

NATIONAL SENIOR CERTIFICATE: COMMON TEST JUNE 2018

TO:

THE CHIEF INVIGILATOR OF ALL SCHOOLS OFFERING

MATHEMATICAL LITERACY P1: GRADE 12

ERRATA

Please take note of the following change:

Page 3	ERROR	CORRECTION
1.1 (line 3)	Senzo's network service provider	Stanley's network service provider

Kindly ensure that candidates are informed of the Errata.

MR C. KHUMALO

ASSISTANT DIRECTOR

PROVINCIAL EXAMINATION

DATE

... Championing Quality Education-Creating and Securing a Brighter Future

Education

KwaZulu-Natal Department of Education

MATHEMATICAL LITERACY P1 COMMON TEST JUNE 2018

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

(IME: 2 hours

This question paper consists of 8 pages and an addendum with 4 annexures (5 pages)

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of **FIVE** questions. Answer **ALL** the questions.
- 2. Use the ANNEXURES in the ADDENDUM to answer the following questions:
 - ANNEXURE A for QUESTION 1.3
 - ANNEXURE B for QUESTION 2.2
 - ANNEXURE C for QUESTION 3.1
 - ANNEXURE D for QUESTION 4.1
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Start EACH question on a NEW page.
- 5. You may use an approved calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. Show ALL calculations clearly.
- 7. Round off ALL final answers appropriately according to the given context, unless stated otherwise.
- 8. Indicate units of measurement, where applicable.
- 9. Maps and diagrams are NOT necessarily drawn to scale, unless stated otherwise.
- 10. Write neatly and legibly.

QUESTION 1

1.1

Stanley saw an advert of a television set on his smartphone. He is interested in buying it. The cash price is R11 199,00 including 15% VAT. On hire purchase the monthly instalment is R526,19 for 24 months. The deposit is 10% of the cash price. Senzo's network service provider charges him R2,75 per minute or part thereof during peak time and charges him R2,25 per minute or part thereof during off peak time.

- 1.1.1 Determine the price of the television set excluding VAT. (2)
- 1.1.2 Calculate the deposit amount of the television set. (2)
- 1.1.3 Calculate the total amount payable (including deposit) if he bought it on hire purchase. (3)
- 1.1.4 Stanley makes a call for 9 minutes and 20 seconds during peak time, calculate the amount his service provider will charge him. (2)
- 1.1.5 Determine the length of a call in minutes if Stanley was charged R18,00 during off peak time. (2)

1.2

Senzo travels for 13 minutes from home to the bus stop on the main road where he catches the bus to school. The bus takes 17 minutes to reach the school which is 10 km away.

- 1.2.1 Determine the distance (in metres) travelled by the bus. (2)
- 1.2.2 Calculate the total time taken by Senzo from home to school. (2)
- 1.2.3 If Senzo left home at 06:51, at what time will he arrive at the bus stop? (2)

1.3

The school governing body reviews the school site layout plan which was drawn in 2004 and was also projected for 2024. The school site layout plan is shown in ANNEXURE A.

Use ANNEXURE A and the information above to answer the following questions.

- 1.3.1 Name the three features that are found on the school site layout plan of 2024 which were not on the plan in 2004. (3)
- 1.3.2 Refer to school site plan of 2004 and give the compass direction of the sports field from school building 1. (2)

Copyright reserved

1.4

A class educator wants to surprise her class by providing sandwiches and juice for lunch. She wants to know the choices of sandwiches. She organizes the results in a frequency table below.

TABLE 1: FREQUENCY TABLE SHOWING CHOICES OF SANDWICHES

TYPE OF SANDWICH	TALLY	FREQUENCY
Chicken and mayo		13
Ham and egg		A
Cheese and tomato	В	6
Vegetable		2
	TOTAL	С

1.4.1 Determine the missing values **A** and **B**.

(4)

1.4.2 Determine the total number (C) of learners in class.

(2)

1.5 A probability scale is drawn below with possibilities written as decimals.

Determine the missing value **D**.

