

MATHEMATICS GRADE 12 REVISION PACK

Paper 1

EASY TO SCORE QUESTIONS

Purpose:

To assist learners to obtain a minimum mark of 50 % in Mathematics in NSC Examinations.

Focus:

Knowledge and Routine Procedures cognitive levels questions.

1.1 Solve for x:

1.1.1
$$x^2 - x - 20 = 0 (2)$$

1.1.2
$$2x^2 - 11x + 7 = 0 \text{ (correct to TWO decimal places)}$$
 (3)

$$1.1.3 5x^2 + 4 > 21x (5)$$

$$1.1.4 2^{2x} - 6.2^x = 16 (4)$$

1.2 Solve for x and y simultaneously:

$$y+1=2x x^{2}-xy+y^{2}=7$$
 (6)

- 1.3 The roots of a quadratic equation are given by $x = \frac{-5 \pm \sqrt{20 + 8k}}{6}$, where $k \in \{-3; -2; -1; 0; 1; 2; 3\}$.
 - 1.3.1 Write down TWO values of k for which the roots will be rational. (2)
 - 1.3.2 Write down ONE value of k for which the roots will be non-real. (1)
- 1.4 Calculate a and b if $\sqrt{\frac{7^{2014} 7^{2012}}{12}} = a(7^b)$ and a is not a multiple of 7. (4)

QUESTION 1

1.1 Solve for x:

1.1.1
$$x^2 - x - 12 = 0 ag{3}$$

1.1.2
$$x(x+3)-1=0$$
 (Leave your answer in simplest surd form.) (3)

1.1.3
$$x(4-x) < 0$$
 (3)

1.1.4
$$x = \frac{a^2 + a - 2}{a - 1}$$
 if $a = 888 888 888 888$ (2)

1.2 Solve the following equations simultaneously:

$$y+7=2x$$
 and $x^2-xy+3y^2=15$ (6)

1.3 Determine the range of the function
$$y = x + \frac{1}{x}$$
, $x \neq 0$ and x is real. (6) [23]

1.1 Solve for x:

1.1.1
$$(x-3)(x+1) = 0$$
 (2)

$$1.1.2 \sqrt{x^3} = 512 (3)$$

$$1.1.3 x(x-4) < 0 (2)$$

1.2 Given: $f(x) = x^2 - 5x + 2$

1.2.1 Solve for
$$x$$
 if $f(x) = 0$ (3)

1.2.2 For which values of
$$c$$
 will $f(x) = c$ have no real roots? (4)

1.3 Solve for x and y:

$$x = 2y + 2$$

$$x^2 - 2xy + 3y^2 = 4$$
(6)

1.4 Calculate the maximum value of S if
$$S = \frac{6}{x^2 + 2}$$
. (2)
[22]

QUESTION 1

1.1 Solve for x:

1.1.1
$$x^2 - 6x - 16 = 0 ag{3}$$

1.1.2
$$2x^2 + 7x - 1 = 0$$
 (correct to TWO decimal places) (4)

1.2 List all the integers that are solutions to
$$x^2 - 25 < 0$$
. (4)

1.3 Solve for x and y:

$$-2y + x = -1$$
 and $x^2 - 7 - y^2 = -y$ (6)

1.4 Evaluate:
$$\frac{3^{2018} + 3^{2016}}{3^{2017}}$$
 (2)

1.5 Given:
$$t(x) = \frac{\sqrt{3x-5}}{x-3}$$

1.5.1 For which values of
$$x$$
 will $\frac{\sqrt{3x-5}}{x-3}$ be real? (3)

1.5.2 Solve for
$$x$$
 if $t(x) = 1$. (4)

1.1 Solve for x:

1.1.1
$$(3x-1)(x+4) = 0$$
 (2)

1.1.2
$$2x^2 + 9x - 14 = 0$$
 (correct to TWO decimal places) (4)

$$1.1.3 \sqrt{3 - 26x} = 3x (4)$$

1.1.4
$$(x-1)(x-4) > x+11$$
 (5)

1.2 Simplify fully:

$$\frac{\sqrt{16x^7} - \sqrt{25x^7}}{\sqrt{x}} \tag{3}$$

1.3 Solve simultaneously for x and y:

$$xy = 9 \text{ and } x - 2y - 3 = 0$$
 (5)

