle at R.	(3)
4.1	Determine the equation of the circle with centre M.	(5)

In the diagram below, $\triangle PMR$ is drawn with vertices P (-2; 4), M (4; 6) and R in the Cartesian plane. Line MR passes through the origin at O. The angle between PR and MR is θ and PR || MS. The equation of MS is given by y - 5x + 14 = 0.

		[25]
5.1	is a parallelogram.	(2)
57	Write down the coordinates of S if it is further given that PMSR	
5.6	Calculate the area of ΔPMR .	(5)
5.5	Calculate the length of MR, in simplified surd form.	(2)
5.4	Show that the coordinates of R is $(-4; -6)$.	(4)
5.3	Calculate the size of θ , rounded off to TWO decimal places.	(5)
5.2	Determine the equation of PR.	(4)
5.1	Determine the equation of MR.	(3)

In the diagram below, M is the centre of the circle $x^2 - 2x + y^2 + 4y - 5 = 0$. Line AB passes through M, the centre of the circle. The equation of radius PM is 3y - x + 7 = 0. PT is a tangent to the circle at P and PT || AB.

6.1 Determine the coordinates of M.	(4)
6.2 Write down, with reasons, the size of $P \stackrel{\wedge}{M} B$.	(3)
6.3 Determine the equation of line AB.	(4)
6.4 Determine the coordinates of A.	(2)
6.5 If TM = $\sqrt{80}$, determine the length of the tangent PT.	(3)

[16]

In the diagram, ABCD is a trapezium with AD || BC and vertices A (x; 7), B (-5; 0), C (1; -8) and D. DE \perp BC with E on BC such that BE = EC. The inclination of AD with the positive *x*-axis is θ and AD cuts the *y*-axis in F.

[20]

In the diagram, the circle with centre M and equation $x^2 + y^2 + 4x - 4y - 12 = 0$ is drawn. C is the *x*-intercept of the circle. The tangent AB touches the circle at A(-6; 4) and cuts the *x*-axis at B.

8.1 Calculate the

8.1.2 coordinates of C.

8.1.1	coordinates of M.)

(3)

(5)

8.2 Determine, giving reasons, the equation of the tangent AB in the form y = mx + cif it is given that the gradient of MC is $-\frac{1}{2}$

If it is given that the gradient of MC is
$$-\frac{1}{2}$$
. (4)

- 8.3 Calculate the area of $\triangle ABC$.
- 8.4 Determine for which values of k the line y = 2x + k will intersect the circle at two points. (5) [19]

In the figure below, ABCD is a parallelogram with vertices:

A(0; 1), B(-2; -4), C(8; 1) and D(k; 6). AE is perpendicular to BC.

9.1	Calculate the length of BC. Leave your answer in simplest surd form.	(3)
9.2	Determine the value of <i>k</i> .	(3)
9.3	Determine the equation of AE.	(4)
9.4	Calculate the size of θ rounded off to two decimal places.	(6)
		[16]

In the diagram below, M (*m*; 3) is the centre of the circle. Q (-4; q) is the midpoint of chord AB with A (-12; 2) and B (a; 11). The length of the radius of the circle is 10.

- 10.3 If M(-2; 3), determine the equation of the circle in the form $(x - a)^2 + (y - b)^2 = r^2$ (2)
- 10.4 Determine the equation of a tangent to the circle at point A. (3)

[11]

(3)

QUESTION 11

- 11.1 Calculate the value of *k* if the points A(6;5), B(3;2) and C(2k; k + 4) are collinear. (3)
- 11.2 The equation of circle is given: $x^2 + y^2 4x + 4y + 3 = 0$.
 - 11.2.1 Determine the coordinates of the centre of the circle and the length of the radius. (4)
 - 11.2.2 Determine whether the point T(3;-3) lies inside, outside or on the circle. Show all your calculations. (2)

[9]

In the diagram below, A (-5; 1) , B(1; 6) and C(7; -2) are vertices of Δ ABC with AB produced to D. BD forms an angle, β , with the negative *x* – axis and BC forms an angle, α , with the positive *x* – axis. A $\hat{B}C = \theta$

Determine:

12.1	the length AC	(2)
12.2	the equation of line BC	(3)
12.3	ABC	(5)
12.4	the midpoint P of AB	(2)
12.5	the equation of the line parallel to AC and passing through the point $(-1; 3)$	(3)
12.6	Show that AB is perpendicular to $6x + 5y = 18$	(3)

[18]

