	Question 1	
1.1	A V	
1.2	C \checkmark	
1.3	A \checkmark	
1.4	D V	
1.5	B $\sqrt{ }$	
1.6	A \checkmark	
1.7	C $\sqrt{ }$	
1.8	D \checkmark	
1.9	C $\sqrt{ }$	
1.10	B $\sqrt{ }$	
	Question 2	
2.1.1	$\begin{aligned} & 2 x^{2}-162 \\ & =2\left(x^{2}-81\right) \checkmark \\ & =2(x-9)(x+9) \checkmark \checkmark \end{aligned}$	3
2.1.2	$=(x-8)(x-8) \checkmark \checkmark$	2
2.2.1	$=12 x^{3}-36 x^{2}+60 x \checkmark \checkmark \checkmark \quad 4 x\left(3 x^{2}-9 x+15\right)$	3
2.2.2	$\begin{aligned} & =\frac{6 x^{3}}{2 x}-\frac{8 x^{2}}{2 x}+\frac{2 x}{2 x}+\frac{10}{2 x} \boldsymbol{J} \\ & =3 x^{2}-4 x+1+\frac{5}{x} \boldsymbol{J} \mathbf{V} \mathbf{V} \end{aligned}$	4
2.2.3	$\begin{aligned} & 2(x+3)^{2}+4(x-3)(x+5) \\ & \left.=\left(x^{2}+6 x+9\right)+4\left(x^{2}+2 x-15\right) \boldsymbol{V} \boldsymbol{V}\right) \\ & =6 x^{2}+20 x-42 \boldsymbol{V} \mathbf{V} \mathbf{V} \quad=2 x^{2}+12 x+18+4 x^{2}+8 x-60 \end{aligned}$	6
2.2.4	$\begin{array}{ll} & \frac{4 x^{2}-1}{4 x^{2}+4 x+1} \\ =\frac{(2 x+1)(2 x-1)}{(2 x+1)(2 x+1)} \quad \checkmark \checkmark \checkmark & \\ =\frac{2 x-1}{2 x+1} \quad \checkmark & \end{array}$	5
2.3	Calculate the value of: $a b c-a^{3}+b^{2}-c$ if $a=-2 ; b=3$ and $c=2$ $=(-2)(3)(2)-(-2)^{3}-(3)^{2}-2 \mathbf{V} \mathbf{V}$	4

	$=-12+8-9-2$	

Question 3		
3.1	$\begin{array}{lr} x(x-3)=0 \boldsymbol{\checkmark} & x^{2}-3 x=0 \\ x=0 \text { or } x-3=0 \boldsymbol{\checkmark} & \\ x=0 \text { or } x=3 \boldsymbol{\checkmark} \boldsymbol{\checkmark} & \end{array}$	4
3.2	$\begin{aligned} & x^{2}-x-x+1=x+5 \quad \boldsymbol{V} \end{aligned} \quad \begin{gathered} (x-1)^{2}=x+5 \\ x^{2}-3 x-4=0 \\ (x-4)(x+1)=0 \\ x-4=0 \text { or } x+1=0 \quad \checkmark \\ x=4 \text { or } \quad x=-1 \quad \checkmark \end{gathered}$	5
3.3	$\begin{array}{ll} \frac{2}{x} \times x+3 \times x=0 \times x \quad \checkmark & \frac{2}{x}+3=-1 ; x \neq 0 \\ 2+3 x=0 \quad \checkmark & 3 x=-2 \\ \frac{3 x}{3}=\frac{-2}{3} & \\ x=\frac{-2}{3} \end{array}$	4
3.4	The length of a rectangle is 6 cm more than its width. The area of a rectangle is $216 \mathrm{~cm}^{2}$. What are the dimensions of this rectangle let the width be x \therefore the length will be $x+6 \mathrm{~cm} \sqrt{ }$ $\therefore A=l \times b$ $216 \mathrm{~cm}^{2}=(x+6 \mathrm{~cm}) x \checkmark$ $\begin{gathered} 216 \mathrm{~cm}^{2}=x^{2}+6 x \mathrm{~cm} \\ x^{2}+6 x \mathrm{~cm}=216 \mathrm{~cm}^{2} \\ (x+18)(x-12)=0 \end{gathered}$ $x=-18 \text { or } x=12 \sqrt{ }$ Therefore, the width is 12 cm and the length is $18 \mathrm{~cm} \checkmark$	4
		17