(2)

[30]

QUESTION 2

2.1

Koos runs a business in which he delivers clients, goods all over the country. He also sells crates of cold drinks in his premises. He expects to generate an income of R26 000,00 per month from deliveries and expects to get R2 400,00 per month from the sales of cold drinks. He draws a projected budget for July 2018.

Use the projected budget for July 2018 below to answer the following questions.

TABLE 2: SHOWING KOOS'S PROJECTED BUDGET FOR JULY 2018

Income from deliveries R26 000,00 Income from cold drink sales R2 400,00	Driver's salary Delivery van instalment Petrol Municipality rates Water and electricity	R5 400,00 R3 150,00 R2 200,00 R485,00 R1 083,20
	Contract cellphone Cost of cold drinks Entertainment (15% of tot	
TOTAL INCOME: R28 400,00	Petty cash TOTAL:	R800,00

(2)Name one fixed expense in the budget. 2.1.1 Koos plans to entertain his clients by using 15% of his total income. Calculate 2.1.2 (2)the amount (E) to be used for entertainment. (3)2.1.3 Calculate the total expenses (F). If the actual budget is the same as the projected one, how much profit will 2.1.4 (2)Koos make? Koos decides to increase the driver's salary by 12,5% the following month. 2.1.5 (3)Calculate the driver's salary after the increment. (a) Calculate the monthly UIF contribution (1% of the gross salary) from (b) (2)the driver.

2.2

Marry, Koos's wife is a physiotherapist. She is 48 years old. She contributes to a medical aid scheme and has two dependants. She earns a monthly taxable income of R26 700,00. 2018/2019 SARS tax table is shown in ANNEXURE B.

2.2.1 Calculate Marry's annual taxable income.

(2)

2.2.2 Hence, calculate her monthly tax.

(8)

[24]

QUESTION 3

3.1

A local businessman owns a petrol service station. Petrol is stored in cylindrical tanks. The diameter of the tank is 2,5 metres and its height is 5 metres. A photo and a diagram of the petrol tank is shown in ANNEXURE C

Use ANNEXURE C and the above information to answer the following questions.

3.1.1 Determine the radius of the petrol tank in metres.

(2)

3.1.2 Calculate the surface area (in m²) of the petrol tank.

You may use the following formula:

Surface area of a cylinder =
$$2 \times \pi \times \text{radius}^2 + (\pi \times \text{diameter} \times \text{height})$$
.
Use $\pi = 3,142$ (2)

3.1.3 (a) Calculate the volume (in m³) of the petrol tank. Round the answer to the nearest cubic metre.

You may use the following formula:

Volume of a cylinder =
$$\pi \times \text{radius}^2 \times \text{height}$$
 Use $\pi = 3,142$ (3)

(b) Hence determine the number of litres of petrol that can fill up the tank if $1 \text{ m}^3 = 1 \text{ 000 litres}$. (2)

3.1.4 How long will it take to fill up the tank if petrol flows at a rate of 100 litres per minute? Give the answer in hours and minutes.

(3)

[12]

QUESTION 4

41

A Geography educator from a school in Port Shepstone organizes an educational excursion to a mine in Vryheid for his learners. ANNEXURE D shows a map that he uses to plan for the educational excursion.

Use the above information and ANNEXURE D to answer the following questions.

- 4.1.1 Explain what is meant by the scale on the map. (2)
- 4.1.2 Give the longest national road shown on the map. (2)
- 4.1.3 The distance on the map from Port Shepstone to Vryheid is 115 mm. Use the number scale to calculate the actual distance (in km) between Port Shepstone and Vryheid. (4)
- 4.1.4 From Port Shepstone the bus will travel along N2, from Durban it will take N3.

 Name the three towns that they will pass before reaching Durban.

 (3)

QUESTION 5

5.1

Grade 12 Mathematical Literacy classes are taught by three educators. Ms Khanyile teaches 12A (25 learners), Mr Zulu teaches 12B (24 learners) and Ms Khulu teaches 12 C (24 learners). Educators had to analyse Mathematical Literacy March test results out of 100 marks. The tables below show marks scored by learners in different classes and box and whiskers showing the

Use the above information, tables and box and whiskers to answer the following questions

TABLE 3: SHOWING MARKS SCORED BY GRADE 12 A LEARNERS IN MARCH TEST.