1.4 Prove that
$$x^2 + 2xy + 2y^2$$
 cannot be negative for $x, y \in \mathbb{R}$. (4)

- 2.1 Given the following quadratic sequence: -2; 0; 3; 7; ...
 - 2.1.1 Write down the value of the next term of this sequence.
 - 2.1.2 Determine an expression for the n^{th} term of this sequence. (5)

(1)

- 2.1.3 Which term of the sequence will be equal to 322? (4)
- 2.2 Consider an arithmetic sequence which has the second term equal to 8 and the fifth term equal to 10.
 - 2.2.1 Determine the common difference of this sequence. (3)
 - 2.2.2 Write down the sum of the first 50 terms of this sequence, using sigma notation. (2)
 - 2.2.3 Determine the sum of the first 50 terms of this sequence. (3) [18]

QUESTION 2

Given the geometric sequence: $-\frac{1}{4}$; b; -1;

- 2.1 Calculate the possible values of b. (3)
- 2.2 If $b = \frac{1}{2}$, calculate the 19th term (T_{19}) of the sequence. (3)
- 2.3 If $b = \frac{1}{2}$, write the sum of the first 20 positive terms of the sequence in sigma notation. (4)
- 2.4 Is the geometric series formed in QUESTION 2.3 convergent? Give reasons for your answer.

 (2)
 [12]

OUESTION 2

Compr		
2.1	Prove that in any arithmetic series in which the first term is a and whose constant difference is d , the sum of the first n terms is $S_n = \frac{n}{2} [2a + (n-1)d]$.	(4)
2.2	Calculate the value of $\sum_{k=1}^{50} (100-3k)$.	(4)
2.3	A quadratic sequence is defined with the following properties:	

$$T_2 - T_1 = 7$$

 $T_3 - T_2 = 13$
 $T_4 - T_3 = 19$

2.3.1 Write down the value of:

$$(a) T_5 - T_4 (1)$$

(b)
$$T_{70} - T_{69}$$
 (3)

2.3.2 Calculate the value of
$$T_{69}$$
 if $T_{89} = 23594$. (5) [17]

QUESTION 3

Consider the infinite geometric series: 45 + 40.5 + 36.45 + ...

- 3.1 Calculate the value of the TWELFTH term of the series (correct to TWO decimal places). (3)
- 3.2 Explain why this series converges. (1)
- 3.3 Calculate the sum to infinity of the series. (2)
- 3.4 What is the smallest value of n for which $S_{\infty} S_n < 1$? (5) [11]

- 2.1 Given the following geometric sequence: 30; 10; $\frac{10}{3}$; ...
 - 2.1.1 Determine n if the n^{th} term of the sequence is equal to $\frac{10}{729}$. (4)
 - 2.1.2 Calculate: $30+10+\frac{10}{3}+...$ (2)

(4)

[10]

(5) [**15**]

Derive a formula for the sum of the first n terms of an arithmetic sequence if the first term of the sequence is α and the common difference is d.

QUESTION 2

- 2.1 Given the quadratic pattern: 5; 10; 17; 26; ...
 - 2.1.1 Write down the next TWO terms of the pattern. (2)
 - 2.1.2 Determine the formula for the n^{th} term of the pattern. (4)
 - 2.1.3 Which term of the pattern will have a value of 1 765? (4)
- The first 24 terms of an arithmetic series are: 35 + 42 + 49 + ... + 196.
 - Calculate the sum of ALL natural numbers from 35 to 196 that are NOT divisible by 7.

- 3.1 6; 6; 9; 15; ... are the first four terms of a quadratic number pattern.
 - 3.1.1 Write down the value of the fifth term (T_5) of the pattern. (1)
 - 3.1.2 Determine a formula to represent the general term of the pattern. (4)
 - 3.1.3 Which term of the pattern has a value of 3 249? (4)

QUESTION 3

The first three terms of an arithmetic sequence are -1; 2 and 5.

