

GAUTENG PROVINCE

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION

2019

10601

MATHEMATICAL LITERACY

PAPER 1

MARKS
: 150
TIME: 3 hours
13 pages +1 answer sheet with an addendum of 4 pages

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION

MATHEMATICAL LITERACY

PROOFREAD SIGNATURE	\square	DATE
PROOFREAD SIGNATURE	\square	DATE

INSTRUCTIONS AND INFORMATION

1. This question paper consists of FIVE questions. Answer ALL the questions.
2. ANSWER SHEET: Write your name in the spaces provided and hand in your ANSWER SHEET with your ANSWER BOOK.
3. Use the ADDENDUM as follows:

- Use ANNEXURE A to answer Question 2.1
- Use ANNEXURE B to answer Question 4.1
- Use ANNEXURE C to answer Question 4.2

4. Number your answers correctly according to the numbering system used in this question paper.
5. An approved calculator (non-programmable and non-graphical) may be used unless stated otherwise.
6. Show ALL calculations clearly.
7. Round-off ALL final answers appropriately according to the given context, unless stated otherwise.
8. Indicate units of measurement, where applicable.
9. Start EACH question on a NEW page.
10. Write neatly and legibly.

END

QUESTION 1

1.1 The graph below represents the monthly expenses for the Jacobs family household.

Study the graph above and answer the questions that follow.
1.1.1 Identify the type of graph used above.
1.1.2 Calculate the total amount that the Jacobs household needs to budget for each month.
1.1.3 Arrange the amounts of the budgeted items in descending order.
1.1.4 Measure the length of the "School Fees" bar in mm.
1.1.5 Mrs Jacobs earns a nett monthly income of R11 335 and Mr Jacobs earns a monthly nett income of R14 363.
Determine the total nett monthly income for the Jacobs household.
1.1.6 Define the term nett income.
1.2 Mr Jacobs wants to buy a new luggage bag for his Kruger National Park holiday. He found the two advertisements below while searching the internet.

OCTOLITE CARRY ON	AMERICAN TOURISTER
Scale: 1:50	Scale: 1:75
Selling price:	R1 999 (15\% VAT excluded)

Study the two options above and answer the questions that follow.
1.2.1 Write out the acronym VAT in full.
1.2.2 Calculate the total VAT charged on the American tourister.
1.2.3 Write the scale in words for the Octolite Carry On.
1.2.4 Determine the number of wheels on the American Tourister.
1.2.5 Define selling price in the above context.
1.3 The pie chart below indicates the percentage of people who visited the Kruger National Park from five different South African Provinces. In 2018 an estimated 1659793 people visited the Kruger National Park from these five different provinces.

Study the pie chart and information above and answer the questions that follow.
1.3.1 Write down the total number of visitors to the Kruger National Park for 2018 in words.
1.3.2 Identify the province with the highest number of visitors to the Kruger National Park in 2018.
1.3.3 Calculate the total number of visitors from KwaZulu-Natal to the Kruger National Park in 2018.
1.3.4 Write as a ratio, the percentage of visitors from the Western Cape to the percentage of visitors from the Eastern Cape, in the simplest form.
1.3.5 Determine the probability of randomly selecting a visitor to the Kruger National Park from the data provided above who comes from the Free State.

QUESTION 2

2.1 Mr Fortune receives a statement from the bank every month with regards to the vehicle he purchased. The cash price of the vehicle was R151 140 but since Mr Fortune didn't have enough money in cash, he bought the car on hire-purchase. An example of one of his statements is given in ANNEXURE A. Study ANNEXURE A and answer the questions that follow.
2.1.1 Write down the street name used on this statement.
2.1.2 Calculate the number of days that this statement period includes.
2.1.3 How many instalments has Mr Fortune paid, according to this statement?
2.1.4 The NCA service fee includes 15% VAT. Calculate the VAT charged on this service fee amount.
2.1.5 Show how the outstanding capital balance value of R71 350,23 was calculated.
2.1.6 Calculate the total amount of money that Mr Fortune will pay for the car over the full term of the loan.
2.1.7 Hence, calculate the total amount of money that Mr Fortune would have saved if he bought the car for cash.
2.2 Kevin washes cars at a carwash over weekends to save money for his December holiday.