In the diagram below, centre W of the circle lies on the straight line 3x + 4y + 7 = 0The straight line cuts the circle at V and Z(-1; -1). The circle touches the *y*-axis at G(0; 2)

13.1.1 Determine the equation of the circle in the form $(x - a)^2 + (y - b)^2 = r^2$. (5)

- 13.1.2 Determine the length of diameter VZ (1)
- 13.1.3 Calculate the gradient of GZ. (2)
- 13.1.4 Write down the coordinates of the midpoint of GZ. (1)
- 13.1.5 Determine the equation of the line that is the perpendicular bisector of GZ. (3)
- 13.1.6 Show that the line in QUESTION 4.1.5 and straight line VZ intersect at W.(2)
- 13.2 The circle defined by $(x + 2)^2 + (y 1)^2 = 25$ has centre M, and the circle defined by $(x-1)^2 + (y-3)^2 = 9$ has centre N.
 - 13.2.1 Show that the circles intersect each other at two distinct points. (6)
 - 13.2.2 Determine the equation of the common chord.(3)[23]

ABCD is a quadrilateral with vertices A(2; 5), B(-3; 10); C(-4; 3) and D(1;-2).

		[22]
14.7	Calculate the size of $A\widehat{D}C$.	(3)
14.6	Determine θ , the angle of inclination of DC.	(3)
14.5	Determine the equation of DC.	(3)
14.4	Calculate the area of $\triangle ABC$.	(4)
14.3	Show that BD and AC bisect each other perpendicularly.	(5)
14.2	Determine the coordinates of M, the midpoint of AC.	(2)
14.1	Calculate the length of AC. (Leave the answer in simplest surd form.)	(2)

15.1 A circle has a diameter with equation y = 2x + 1. The tangent to the circle at point E intersects the x-axis at F(12; 0).

Determine the coordinates of E.

15.2 M is the centre of the circle defined by $x^2 + y^2 - 2x - 4y + 1 = 0$. P(p; -p) is any point on the tangent to the circle at T.

15.2.1	Show, by calculation,	that the coordinates of M are (1; 2).	(3)
--------	-----------------------	---------------------------------------	-----

- 15.2.2 Prove that the length of $PT = \sqrt{2p^2 + 2p + 1}$ (3)
- 15.2.3 Calculate the coordinates of P where P is as close as possible to T and hence calculate the minimum length of PT. (5)

[17]

(6)

In the diagram below, A (4; 5), B (-3; -2) and C (6; -5) are the vertices of \triangle ABC. AD is drawn perpendicular to BC.

		[20]
	and E is a point on the positive x axis.	(4)
16.6	Calculate the coordinates of a point E if the area of $\triangle EBC =$ area of $\triangle ABC$	
16.5	Calculate the size of BAD .	(5)
16.4	Determine the coordinates of D.	(3)
16.3	Determine the equation of AD.	(3)
16.2	Determine the equation of BC.	(3)
16.1	Calculate the length of BC.	(2)

In the diagram below, O (0; 0) and N (2; y) are two points on the circumference of a circle with centre M (4; 2). The tangents at O and N meet at R.

		[18]
17.5	Determine, with a reason, the type of quadrilateral represented by MNRO.	(2)
17.4	Calculate the coordinates of R.	(6)
17.3	Determine the equation of OR.	(3)
17.2	Calculate the value of y	(4)
17.1	Determine the equation of the circle.	(3)

18.6

In the diagram below, ABC is an isosceles triangle with A(-2;1) and B(4;9). AB = BC and BC is parallel to the *y*-axis.

The diagram below consists of two circles, which touch each other externally at C (1; -2). The smaller circle has its centre O at the origin. The other circle has centre D(t; -6). CA is a common tangent which intersects the *x*-axis at A. CDE is the diameter of the larger circle.

19.1	Give a reason why the points O, C and D lie on a straight line.	(2)
19.2	Calculate the gradient of OC.	(2)
19.3	Hence, show that the value of $t = 3$.	(2)
19.4	Determine the equation of the tangent AC in the form $y = mx + c$.	(3)
19.5	Calculate the coordinates of E.	(2)

- 19.6 Determine the equation of a circle passing through the points A(5; 0), C and E in the form $(x-a)^2 + (y-b)^2 = r^2$. (6)
- 19.7 If a circle with centre D and equation $(x-t)^2 + (y+6)^2 = r^2$ has to cut the circle with centre O twice, give all possible values of r. (4)

[21]