- 3.1 Determine the n^{th} term, T_n , of the sequence. (2)
- 3.2 Calculate T_{43} . (2)
- 3.3 Evaluate $\sum_{k=1}^{n} T_k$ in terms of n. (3)

Given: $g(x) = \frac{6}{x + 2} - 1$

- (2)4.1 Write down the equations of the asymptotes of g.
- 4.2 Calculate:
 - (1)4.2.1 The y-intercept of g
 - (2) 4.2.2 The x-intercept of g
- Draw the graph of g, showing clearly the asymptotes and the intercepts with the 4.3 (3)
- Determine the equation of the line of symmetry that has a negative gradient, in the 4.4 (3) form y =
- Determine the value(s) of x for which $\frac{6}{x+2} 1 \ge -x 3$. 4.5 (2) [13]

QUESTION 4

4.1

Given: $f(x) = 2^{-x} + 1$

- (1)Determine the coordinates of the y-intercept of f.
- Sketch the graph of f, clearly indicating ALL intercepts with the axes as well as any (3) 4.2 asymptotes.
- Calculate the average gradient of f between the points on the graph where x = -2(3) 4.3 and x = 1.
- (1) If h(x)=3f(x), write down an equation of the asymptote of h. [8] 44

QUESTION 5

Given: $f(x) = x^2 - 5x - 14$ and g(x) = 2x - 14

- On the same set of axes, sketch the graphs of f and g. Clearly indicate all intercepts 5.1 with the axes and turning points.
- Determine the equation of the tangent to f at $x = 2\frac{1}{2}$. (2)5.2

(6)

The graph of $f(x) = a^x$, a > 1 is shown below. T(2; 9) lies on f.

5.1 Calculate the value of a.

(2)

5.2 Determine the equation of g(x) if g(x) = f(-x).

(1)

5.3 Determine the value(s) of x for which $f^{-1}(x) \ge 2$.

(2)

5.4 Is the inverse of f a function? Explain your answer.

(2) [7]

QUESTION 6

Given: $f(x) = \frac{1}{4}x^2, x \le 0$

- 6.1 Determine the equation of f^{-1} in the form $f^{-1}(x) = ...$ (3)
- On the same system of axes, sketch the graphs of f and f^{-1} . Indicate clearly the intercepts with the axes, as well as another point on the graph of each of f and f^{-1} . (3)
- 6.3 Is f^{-1} a function? Give a reason for your answer. (2) [8]

Below are the graphs of $f(x) = (x-4)^2 - 9$ and a straight line g.

- A and B are the x-intercepts of f and E is the turning point of f.
- C is the y-intercept of both f and g.
- The x-intercept of g is D. DE is parallel to the y-axis.

- 4.1 Write down the coordinates of E. (2)
- 4.2 Calculate the coordinates of A. (3)
- 4.3 M is the reflection of C in the axis of symmetry of f. Write down the coordinates of M.
- 4.4 Determine the equation of g in the form y = mx + c. (3)
- 4.5 Write down the equation of g^{-1} in the form y = ... (3)

The sketch below shows the graphs of $f(x) = \log_5 x$ and $g(x) = \frac{2}{x-1} + 1$.

- T and U are the x-intercepts of g and f respectively.
- The line y = x intersects the asymptotes of g at R, and the graph of g at V.

- 4.1 Write down the coordinates of U. (1)
- 4.2 Write down the equations of the asymptotes of g. (2)
- 4.3 Determine the coordinates of T. (2)
- 4.4 Write down the equation of h, the reflection of f in the line y = x, in the form y = ... (2)
- 4.5 Write down the equation of the asymptote of h(x-3).
- 4.6 Calculate the coordinates of V. (4)
- 4.7 Determine the coordinates of T' the point which is symmetrical to T about the point R. (2)
 [14]

- 5.1 The sketch below shows the graphs of $f(x) = x^2 2x 3$ and g(x) = x 3.
 - A and B are the x-intercepts of f.
 - The graphs of f and g intersect at C and B.

D is the turning point of f.

- 5.1.1 Determine the coordinates of C. (1)
- 5.1.2 Calculate the length of AB. (4)
- 5.1.3 Determine the coordinates of D. (2)
- 5.1.4 Calculate the average gradient of f between C and D. (2)
- 5.1.5 Calculate the size of OĈB (2)
- Determine the values of k for which f(x) = k will have two unequal positive real roots. (3)
- 5.1.7 For which values of x will $f'(x) \cdot f''(x) > 0$? (3)
- The graph of a parabola f has x-intercepts at x = 1 and x = 5. g(x) = 4 is a tangent to f at P, the turning point of f. Sketch the graph of f, clearly showing the intercepts with the axes and the coordinates of the turning point. (5)

The graphs of $f(x) = \frac{2}{x+1} + 4$ and parabola g are drawn below.