Kevin draws the following table in his planning:
TABLE 1: Income from washing cars

Month	June	July	Aug	Sept	Oct	Nov
Number of cars	11	17	A	33	20	28
Income (in Rand)	495	765	1170	1485	B	1260

Use the table to answer the following questions.
2.2.1 Define the term income.
2.2.2 Complete the following formula to calculate the income received per car washed.

$$
\begin{equation*}
\text { Income }(\text { in Rand })=\ldots \times \ldots \tag{2}
\end{equation*}
$$

2.2.3 Is this an example of direct or indirect proportion? Explain your answer.
2.2.4 Calculate the missing values of \mathbf{A} and \mathbf{B} in the table.
2.2.5 Calculate his total income from June to November.
2.3 Kevin and Joan have decided to visit Phuket (Thailand) during their December holiday.
2.3.1 Kevin and Joan are planning on taking R10 000 each as spending money. Convert their total spending money to Thai Baht.
Use the exchange rate: R0,438 per Thai Baht
2.3.2 Joan deposited R15 000 in an account at More Money Bank, 2 years ago. The bank charged $7,8 \%$ simple interest per annum. Calculate the total amount the bank paid out after two years.
2.3.3 The holiday package did not include drinks and transport on Phuket island.

TABLE 1 below shows the costs of drinks.
TABEL 1: Costs of drinks

	Cost per person (in Rand)
Drinks	R12, 00 per drink

Kevin and Joan agreed that each person may have one drink three times daily during their 7 day stay at the B-Lay Tong Phuket Hotel.
Calculate how much (in Rand) they will spend on drinks for their entire stay.

QUESTION 3

3.1 Magic cubes were popoular 3D puzzle toys in the 1980s.

Study the two magic cubes below and anwer the questions that follow.

3.1.1 Calculate the radius of the cylindrical magic cube if the diameter is 67 mm .
3.1.2 Calculate the total volume of the cylindrical magic cube in mm^{3}.

The following formula may be used:
Volume of cylinder $=\times$ radius \times radius \times height, where $=3,142$
3.1.3 Calculate the total surface area of the magic cube in mm^{2}.

The following formula may be used:
Total surface area $=$ side \times side $\times 6$
3.2 The table below represents the time taken by a player and teams to solve a magic cube. Study the table below and answer the questions that follow.

TAKE NOTE:

- Player time is the time taken by a player to solve the magic cube once.
- Team time is the total time taken by all players in a team to solve a magic cube once.

Rank	Players	Player time	Rank	Team	Team time
1	Zoë	10,8 seconds	1	A	6 minutes 53 seconds
2	Enrique	13,6 seconds	2	B	7 minutes 44 seconds
3	Thabang	16,1 seconds	3	C	9 minutes 11 seconds
4	Koos	23,1 seconds	4	D	9 minutes 17 seconds
5	Bongani	23,2 seconds	5	E	9 minutes 23 seconds
6	Lee	23,9 seconds	6	F	9 minutes 28 seconds
7	Thulani	24,3 seconds	7	G	9 minutes 41 seconds
8	Liam	24,8 seconds	8	H	9 minutes 49 seconds
9	Gregory	26,7 seconds	9	I	9 minutes 59 seconds
10	Olivia	29,3 seconds	10	J	10 minutes 13 seconds

[Source adapted from: www.mindgamers.redbull.com]

3.2.1 Convert the A team's time taken to solve the magic cube to seconds.

3.2.2 Calculate the total time taken by the ten players to solve the magic cube.

Give your answer in minutes and seconds.
3.3 The chocolate below was given to all participants at the competition.

Study the diagrams below and answer the questions that follow.

3.3.1 Calculate the total area of all the rectangular sides of the chocolate pack.

You may use the following formula:
Area $=$ length \times Width
3.3.2 Calculate the perimeter of one triangle in mm.
3.4 Study the ingredients below of how to make fatcakes and answer the questions that follow.

INGREDIENTS (Makes 24)

- cups of flour
- 2 teaspoons salt
- 2 tablespoons sugar
- 1 packet yeast
- Lukewarm water
- Cooking oil (for frying)

3.4. If one cup $=250 \mathrm{ml}$, calculate the total amount of flour used to make 48 1 fatcakes in ml .
3.4. In the cooking instructions, it states that the oil in the pan must be heated to
$2 \quad 375{ }^{\circ} \mathrm{F}$.
Convert $375{ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$. Round your answer off to the nearest ten.
The following formula may be used:

$$
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathbf{F}-32^{\circ}\right) \div \mathbf{1 , 8}
$$