10	15	19	22	28	32	32	32	36	38	41	41	41
41	42	44	44	46	47	48	49	53	56	68	85	

TABLE 4: SHOWING MARKS SCORED BY GRADE 12 B LEARNERS IN MARCH TEST.

19	21	21	23	25	25	27	28	28	30	31	32
34	35	41	42	43	44	47	49	53	55	58	89

TABLE 5: SHOWING MARKS SCORED BY GRADE 12 C LEARNERS IN MARCH TEST.

25	28	29	32	32	33	34	36	36	36	37	38
39	41	41	42	47	47	49	55	56	57	62	63

- 5.1.1 Give the minimum mark scored by a learner in 12 C. (2)
- 5.1.2 Determine the modal mark for 12 A. (2)
- 5.1.3 Calculate the mean for 12 B. (3)
- 5.1.4 Give the value which is an outlier in 12 B. (2)
- 5.1.5 Calculate the interquartile range (IQR) for 12 C.

You may use the following formula:

$$IQR = Q_3 - Q_1 \tag{2}$$

- 5.1.6 Write down the values of the five-number-summary for 12 A. (5)
- 5.1.7 If a learner is randomly chosen from 12 C, what is the probability (as a decimal) of choosing a learner who scored above 50 marks (3)
- 5.1.8 What percentage of learners scored marks from the minimum to quartile 1 in class A? (2)
- 5.1.9 Calculate the range for 12 B. (2)

[23]

TOTAL: [100]

Education

KwaZulu-Natal Department of Education

MATHEMATICAL LITERACY P1 ADDENDUM COMMON TEST JUNE 2018

NATIONAL SENIOR CERTIFICATE

GRADE 12

This addendum consists of 5 pages with 4 annexures.

ANNEXURE A

QUESTION 1.3

School site layout plan 2004

School Site - 2004: 600 students

School site layout plan 2024

School Site - 2024: 1,000 students

www.school layout plans.com

ANNEXURE B

QUESTION 2.2

SARS TAX TABLE 2018/2019

Taxable income (R)	Rate of	Tax (R)	Tax bracket
0 – 195 850	18% of	taxable income	l
195 851 - 305 850	35 253	+ 26% of taxable income above 195 850	2
305 851 - 423 300	63 853	+ 31% of taxable income above 305 850	3
423 301 - 555 600	100 263	3 + 36% of taxable income above 423 300	4
555 601 - 708 310		+ 39% of taxable income above 555 600	5
708 311 - 1 500 000	207 448	3 + 41% of taxable income above 708 310	6
1 500 001 and above	532 041	+ 45% of taxable income above 1 500 000	7
TAX REBATES			
Primary		R14 067	
Secondary (Persons 65 a	nd older)	R7 713	
Tertiary (Persons 75 a	nd older)	R2 574	
TAX THRESHOLDS	· · · · · · · · · · · · · · · · · · ·		
AGE		TAX THRESHOLD	
Below age 65		R78 150	
Age 65 to below 75		R121 000	
Age 75 and over		R135 300	
		S 2018/2019 YEAR OF ASSESSMENT	
R310 per month for the ta	axpayer wh	o paid the medical scheme contributions	
R310 per month for the f			
R209 per month for each	additional	dependant (s)	

Source: www. sars.gov.za

ANNEXURE C QUESTION 3.1

Photo of a petrol storage tank

Source: www.petroltanks.com

Diagram of a petrol storage tank

ANNEXURE D

Map showing Kwa-Zulu Natal and other provinces.