- C, the turning point of g, lies on the horizontal asymptote of f.
- The graph of g passes through the origin.
- B $\left(k; \frac{14}{3}\right)$ is a point on f such that BC is parallel to the y-axis.

- 5.1 Write down the domain of f. (2)
- 5.2 Determine the x-intercept of f. (2)
- 5.3 Calculate the value of k (3)
- 5.4 Write down the coordinates of C. (2)
- 5.5 Determine the equation of g in the form $y = a(x+p)^2 + q$. (3)
- 5.6 For which value(s) of x will $\frac{f(x)}{g(x)} \le 0$? (4)

The graph of $g(x) = a^x$ is drawn in the sketch below. The point S(2; 9) lies on g. T is the y-intercept of g.

- 5.1 Write down the coordinates of T. (2)
- 5.2 Calculate the value of a. (2)
- 5.3 The graph h is obtained by reflecting g in the y-axis. Write down the equation of h. (2)

- 6.1 On the 2nd day of January 2015 a company bought a new printer for R150 000.
 - The value of the printer decreases by 20% annually on the reducing-balance method.
 - When the book value of the printer is R49 152, the company will replace the printer.
 - 6.1.1 Calculate the book value of the printer on the 2nd day of January 2017. (3)
 - 6.1.2 At the beginning of which year will the company have to replace the printer? Show ALL calculations. (4)

QUESTION 6

6.1 Calculate how many years it will take for the value of a truck to decrease to 50% of its original value if depreciation is calculated at 15% per annum using the reducing-balance method.

(4)

QUESTION 7

A company bought a new machine for R500 000. After 3 years, the machine has a book value of R331 527. Calculate the yearly rate of depreciation if the machine was depreciated according to the reducing-balance method.

(3)

QUESTION 7

- 7.1 Diane invests a lump sum of R5 000 in a savings account for exactly 2 years. The investment earns interest at 10% p.a., compounded quarterly.
 - 7.1.1 What is the quarterly interest rate for Diane's investment? (1)
 - 7.1.2 Calculate the amount in Diane's savings account at the end of the 2 years. (3)

Given: $f(x) = 2x^3 - 5x^2 + 4x$

- 8.1 Calculate the coordinates of the turning points of the graph of f. (5) 8.2 Prove that the equation $2x^3 - 5x^2 + 4x = 0$ has only one real root. (3)
- 8.3 Sketch the graph of f, clearly indicating the intercepts with the axes and the turning points. (3)
- 8.4 For which values of x will the graph of f be concave up? (3) [14]

- 8.1 Determine the derivative of $f(x) = 2x^2 + 4$ from first principles. (4)
- 8.2 Differentiate:

8.2.1
$$f(x) = -3x^2 + 5\sqrt{x}$$
 (3)

8.2.2
$$p(x) = \left(\frac{1}{x^3} + 4x\right)^2 \tag{4}$$

8.3 The sketch below shows the graph of $h(x) = x^3 - 7x^2 + 14x - 8$. The x-coordinate of point A is 1. C is another x-intercept of h.

- 8.3.1 Determine h'(x). (1)
- 8.3.2 Determine the x-coordinate of the turning point B. (3)
- 8.3.3 Calculate the coordinates of C. (4)

- 8.1 Determine f'(x) from first principles if $f(x) = 4x^2$. (5)
- 8.2 Determine:

8.2.1
$$D_x \left[\frac{x^2 - 2x - 3}{x + 1} \right]$$
 (3)

8.2.2
$$f''(x)$$
 if $f(x) = \sqrt{x}$ (3) [11]

QUESTION 9

The sketch below represents the curve of $f(x) = x^3 + bx^2 + cx + d$. The solutions of the equation f(x) = 0 are -2; 1 and 4.

- 9.1 Calculate the values of b, c and d. (4)
- 9.2 Calculate the x-coordinate of B, the maximum turning point of f. (4)
- 9.3 Determine an equation for the tangent to the graph of f at x = -1. (4)
- 9.4 In the ANSWER BOOK, sketch the graph of f''(x). Clearly indicate the x- and y-intercepts on your sketch. (3)
- 9.5 For which value(s) of x is f(x) concave upwards? (2) [17]

The graph of $f(x) = -x^3 + 13x + 12$ is sketched below. A, B and D(-1; 0) are the x-intercepts of f. C is the y-intercept of f.