3.4. How many tablespoons of sugar will be needed to make 72 fatcakes.

QUESTION 4

4.1 From Johannesburg, Kevin and Joan will fly to the Kruger National park. Refer to Annexure B in the Addendum to answer the following questions.
4.1.1 In which general direction is Hoedspruit from Johannesburg?
4.1.2 How long will it take Kevin and Joan to travel from Johannesburg to Phalaborwa per flight?
4.1.3 If Kevin and Joan fly from Johannesburg Airport at $06: 59 \mathrm{am}$, at what time will they arrive at Phalaborwa airport?
4.1.4 The average speed of an Airbus A380 is $900 \mathrm{~km} / \mathrm{h}$. If it takes 50 minutes for the Airbus to travel from Johannesburg to Nelspruit, determine the distance it travels.

You may use the formula:
4.1.5 Determine the probability of randomly selecting a 1 hour flight. Give your answer as a percentage.
4.2 Study the seating plan of an airplane on ANNEXURE C and answer the questions that follow.
4.2.1 How many exit doors are indicated on the seating plan?
4.2.2 Write down the row numbers of the Economy Plus class seats that have in-seat power.
4.2.3 The actual length of the airplane (from the cockpit to the end of the passenger cabin) is given as 50 m . If the scale of the seating plan is $1: 200$, calculate the length of the airplane on the seating plan in mm .

END

QUESTION 5

5.1 The data in the table below represent the distance (in km) that the learners from Exhibition High School walked to school the morning before a Mathematical Literacy test and the marks (out of 50) that they obtained for the test.

Use the data below to answer the questions that follow.
TABLE 2 : Distance (in km) travelled by learners

$\mathbf{0 , 2}$	$\mathbf{0 , 5}$	$\mathbf{0 , 3}$	$\mathbf{1 , 2}$	$\mathbf{0 , 2 5}$
$\mathbf{0 , 7 5}$	$\mathbf{1 , 3}$	$\mathbf{3}$	$\mathbf{1 , 2}$	$\mathbf{1 , 8}$
$\mathbf{2 , 4}$	$\mathbf{1 , 5}$	$\mathbf{0 , 2}$	$\mathbf{0 , 8}$	$\mathbf{2 , 6}$
$\mathbf{3}$	$\mathbf{1 , 4}$	$\mathbf{0 , 7 5}$	$\mathbf{0 , 5}$	$\mathbf{1 , 2}$
$\mathbf{3 , 2}$	$\mathbf{0 , 8}$	$\mathbf{0 , 3}$	$\mathbf{1}$	$\mathbf{1 , 8}$

TABLE 3 : Marks obtained for the test

49	$\mathbf{3 8}$	$\mathbf{3 7}$	$\mathbf{3 0}$	$\mathbf{3 9}$
$\mathbf{3 4}$	$\mathbf{2 9}$	$\mathbf{1 9}$	$\mathbf{2 7}$	$\mathbf{2 5}$
20	28	$\mathbf{4 3}$	$\mathbf{3 3}$	$\mathbf{4 1}$
15	25	$\mathbf{3 8}$	$\mathbf{4 0}$	$\mathbf{3 0}$
$\mathbf{1 8}$	$\mathbf{3 0}$	$\mathbf{3 9}$	$\mathbf{2 8}$	$\mathbf{2 8}$

5.1. Identify the SECOND shortest distance walked by a learner.

1
5.1. Determine the highest mark scored by a learner.

2
5.1. Name ONE data collection instrument used to collect this data.
5.1. Determine the median of the test marks.

4
5.1. Determine the mode of the test marks.

5
5.1. Calculate the mean mark for this test.

6
5.1. Is the data in the table regarding the distance travelled by learners an example of 7 continuous or descrete data?
5.2 Use the distance values from the table above to complete the given frequency table on the ANSWER SHEET at the back of this question paper. Hand in this ANSWER SHEET with your ANSWER BOOK.

5.3 Study the 5-number summary below to calculate the Interquartile Range (IQR) for the marks obtained by these learners.

Minimum mark	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$	Maximum mark
15	26	30	38	49

5.4 Calculate the percentage of learners who failed the test if the pass mark for the test is 25 out of 50 .
5.5 Refer to the data in the table regarding the distances walked and marks scored by learners on the previous page to answer questions below.
5.5. Determine the probability of randomly selecting a learner who walked less 1 than 1 km on the day of the test.
5.5. Determine the probability of randomly selecting a learner who scored more 2 than 35 out of 50 for the test. Write your answer as a decimal.