Source: www.maps co.za

@ Education

KwaZulu-Natal Department of Education

MATHEMATICAL LITERACY PI

COMMON TEST

JUNE 2018

MARKING GUIDELINE

SENIOR CERTIFICATE NATIONAL

GRADE 12

MARKS: 100

SYMBOL	EXPLANATION
M	Method
MA	Method with accuracy
CA	Consistent accuracy
А	Accuracy
C	Conversion
S	Simplification
RT/RG/RD/RM	Reading from a table/ graph/ diagram/man
SF	Correct substitution in a formula
0	Opinion/ reason/deduction/example/Explanation
J	Justification
R	Rounding off
F	deriving a formula
AO	Answer only full marks
Ь	Penalty e.g. for units, incorrect rounding off etc
NPR	No penalty for rounding / units

This marking guideline consists of 5 pages.

Copyright reserved

Please turn over

Mathematical Literacy/P1

2 NSC- Marking guideline

2018 June examination

COES	QUESTION 1 [30 MARKS]		
OUES	QUES Solution	Explanation	T&
-			_
=	Price excluding VAT = R11 999,00) LI
	115	1M dividing by 1.15	
	= B10.423.01.7A	1A price excluding VAT	3
	O. 17,52,713		
	001	OR	
	Price excluding VAT = $\frac{100}{100} \times R11999.00 \checkmark M$	001	
	115	1M multiplying by 100	
	= R10 433,91 VA	5	
		I A price excluding VAT	
1.1.2	10	AO (2)	1
	Deposit amount = $\frac{1}{100}$ × R11 999,00 \checkmark M	1M multiplication	<u>.</u>
	= P 1 100 00 \land A	1A denocit amount	
	A 103,30 A		
1.1.3	Total amount = R1 199 90 + (R526 19 ×24) ZM	(Z) AU (Z)	1
	= R 199 90 + R 12 628 56 7M	1M adding	ш,
	= R13 828 46 VCA	1CA total amount	
		AO (3)	
1.1.4	Total cost= 10 × R2,75 ✓ M	ation	1
	$= R27.50 \checkmark A$	1A total cost	
		AO	_
1.1.5	R18,00	hv R2 25	+
	Length of a call = $\frac{82.25}{R2.25}$	CTT C SILLING	
	= 8 minutes <	1A no. of minutes	ī
101		AO (2)	
1.7.1	Distance = 10 km × 1 000 \checkmark C	ng by 1 000	
	A > 111 000 01 -		5
1.2.2	Total time = 13 minutes + 17 minutes / M	AO (2)	7
	= 30 minutes \checkmark A	Livi adding	Σ.
		AO (C)	
1.2.3	Arrival time = 06 :51 + 13 minutes ✓M		Σ
	$= 07:04 \checkmark A$	1A arrival time	: =
1 3 1	Solool Lind Street	AO (2)	
1.5.	Car sork 2 / A	•	M&P
	Road VA	3A reatures	
133	South East OD SE ././ A	(5)	
1	South East On SE V A	2A direction	
14.1	A = 8 V A	(2)	
	B= 7.4	2A number	
1.4.2	3+8+	ZA GHIES (4)	1
!	= 20 < v	IM adding	DH
	U . / ?	IA total	П
2	D=0,25 <		0
		į	
		Accept $\frac{1}{4}$ or 25% (2)	
		1301	_

