

PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 10

PHYSICAL SCIENCE: CHEMISTRY (P2)

COMMON TEST

MARCH 2019

MARKS: 50

TIME: 1 hour

This question paper consists of 6 pages and a Periodic Table.

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of FIVE questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Number the answers correctly according to the numbering system used in this question paper.
- 3. Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 4. You may use a non-programmable calculator.
- 5. You may use appropriate mathematical instruments.
- 6. YOU ARE ADVISED TO USE THE ATTACHED DATA SHEET.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your FINAL numerical answers to a minimum to TWO decimal places.
- 9. Give brief motivations, discussions, et cetera where required.
- 10. Write neatly and legibly.

Downloaded from Stanmorephysics.com

Copyright Reserved Please Turn Over

QUESTION 1: MULTIPLE- CHOICE

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write down only the letter (A-D) next to the question number (1.1-1.3) in the answer book, for example 1.5 A.

1	.1	Silicon	ie	classified	20	•
1.	. 1	OHICOH	10	Classifica	$\alpha >$	a

- A. Metal
- B. Non-Metal
- C. Semi-metal
- D. Heterogeneous mixture
- 1.2 The tendency of an atom in a molecule to attract the bonding electrons is known as the ...
 - A. Atomic radii
 - B. Electron affinity
 - C. Electronegativity
 - D. Ionization energy (2)
- 1.3 The valency of sulphur in the elemental form is ...
 - A. 2
 - B. 3
 - C. 6
 - D. 16

(2)

(2)

[6]

QUES DOWNloaded from Stanmorephysics.com

2.1 Write down the definition of a homogeneous mixture.	(2)
---	-----

2.2 Study the following table and answer the questions that follow.

Α	Iron filings and sand	В	CC14
С	Mg	D	Al ₂ O ₃
E	Water	F	Oil
G	Sodium sulphate		

2.2.1	Identify the substance that is in the elemental form in the table.	(1)
2.2.2	Write down the name of substance B.	(1)
2.2.3	What is the name of substance D.	(1)
2.2.4	Write down the chemical formula for substance G.	(2)
2.2.5	Name a suitable technique that can be used for the separation of substance A into its components.	(1)
Equal	volumes of E and F are mixed together in a beaker.	
2.2.6	Is this a homogeneous or heterogeneous mixture? Give a reason.	(2)
2.2.7	Describe a simple method by which this mixture can be separated into its components in the laboratory.	(2) [12]

Please Turn Over

QUESTION 3

Grade 10 learners conducted an experiment to determine the heating curve of a substance under standard atmospheric pressure. The results obtained are shown in the graph below.

- 3.1 State the definition of the freezing point of a substance. (2)
- 3.2 Write down phases of the substance at point **W**. (2)
- 3.3 Complete the following statement using one of the following terms:

GREATER THAN; LESS THAN or EQUAL TO. (Write down only the answer in your answer book.)

"The average forces of attraction between the particles at point **X**are ______ the average forces of attraction between the particles
at point **W**."

(1)

- 3.4 For the above experiment write down the controlled variable (1)
- 3.5 Between time 7,5 and 15 minutes, the graph shows no change in temperature. Explain this observation. (2)
- 3.6 Is the above substance water? Write only YES or NO.Give a reason (2)[10]

QUESTION 4

4.1	4.1.1 State th	Downloaded ne definition of ionization end	from Stanmor ergy.	rephysics.com					
	4.1.2 Explain	why ionization energy incre	ases on going across a period	I. (3)					
4.2	For each of the REMAINS TH	ASES or							
	4.2.1 How do		lements change on going acro	oss (1)					
4.0	4.2.2 How do group?	(1)							
4.3	4.3.1 How m	(1)							
	4.3.2 How m	(1)							
4.4	What is the na	ame of the group in which so	odium is found?	(1)					
4.5	The following abundance.								
		Isotopes	Percentage Abundance						
		¹² C	98,89%						
		¹³ C	1,11%						
	If the atomic r	mass number of ¹² C is 12,01 on is 12,00 g.mol ⁻¹ calculate	1 g.mol ⁻¹ and the relative aton the atomic mass number of ¹³	nic C. (3)					
4.6	Write down th	m. (2) [15]							
QUES	STION 5								
5.1	Write down th	(2)							
5.2	2 Draw Lewis structures for the following substances.								
	5.2.1 NH ₃			(2)					
	5.2.2 MgBr ₂			(2)					
5.3	What is the na	pipe? (1) [7]							

TOTAL MARKS: [50]