ANSWER SHEET
Name: \qquad GR 12

QUESTION 5.2

Distance (in km)	Tally	Frequency		
$0-0,5$				
$0,6-1$				
$1,1-1,5$				
$1,6-2$				
$2,1-2,5$				
$2,6-3$				
$3,1-3,5$				
TOTAL:				

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION
 2019

4 pages

MATHEMATICAL LITERACY (Paper 1) ADDENDUM 10601/19

ANNEXURE A

Question 2.1

Transactions	Date	Debits / Credits	Outstanding Capital Balance
BALANCE BROUGHT FORWARD	$2018 / 12 / 18$		$73613,74 \mathrm{DR}$
DEBIT ORDER	$2018 / 12 / 31$	$2967,23 \mathrm{CR}$	$70646,51 \mathrm{DR}$
INTEREST	$2019 / 01 / 01$	$703,72 \mathrm{DR}$	$71350,23 \mathrm{DR}$
NCA SERVICE FEE	$2019 / 01 / 01$	$* 57,50 \mathrm{DR}$	$* 71407,73 \mathrm{DR}$
REBATE INTEREST	$2019 / 01 / 01$	$1,18 \mathrm{CR}$	$71406,55 \mathrm{DR}$
BALANCE CARRIED FORWARD	$2019 / 01 / 17$		$71406,55 \mathrm{DR}$
*Transactions include VAT			

ANNEXURE B

Question 4.1

Downloaded from Stanmorepfysics.com
[1]

ANNEXURE C

Question 4.2 - Interior of the Airbus A380

-

GAUTENG DEPARTMENT OF EDUCATION

PREPARATORY EXAMINATION

2019
MARKING GUIDELINES

MATHEMATICAL LITERACY PAPER 1 (10601)

Codes	Explanation
M	Method
MA	Method with Accuracy
CA	Consistent Accuracy
A	Accuracy
C	Conversion
D	Define
J	Justification / Reason / Explain
S	Simplification
RT / RD / RG	Reading from a table OR a graph OR a diagram OR a map OR a plan
F	Choosing the correct formula
SF	Substitution in a formula
O	Opinion
P	Penalty, e.g. for no units, incorrect rounding-off, etc.
R	Rounding-off
NP	No penalty for rounding-off OR omitting units

KEY TO TOPIC SYMBOL:
F = Finance; $\mathbf{M}=\mathbf{M e a s u r e m e n t ; ~} \mathbf{M P}=$ Maps, Plans and other representations;
DH = Data Handling; $\mathbf{P}=$ Probability
10 pages

GAUTENG DEPARTMENT OF EDUCATION PREPARATORY EXAMINATION

MATHEMATICAL LITERACY
 (Paper 1)

MARKING GUIDELINES

QUESTION 1

Answer only full marks.

NPR

Q	Answer	Explanation	Level
1.1.1	Bar Graph $\checkmark \checkmark$ O	2 O correct type of graph	DH1
1.1.2	$\begin{aligned} & \text { Total budget per month } \\ & =\text { R6 } 000+\text { R2 } 500+\text { R2 } 500+\mathrm{R} 1400+\mathrm{R} 3000 \\ & \text { + R4 } 000+\mathrm{R} 2500+\mathrm{R} 3000 \checkmark \mathrm{RT} \\ & =\text { R24 } 900 \checkmark \mathrm{~A} \end{aligned}$	1 RT reading all correct values 1A total budget	F1
1.1.3	R6 000; R4 000; R3 000; R3 000; R2 500; R2 500; R2 500; R1 $400 \checkmark \checkmark$ A	2A All values in the correct order.	DH1
1.1.4	$12 \mathrm{~mm} \checkmark \checkmark \mathrm{~A}$	2 A for correct measurement in mm Measure on final copy	M1
1.1.5	$\begin{aligned} \text { Total nett income } & =\text { R11 } 335+\mathrm{R} 14363 \checkmark \mathrm{M} \\ & =\text { R25 } 698 \checkmark \mathrm{~A} \end{aligned}$	1 M for adding correct values 1A total net income	F1
1.1.6	Income received after deductions $\checkmark \checkmark \mathrm{A}$ OR Take home pay OR Gross income - Deductions	2A income after deductions	F1
1.2.1	Value Added Tax $\checkmark \checkmark$ A	2A Value Added Tax	F1
1.2.2	$\begin{aligned} \text { VAT } & =\text { R1 } 999 \times 15 \% \checkmark \mathrm{M} \\ & =\text { R299,85 } \end{aligned}$	1M for multiplying by 15% 1A calculating VAT	F1
1.2.3	One unit on the picture / diagram represents fifty units in reality $\checkmark \checkmark \mathrm{O}$	2 O for correct wording	MP1
1.2.4	4 wheels $\checkmark \checkmark$ A	2A correct number of wheels (2)	M1
1.2.5	The price at which the shop sells a product/bag to the public / customers. $\checkmark \checkmark \mathrm{O}$	2 O correct definition in context	F1