Copyright reserved

Mathematical Literacy/P1

2018 June examination

NSC- Marking guideline

E F 2 F 22 . . Γ 1 2M adding all correct values | L2 (8) 1A multiplying by R28 400 (3) 5 (2) (3) 1M finding amount above 1A entertainment expense ICA UIF from (a) above 1M subtracting med. tax A correct tax bracket 1CA tax 1M subtracting rebate ICA tax payable IMA dividing by 12 ICA monthly tax M multiplying by 12 ICA total expenses IM multiplication IA new salary A taxable income 1M multiplication M multiplication 1M adding 1A new salary 1M subtraction VO VO V M addition 2A expense 1CA profit cred = R63 853 + 31% of the amt above R305 850 \checkmark A = R63 853 + 0,31 (R320 400 – R305 850) $= R54\ 296,50 - [(R310 \times 2 \times 12) + (R209 \times 12) \checkmark M$ 2.1.5 Salary after the increment $\stackrel{\checkmark}{=}$ R5 400,00 + (12,5% ×R5 Salary after the increment = R5 400,00 + R675,00 < 2.2.1 Annual taxable income = R26 700,00 ×12 VM = R6 075,00 \checkmark A = R63 853 + (0,31 × R14 550) VM = R320 400,00 = R68 363,50 ✓CA Tax payable = R68 363,50 – R14 067✓M UIF contribution = 1% × R6 075,00 ✓ M 2.1.4 Profit = R28 400,00 – R20 337,20 VM = R8 062,80 VCA Monthly tax = R44 348,50 +12 VMA = R675.00Increase = 12,5% × R5 400,00 ✓ M = R60.75 VCA = R3 695,71 VCA 2.1.1 Delivery van instalment ~A 400,00) = R44 348,50 VCA = R6 075,00 < A $E = \frac{15}{100} \times R28400 \checkmark A$ $= R54\ 296,50$ QUESTION 2 [24 MARKS] = R4 260,00 ✓ A tax 2.2.2 (p)

Please turn over Copyright reserved

Copyright reserved

Please turn over

Mathematical Literacy/P1

NSC- Marking guideline

2018 June examination

	NOC - MARKING GUIGGING		
COLESI	QUESTION 3 12 MARKS		
3.1.1	Radius = $2.5 \text{ m} + 2 \text{ VM}$	1M dividing by 2	Z :
	A * III CZ, 1 =	A ladius AO (2)	
3.1.2	SA cylinder = $2 \times \pi \times \text{radius}^2 + (\pi \times \text{diameter} \times \text{height})$	-	M
	$= 2 \times 3,142 \times (1,25\text{m})^2 \times 5 \text{ m} + 3,142 \times 2,5 \text{ m} \times 5 \text{ m} \checkmark \text{SF}$	itution	1.2
	$=49,09375 \text{ m}^2 \checkmark \text{CA}$	ICA surface area NPR (2)	
3.1.3	Volume of a cylinder = $\pi \times \text{radius}^2 \times \text{height}$		Σ
(a)	$= 3.142 \times (1.25 \text{m})^2 \times 5 \text{ m} \checkmark \text{SF}$	1 SF correct substitution	17
	$= 24.546875 \text{ m}^3 \checkmark \text{CA}$	1CA volume	
		1R rounding (3)	
(P)	000		Σ,
	25 m ² = litres	0000	
	Litres = $\frac{25 \times 1000}{4}$ VMA	IMA multiplying by 1 000	
		ICA no oflittee	
	= 25 000 litres • CA	(2)	
3.1.4	inute		⊠ :
	25 000 litres: minutes		
	Minutes = $\frac{25000 \times 1}{2000}$ \checkmark M	IN multiplication	
		IVA no of minutes	
	= 250 minutes \checkmark CA \div 60	Conversion (3)	
	= 4 hours 10 minutes • C		
1000	TOZZEN FER FEI TAGO		
CUESI	QUESTION 4 [11 MARKS]		200
411	One juff on the man represents three million five hundred	ZA scale in words	N8.F
	thousand units in reality/ on the ground/ in real life.	(2)	i
4.1.2	N2 - V A	2A national road	M&P
		(2)	7
4.1.3	Actual distance in mm 1: 3 500 000		M&P
	1 mm; 3 500 000 mm		
	115×3500000	M multiplication	
	$mm = \frac{1}{1}$		
	= 402 500 000 mm < A	IA no. of mm	
	Actual distance in km = $402.500.000 \div 1.000.000 \checkmark C$	I C actual distance	
	$= 402.5 \text{ km} \cdot \text{CA}$		
	OR	OR	
	1mm : (3 500 000 mm ÷1 000 000) ✓ C	I Conversion	
	mm : 3,5 km < A	1M multiplication	
	Actual distance = $402.5 \text{ km } \checkmark \text{CA}$	ICA actual distance	
414	Scottburgh 🗸 A	(+)	M&P
	Scotton gir * A Kingsburgh * A	3A towns	1 1
	Amanzimtoti ✓ A	(3)	