Copyright Reserved

	18 }	E 5	4 0	S e	48	Ą	9	36	Ϋ́	\$	2	Xe	131	98	R		74		175	103	Ľ	
	17 (VII)			т 5	17			35			53			85			-		173	-	٩ ۷	
	<u>3</u>		æ	3,5 O 1 0,4	2 4	3'0 ℃ \$'2	32	34	2,4 Se 2,8	79	52	2,5 T C	128	84	0,5 O O S,5		69	<u> </u>	169	101	Md	
	1 5	·	7	2° 5 2° 5 3°0	t 4		31	33		75	51		122	83	6,1 0,5	209	89	i i	167 1	100	Fn	
	4 €	·	9	2,5 C) 5	14		28	32			20			82		207	67	Ĩ	. 2 5	66	Es	
PERIODIC TABLE OF ELEMENTS	€ €		1	0,s W ±	- 13	1,5 Ae		31		70	49		115	25		204	99	2	<u>វ</u> ត	86	Ċ	
ELET	12							30	4,6 Zn			β Ο <u>1</u> '1	112	80	Ηď	201	65	<u>ح</u>	159	97	BK	
LEOF	7							29	6,¹ Cu	63,5	47	e, P	108	79	Au	197	64	P.S	157	96	Ca	
C TAB	10		loqu	Simbool		mass	nassa		8,r			2,2 Pd					63	ū	152	95	Am	
RIODIA	Ø	number ge <i>tal</i>	i	+	_	elative atomic mass	atiewe atoommassa		8'L			2,2 R					62	SE	150	94	Pu	
		Atomic number <i>Atoomgetal</i> ↓		9,1 D.S. 2,5	•				8'i			2,2 Ru				190	61	P		93	₽ Z	
TABLE 3: THE	^		ivítv	witeit		Approximate	Benaderde re		<u>5'ı</u>			6,1 TC			Re		09	N N	4	92	-	238
TABLE	9	KEYISLEUTEL	Electronegativity	Elektronegatiwiteit		Аррг	_		ئ 9'۱			8,1 —			3	184	59	4	141	9	Ра	
	ιĊ	KEY/SI	Elect	Elektr					9'l								28	C	4	6	f	232
	4								<u>3'↓</u>			Þ 'L	\downarrow		9'L	_	 <u> </u>	\neg				
	က			4	1				1,3 SC		;	Z'I					 					
	~ (ſ	4 (e,r დი		Z'I			0'L			0'Ł			6'0	•	e,0 Ra S	277				
	- =	- ⊥ -) <u>+</u>	1	e,0 S	23		8'0 ¥	39		8,0 5	98		7,0 S	133	<u>፡</u> ረ'ዐ					

Physical Sciences

education

Department: Education

PROVINCE OF KWAZULU-NATAL

PHYSICAL SCIENCES P2 (CHEMISTRY)

MARKING GUIDELINE

COMMON TEST

MARCH 2019

SENIOR CERTIFICATE NATIONAL

GRADE 10

MARKS: 50

TIME: 1 hour

This marking guideline consists of 4 pages.

SECTION A

QUESTION 1

1.1 C < <

3

3

<u>@</u>

1.3

> ×

QUESTION 2

Homogeneous mixture is a mixture of uniform composition and in which all components are in the same phase 🗸

2.1

2.2.1 A / magnesium / iron filings ✓ (any one)

ownloaded from Stanmorephysics.com

€

3

 $\widehat{\Xi}$

 \in

3

 \in

 $\overline{0}$

2.2.2 Carbon tetrachloride 🗸 🗸

2.2.3 Aluminum (III) oxide <

2.2.4 Na₂SO₄ ✓ ✓

2.2.5 Magnetic Attraction <

2.2.6 Heterogeneous < On mixing the substance exists as two phases <

dense (oil) component will be a top layer <, would be poured out thus 2.2.7 Decanting whereby the mixture is allowed to settle and the less

Pour the mixture into a separating funnel. < leaving behind water <

Open the tap. The more dense water will flow out first <. Close the tap. The oil is left behind

(S)

Copyright Reserved

Copyright Reserved

QUESTION 3		
		Grade IO- Memorandora
0 > N	4.5	
M ¹³ c v % abundar		

March 2019 Common Test

Physical Sciences

Physical Sciences

- $\frac{\omega}{2}$ The freezing point is the temperature at which a liquid changes to a solid (by the removal of heat energy). $\checkmark\checkmark$
- 3.2 Liquid and gaseous phases. ✓ ✓
- ω LESS THAN

 $\widehat{\Xi}$

3

 $\widehat{\Sigma}$

 $\widehat{\Xi}$

Atmospheric pressure <

3.4

- 35 At time 7,5 to 15 minutes
- Stage whereby a solid is converted to a liquid by adding energy (heat).
- Energy (heat) added is absorbed ✓ by particles to increase vibrations / internal energy of particles. <
- <u>კ</u> No ✓, the boiling point is not equal 100°C✓or melting point is not equal to 0°C. **[**2)

QUESTION 4

4. 4.1.1 The ionization energy is the energy needed to remove a mole of electron(s) from a mole of gaseous atoms. ✓✓

3

(2)

- 4.1.2 The number of protons increases <, electrons are entering the same energy level <, thus force of attraction between electrons and the nucleus increases. <
- 4.2
- 4.2.1 Increases ✓
- 4.2.2 Increases ✓
- 4.3.1 22 V

4.3

4.3.2 11 ~

4.4

Alkali metals ✓

 $\widehat{\Xi}$

3

3

 Ξ

3

ω

4
Grade 10- Memorandum

March 2019 Common Test

12,00 Σ.Α.Σ Σ.Α.Σ M'-c x % abundance 12,011x 98,89~ 100% 100% M'~c x % abundance M13c x 1,11%~ 100% 100%

M13℃ II 11,999 (12) g.mol⁻¹

<u>ω</u>

1s²2s²2p⁶3s²3p⁵ ✓ ✓ <u>7</u>2

QUESTION 5

4 6

 \mathfrak{D}

<u>5</u> Covalent bond is defined as the sharing of electrons between atoms to form molecules. $\checkmark\checkmark$

 $\widehat{\Sigma}$

5.2.1 Ξ ;Ζ;_Ξ ...

5 2

- 5.2.2 ፴ Μg φ × <
- Metallic bond. ✓

ဌာ

TOTAL MARKS: [50]

33

 $\overline{\mathcal{O}}$