Q	Answer	Explanation	Level		
1.3.1	One million six hundred and fifty-nine thousand seven hundred and ninety-three. $\checkmark \checkmark \mathrm{O}$	2 O correct wording	(2)	1DH	(2)
:---					

QUESTION 2

Q	Answer	Explanation	Level
2.1.1	Happy Life Street $\checkmark \checkmark$ RT	2RT correct street name	F1
2.1.2	$\begin{aligned} & \text { Number of days } \\ & =14 \text { days }+17 \text { days } \checkmark \mathrm{M} \\ & =31 \text { days } \checkmark \mathrm{CA} \end{aligned}$	1 M for adding correct values 1CA for number of days	F1
2.1.3	Number of instalments paid $\begin{aligned} & =72-28 \checkmark \mathrm{MA} \\ & =44 \checkmark \mathrm{~A} \end{aligned}$	1MA subtracting correct values 1A for number of instalments	F1
2.1.4	$\begin{aligned} & \checkmark \mathrm{RT} \\ & \\ & \mathrm{VAT}=\mathrm{R} 57,50 \times \frac{15}{115} \checkmark \mathrm{M} \\ &=\mathrm{R} 7,50 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \mathrm{VAT} & =\mathrm{R} 57,50 \times \\ & =\mathrm{R} 50,00 \end{aligned}$ R57,50 - R50,00 = R7,50 OR $=\mathrm{R} 50,00$ $\mathrm{R} 57,50-\mathrm{R} 50,00=\mathrm{R} 7,50$	1RT for R57,50 1M for multiplying by $\frac{15}{115}$ or or dividing by 1,15 1CA VAT value	F2
2.1.5	```\checkmarkRT \checkmarkM R70 646,31 + R703,72 =R71 350,23 OR R73 613,74 - R2967,23 + R703,72 = R71 350,23```	1RT correct values 1 M adding correct values (2)	F1
2.1.6	Total amount $\begin{aligned} & =72 \times \mathrm{R} 2967,23 \checkmark \mathrm{M} \\ & =\mathrm{R} 213640,56 \quad \checkmark \mathrm{CA} \end{aligned}$	1RT correct values from table 1M multiplying value by 72 1CA total amount	F2

Q	Answer	Explanation	Level
2.1.7	$\begin{aligned} & \text { Money saved } \\ & \checkmark \mathrm{RT} \\ & =\mathrm{R} 213640,56-\mathrm{R} 151140 \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 62500,56 \checkmark \mathrm{CA} \end{aligned}$	CA from Q2.1.6 1RT correct value 1 M subtracting correct values 1CA amount of money saved	F2
2.2.1	$\checkmark \mathrm{O}$ Money received especially on a regular basis for work or through investments. $\checkmark \mathrm{O}$	10 money received 10 for work or investments	F1
2.2.2	$\begin{array}{cc} \checkmark \mathrm{A} & \checkmark \mathrm{~A} \\ \text { Income }=\mathrm{R} 45 \times \text { number of cars washed } \end{array}$	1A R45 1A number of cars	F1
2.2.3	Direct $\checkmark \mathrm{A}$ As the one value increases, the other value increases. $\checkmark \mathrm{O}$	1A Direct 10 correct reason	F1
2.2.4	$\begin{aligned} \mathrm{A} & =\checkmark \mathrm{M} \\ & =26 \checkmark \mathrm{CA} \\ \mathrm{~B} & =\mathrm{R} 45 \times 20 \checkmark \mathrm{M} \\ & =\mathrm{R} 900,00 \checkmark \mathrm{CA} \end{aligned}$	1M for dividing by 45 1CA answer 1 M for multiplying by 20 1CA answer	F2
2.2.5	```Total income \(=\) R495 + R765 + R1 \(170+\mathrm{R} 1485+\mathrm{R} 900\) R1 \(260 \checkmark \mathrm{M}\) \(=\) R6 \(075 \checkmark\) CA```	1 M adding all correct values 1CA total income	F1
2.3.1	$\begin{aligned} & \mathrm{R} 10000+\mathrm{R} 10000=\mathrm{R} 20000 \checkmark \mathrm{~A} \\ & \checkmark \text { MA } \\ & =45662,10 \text { Thai baht } \checkmark \mathrm{A} \end{aligned}$	1 A correct total spending 1 MA diving by 0,438 1 A correct final answer	F1
2.3.2	$\begin{aligned} & \mathrm{SF} \checkmark \\ = & \mathrm{R} 2340 \text { (interest) } \checkmark \mathrm{A} \\ = & \mathrm{R} 15000+\mathrm{R} 2340 \checkmark \mathrm{M} \\ = & \mathrm{R} 17340 \checkmark \mathrm{CA} \end{aligned}$	1 SF substituting into formula 1 A answer of interest 1 M adding 1 CA final amount	F1
2.3.3	$\begin{aligned} & 7 \times 3 \times 2 \times \mathrm{R} 12 \checkmark \checkmark \mathrm{M} \\ & =\mathrm{R} 504,00 \checkmark \mathrm{CA} \end{aligned}$	2 M calculating total 1 A final amount	F3
			[39]