5 NSC- Marking guideline Mathematical Literacy/P1

2018 June examination

5.1.1 Minimum mark of 12 C = 25 V A 5.1.2 Modal mark for 12 A = 41 V A 5.1.3 Mean = 19 + 21 + 21 + + 55 + 58 + 89 V M = 900 V M = 37.5 V C A 5.1.4 Outlier in 12B = 89 V A 5.1.5 IQR = Q ₃ - Q ₁ = 48 - 33.5 V M = 14.5 V A 5.1.6 Minimum = 10 V A Q ₂ = 41 V A Q ₃ = 47.5 V A Maximum = 85 V A S.1.7 P(scored above 50 marks) = \(\frac{5}{5} \triangle A \) For exercise A Solution in the second above 50 marks and the second above 50 ma	2A minimum mark 2A modal mark IM adding all values IM dividing by 24 ICA mean AO 2A outlier	(2) L1 (2) L1 (2) L1 DH DH L2
Modal mark for $12A = 41 \checkmark A$ $Mean = \frac{19 + 21 + 21 + \dots}{24} \checkmark M$ $= \frac{900}{24} \checkmark M$ $= 37.5 \checkmark CA$ Outlier in $12B = 89 \checkmark A$ $1QR = Q_3 - Q_1$ $= 48 - 33.5 \checkmark M$ $= 14.5 \checkmark A$ Minimum = $10 \checkmark A$ $Q_1 = 32 \checkmark A$ $Q_2 = 41 \checkmark A$ $Q_3 = 41 \checkmark A$ $A = 47.5 \checkmark A$ Maximum = $85 \checkmark A$ $P(scored above 50 marks) = \frac{5}{24} \checkmark A$ $P(scored above 50 marks) = \frac{5}{24} \checkmark A$	modal mark adding all values dividing by 24 . mean AO	(2) L1 DF L1 DF L2
Modal mark for $12A = 41 \lor A$ $Mean = \frac{19 + 21 + 21 + \dots + 55 + 58 + 89}{24} \lor M$ $= \frac{900}{24} \lor M$ $= 37.5 \lor CA$ Outlier in $12B = 89 \lor A$ $1QR = Q_3 - Q_1$ $= 48 - 33.5 \lor M$ $= 14.5 \lor A$ $Minimum = 10 \lor A$ $Q_1 = 32 \lor A$ $Q_2 = 41 \lor A$ $Q_3 = 41 \lor A$ $Q_3 = 41 \lor A$ $Q_3 = 41 \lor A$ $Q_4 = 41 \lor A$ $Q_2 = 41 \lor A$ $Q_2 = 41 \lor A$ $Q_3 = 41 \lor A$ $Q_4 = 41 \lor A$ $Q_2 = 41 \lor A$ $Q_3 = 41 \lor A$ $Q_4 = 41 \lor A$ $Q_5 =$	nodal mark adding all values dividing by 24 . mean AO	(2) [L] [D] [L2
Mean = $\frac{19 + 21 + 21 + \dots + 55 + 58 + 89}{24} $ $\sim M$ = $\frac{900}{24} $ $\sim M$ = $\frac{900}{24} $ $\sim M$ = $\frac{900}{24} $ $\sim M$ Unther in $12B = 89 $ $\sim M$ IQR = $Q_3 - Q_1$ = $48 - 33.5 $ $\sim M$ Minimum = 10.4 A $Q_1 = 32.4$ A $Q_2 = 41.5 $ A Maximum = 85.4 A Maximum = 85.4 A P(scored above 50 marks) = $\frac{5.4}{24}$ A P(scored above 50 marks) = $\frac{5.4}{24}$ A	adding all values dividing by 24 mean AO	(2) L1 DI L2
Mean = $\frac{19+21+21+}{24}$ \times Mean = $\frac{900}{24}$ \times M = $\frac{900}{24}$ \times M = $\frac{900}{24}$ \times M = $\frac{900}{24}$ \times Minimum = $\frac{10}{24}$ \times Minimum = $\frac{10}{24}$ \times Maximum = $\frac{10}{24}$ \times Maximum = $\frac{5}{24}$ \times	adding all values dividing by 24 . mean AO	DI L2