Question 5		
5.1.1	Calculate its volume .	3
	$V=\pi r^{2} h \mathbf{V}$	
$V=\pi(1,8)(2,5) \boldsymbol{V}$		
$V=4,5 \pi c m^{2} \mathbf{V}$		

5.1 .2	Calculate its surface area.	3
	$S A=2 \pi r^{2} \boldsymbol{V}$	
	$S A=2 \pi(1.8)^{2} \boldsymbol{\checkmark}$	
	$S A=6,48 \pi c m^{2} \boldsymbol{V}$	

5.2 .1	Triangular prism	1
5.2 .2	Volume $=\frac{1}{2} \times 6 \times 6 \times 15 \mathrm{~cm}^{3} \boldsymbol{V} \mathbf{V}$ $=270 \mathrm{~cm}^{3} \mathbf{V} \mathbf{V}$	4
5.2 .3	TSA $=2\left(\frac{1}{2} \times 6 \times 6\right) \mathrm{cm}^{2}+2(15 \times 6) \mathrm{cm}^{2} \mathbf{V} \mathbf{V}$ $=216 \mathrm{~cm}^{2} \mathbf{V}$	3
		$\mathbf{1 4}$

Question 6		
6.1	$\begin{aligned} \text { Volume } & =6 \times 6 \times 13,9 \mathrm{~cm}^{3} \quad \mathbf{V} \\ & =500,4 \mathrm{~cm}^{3} \quad \boldsymbol{V} \\ & =500,4 \mathrm{ml} \quad \boldsymbol{V} \end{aligned}$	3
6.2	$\begin{aligned} \text { Volume } & =8 \times 8 \times{\text { height } \mathrm{cm}^{3}}^{\text {height }} \times 8 \times 8=500 \mathrm{~cm}^{3} \\ \text { height } & =\frac{500 \mathrm{~cm}^{3}}{8 \times 8} \\ \text { height } & =7,8125 \mathrm{~cm} \end{aligned}$ The height should be 7,9 since 7,8 will give a volume of less than 500 ml .	3
Question 7		
7.1	Open circle means not included. In terms of the context - at zero seconds there is no cost charged.	
7.2	Company A: Charges the same rate for a minute, and then the charge increases as the time increases. For 4 minutes the charge went from R2,50 to a total of R5 four minutes after the first minute. So then the rate per minute will be: $\frac{5,00-2,50}{4}=\frac{2,50}{4}=0,625=62,5 c=63 c$ per minute starting from R2,50. Company B: The charges increases as the time increases, as soon as you reach 6 minutes you then pay a flat rate for your call. For 6 minutes the charge went from R5 to a total of R7,50. \checkmark So then the rate per minute will be: $\frac{7,50-5}{6}=\frac{2,50}{6}=41,6=42$ cents a minute, starting from R5.	4
7.3	$\mathrm{A}:$ Cost $=\mathrm{R} 2,50+8(\mathrm{R} 0,625)$ $\mathbf{~}=\mathrm{R} 7,50$ Ј B: Cost $=$ R7,50	3
7.4	$\operatorname{Cost} \mathrm{A}=\left\{\begin{array}{l}R 2,50 \text { if } m<1 \\ R 2,50+0,63 m \text { if } m \geq 1 \quad \checkmark \boldsymbol{V}\end{array}\right.$	4

	$R 5+0,42 m$ if $m<6$ $R 7,50$ if $m \geq 6 \quad$ Cost $\mathrm{B}=$ Where m is the number of minutes spoken on the phone	
7.5	For 15 minutes: Cost $\mathrm{A}=\mathrm{R} 2,50+14(0,63) \quad \checkmark \quad=\mathrm{R} 11,32 \quad \checkmark$ $\operatorname{Cost} \mathrm{~B}=\mathrm{R} 7,50 \quad \checkmark$	3
		$\mathbf{1 4}$