- 8.1 Write down the coordinates of C. (1)
- 8.2 Calculate the coordinates of A and B. (5)
- 8.3 Determine the point of inflection of g if it is given that g(x) = -f(x). (4)
- 8.4 Calculate the value(s) of x for which the tangent to f is parallel to the line y = -14x + c. (4)

QUESTION 9

Given:
$$f(x) = x^3 - x^2 - x + 1$$

- 9.1 Write down the coordinates of the y-intercept of f. (1)
- 9.2 Calculate the coordinates of the x-intercepts of f. (5)
- 9.3 Calculate the coordinates of the turning points of f. (6)
- 9.4 Sketch the graph of f in your ANSWER BOOK. Clearly indicate all intercepts with the axes and the turning points. (3)
- 9.5 Write down the values of x for which f'(x) < 0. (2)

- 8.1 Determine f'(x) from first principles if $f(x) = -x^2 + 4$. (5)
- 8.2 Determine the derivative of:

$$8.2.1 y = 3x^2 + 10x (2)$$

8.2.2
$$f(x) = \left(x - \frac{3}{x}\right)^2$$
 (3)

8.3 Given:
$$f(x) = 2x^3 - 23x^2 + 80x - 84$$

8.3.1 Prove that
$$(x-2)$$
 is a factor of f . (2)

8.3.2 Hence, or otherwise, factorise
$$f(x)$$
 fully. (2)

- 8.3.3 Determine the \hat{x} -coordinates of the turning points of f. (4)
- 8.3.4 Sketch the graph of f, clearly labelling ALL turning points and intercepts with the axes. (3)

Each passenger on a certain Banana Airways flight chose exactly one beverage from tea, coffee or fruit juice. The results are shown in the table below.

	MALE	FEMALE	TOTAL
Tea	20	40	60
Coffee	Ь	. c	80
Fruit juice	d	e	20
TOTAL	60	100	а

- 10.1.1 Write down the value of a. (1)
- 10.1.2 What is the probability that a randomly selected passenger is male? (2)
- 10.1.3 Given that the event of a passenger choosing coffee is independent of being a male, calculate the value of b. (4)

QUESTION 10

10.1 The events S and T are independent.

• P(S and T) =
$$\frac{1}{6}$$

$$P(S) = \frac{1}{4}$$

10.1.1 Calculate
$$P(T)$$
. (2)

10.2 A FIVE-digit code is created from the digits 2; 3; 5; 7; 9.

How many different codes can be created if:

- Research was conducted about driving under the influence of alcohol. Information obtained from traffic authorities in 54 countries on the methods that are used to measure alcohol levels in a person, are summarised below:
 - 4 countries use all three methods (A, B and C).
 - 12 countries use the alcohol content of breath (A) and blood-alcohol concentration (B).
 - 9 countries use blood-alcohol concentration (B) and certificates issued by doctors (C).
 - 8 countries use the alcohol content of breath (A) and certificates issued by doctors (C).
 - 21 countries use the alcohol content of breath (A).
 - 32 countries use blood-alcohol concentration (B).
 - 20 countries use certificates issued by doctors (C).
 - 6 countries use none of these methods.

Below is a partially completed Venn diagram representing the above information.

- 10.1.1 Use the given information and the Venn diagram to determine the values of d, e, f and g. (4)
- 10.1.2 For a randomly selected country, calculate:
 - (a) P(A and B and C) (1)
 - (b) P(A or B or C) (1)
 - (c) P(only C) (1)
 - (d) P(that a country uses exactly two methods) (1)

11.1 The letters of the word EQUATION are randomly used to form a new word consisting of five letters. How many of these words are possible if letters may not be repeated?

(2)

It is given that two events, A and B, are independent. $P(A) = \frac{2}{5}$ and P(B) = 0.35. Calculate P(A or B).

(4)

(2)

(3)

The cards below are placed from left to right in a row.

- In how many different ways can these 6 cards be randomly arranged in a row?
- In how many different ways can these cards be arranged in a row if the diamonds and hearts are placed in alternating positions?
- If these cards are randomly arranged in a row, calculate the probability that ALL the hearts will be next to one another.

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$A = P$$