$= \frac{900}{24} \checkmark M$ $= 37.5 \checkmark CA$ Outlier in 12B = 89 $\checkmark \checkmark A$ $IQR = Q_3 - Q_1$ $= 48 - 33.5 \checkmark M$ $= 14.5 \checkmark A$ Minimum = 10 $\checkmark A$ Q_1 $= 32 \checkmark A$ Q_2 $= 41 \checkmark A$ Q_3 $= 41.5 \checkmark A$ Maximum = 85 $\checkmark A$ Q_3 $= 47.5 \checkmark A$ Q_4 $= 22 \checkmark A$ Q_2 $= 41.5 \checkmark A$ Q_3 $= 47.5 \checkmark A$ Q_4 $= 24.5 \checkmark A$ Q_3 $= 47.5 \checkmark A$ Q_4 $= 47.5 \checkmark A$ Q_3 $= 47.5 \checkmark A$ Q_4 $= 47.5 \checkmark A$ Q_3 $= 47.5 \checkmark A$ Q_4 $= 47.5 \checkmark A$ Q_3 $= 47.5 \checkmark A$ Q_4 $= 47.5 \checkmark A$ Q_4 $= 47.5 \checkmark A$ Q_3 $= 47.5 \checkmark A$ Q_4 $= 47.5 \checkmark A$ Q_5 $= 47.5 \checkmark A$ Q_6 $= 47.5 \checkmark A$ Q_7 $= 47.5 \checkmark A$ Q_8 $= 47.5 \checkmark A$ Q_8 $= 47.5 \checkmark A$ $= 47.5 \checkmark A$ $= 47.5$ $=$	dividing by 24 . mean AO outlier	L2
$= \frac{900}{24} \checkmark M$ $= 37.5 \checkmark CA$ Outlier in 12B = 89 $\checkmark \checkmark A$ $IQR = Q_3 - Q_1$ $= 48 - 33.5 \checkmark M$ $= 14.5 \checkmark A$ Minimum = 10 $\checkmark A$ $Q_1 = 32 \checkmark A$ $Q_2 = 41 \checkmark A$ $Q_3 = 41 \checkmark A$ $Q_3 = 47.5 \checkmark A$ Maximum = 85 $\checkmark A$ $P(scored above 50 marks) = \frac{5}{24} \checkmark A$	dividing by 24 mean AO putlier	
Outlier in 12B = 89 \checkmark A Outlier in 12B = 89 \checkmark A IQR = Q ₃ - Q ₁ = 48 - 33,5 \checkmark M = 14,5 \checkmark A Minimum = 10 \checkmark A Q ₁ = 32 \checkmark A Q ₂ = 41 \checkmark A Q ₃ = 41 \checkmark A Q ₄ = 41 \checkmark A Q ₅ = 41 \checkmark A Maximum = 85 \checkmark A P(scored above 50 marks) = $\frac{5}{24}\checkmark$ A	dividing by 24 mean AO outlier	
= 37.5	mean AO autlier	
Outlier in 12B = 89 \checkmark \checkmark A IQR = Q ₃ – Q ₁ = 48 – 33,5 \checkmark M = 14,5 \checkmark A Minimum = 10 \checkmark A Q ₁ = 32 \checkmark A Q ₂ = 41 \checkmark A Q ₃ = 47,5 \checkmark A Maximum= 85 \checkmark A P(scored above 50 marks) = $\frac{5}{24}$ \checkmark A	AO	
Outlier in 12B = 89 $\checkmark \checkmark A$ IQR = $Q_3 - Q_1$ = $14.5 \checkmark A$ Minimum = $10 \checkmark A$ Q_1 = $32 \checkmark A$ Q_2 = $41 \checkmark A$ Q_2 = $41 \checkmark A$ Q_3 = $47.5 \checkmark A$ Maximum= $85 \checkmark A$ P(scored above 50 marks) = $\frac{5}{24} \checkmark A$	outlier	(3)
$IQR = Q_3 - Q_1$ $= 48 - 33.5 \lor M$ $= 14.5 \lor A$ $Minimum = 10 \lor A$ $Q_1 = 32 \lor A$ $Q_2 = 41.5 \lor A$ $Q_3 = 47.5 \lor A$ $Maximum = 85 \lor A$ $P(scored above 50 marks) = \frac{5}{24} \checkmark A$ $Q_3 = \frac{5}{24} \checkmark A$ $Q_4 = \frac{5}{24} \checkmark A$ $Q_5 = \frac{5}{24} \checkmark A$		DH
$1QR = Q_3 - Q_1$ $= 48 - 33.5 \lor M$ $= 14.5 \lor A$ $Minimum = 10 \lor A$ $Q_1 = 32 \lor A$ $Q_2 = 41 \lor A$ $Q_3 = 47.5 \lor A$ $Maximum = 85 \lor A$ $P(scored above 50 marks) = \frac{5}{24} \checkmark A$		(2) L1
$= 48 - 33.5 \text{ VM}$ $= 14.5 \text{ VA}$ $\text{Minimum} = 10 \text{ VA}$ $Q_1 = 32 \text{ VA}$ $Q_2 = 41 \text{ VA}$ $Q_3 = 47.5 \text{ VA}$ $\text{Maximum} = 85 \text{ VA}$ $\text{P(scored above 50 marks)} = \frac{5 \text{ VA}}{24 \text{ VA}}$		DH
Minimum = $10 \checkmark A$ $Q_1 = 32 \checkmark A$ $Q_2 = 41 \checkmark A$ $Q_3 = 47.5 \checkmark A$ Maximum = $85 \checkmark A$ P(scored above 50 marks) = $\frac{5}{24} \checkmark A$	IM subtraction	2
Minimum = $10 \checkmark A$ $Q_1 = 32 \checkmark A$ $Q_2 = 41 \checkmark A$ $Q_3 = 47.5 \checkmark A$ Maximum = $85 \checkmark A$ P(scored above 50 marks) = $\frac{5}{24} \checkmark A$	ptoronortile	777
Minimum = $10 \checkmark A$ $Q_1 = 32 \checkmark A$ $Q_2 = 41 \checkmark A$ $Q_3 = 47.5 \checkmark A$ Maximum= $85 \checkmark A$ P(scored above 50 marks) = $\frac{5}{24} \checkmark A$	A merquarme range	
Minimum = $10 \checkmark A$ $Q_1 = 32 \checkmark A$ $Q_2 = 41 \checkmark A$ $Q_3 = 47.5 \checkmark A$ Maximum = $85 \checkmark A$ P(scored above 50 marks) = $\frac{5}{24} \checkmark A$	AO	(2)
$Q_1 = 32\sqrt{A}$ $Q_2 = 41\sqrt{A}$ $Q_3 = 47.5\sqrt{A}$ Maximum = 85 \(\sigma A\) P(scored above 50 marks) = \(\frac{5}{24}\sigma A\) = 0.11 \(\sigma A\)		DH
$Q_2 = 41 \text{ A}$ $Q_3 = 47.5 \text{ A}$ $\text{Maximum} = 85 \text{ A}$ $\text{P(scored above 50 marks)} = \frac{5 \text{ A}}{24 \text{ A}}$		
Q ₃ = $47.5 \checkmark$ A Maximum= $85 \checkmark$ A P(scored above 50 marks) = $\frac{5}{24} \checkmark$ A	5A correct values	
Maximum= $85 \checkmark A$ P(scored above 50 marks) = $\frac{5}{24} \checkmark A$		
P(scored above 50 marks) = $\frac{5}{24}$ A		(5)
,	I A numerator	2
*,	1A denominator	2
	ICA decimal fraction	
	~	(3)
5.1.8 Percentage = 25% < A	2A correct percentage	DH
		(2) L1
W > 6	subtraction	DH
= 70 × A	1A range	
	AO	(2)
		23

.