QUESTION 3

Q	Answer	Explanation	Level
3.1.1	$\begin{aligned} \text { Radius } & =67 \mathrm{~mm} \div 2 \checkmark \mathrm{M} \\ & =33,5 \mathrm{~mm} \checkmark \mathrm{~A} \end{aligned}$	1 M dividing by 2 1A radius	M1
3.1.2	$\begin{aligned} & \text { Volume of cylinder } \\ & =\times \text { radius } \times \text { radius } \times \text { height } \\ & =3,142 \times 33,5 \times 33,5 \times 60 \checkmark \checkmark \mathrm{SF} \\ & =211566,57 \mathrm{~mm}^{3} \checkmark \mathrm{CA} \end{aligned}$	1SF substituting radius from Q.3.1.1 1SF substituting height 1CA for volume	M2
3.1.3	Total surface area $\begin{aligned} & =\text { side } \times \text { side } \times 6 \\ & \checkmark \mathrm{RT} \\ & =57 \mathrm{~mm} \times 57 \mathrm{~mm} \times 6 \checkmark \mathrm{SF} \\ & =19494 \mathrm{~mm}^{2} \checkmark \mathrm{CA} \end{aligned}$	1RT correct values 1 SF correct substitution 1CA for total surface area	M2
3.2.1	Time in seconds $\begin{aligned} & \checkmark \mathrm{M} \\ = & 6 \times 60+53 \\ = & 413 \text { seconds } \checkmark \mathrm{CA} \end{aligned}$	1 M for multiplying by 60 1CA answer in seconds	M1
3.2.2	$\begin{aligned} & \text { Total time } \\ & =10,8+13,6+16,1+23,1+23,2+23,9 \\ & +24,3+24,8+26,7+29,3 \quad \mathrm{M} \\ & =215,8 \text { seconds } \checkmark \mathrm{CA} \\ & 215,8 \div 60 \\ & =3,596666666667 \\ & =3 \text { minutes }+0,596666666667 \times 60 \\ & =3 \text { minutes } 35,8 \text { seconds } \checkmark \checkmark \mathrm{CA} \end{aligned}$	1 M adding all correct values 1CA answer in seconds 1CA minutes 1CA seconds	M2
3.3.1	$\begin{aligned} \hline \text { Area } & =\text { Length } \times \text { Width } \\ & =8 \mathrm{~cm} \times 4,2 \mathrm{~cm} \checkmark \mathrm{MA} \\ & =33,5 \mathrm{~cm}^{2} \\ \text { Area } & =\text { Length } \times \text { Width } \\ & =8 \mathrm{~cm} \times 3 \mathrm{~cm} \checkmark \mathrm{MA} \\ & =24 \mathrm{~cm}^{2} \\ \text { Total area } & =33,5+(2 \times 24) \checkmark \mathrm{M} \\ & =81,6 \mathrm{~cm}^{2} \checkmark \mathrm{CA} \end{aligned}$	1MA calculating area of one face 1MA calculating area of the other face 1 M adding all areas and multiplying one area by 2 1CA total area	M2

Q	Answer	Explanation	Level
3.3.2	$\begin{aligned} \text { Perimeter } & =4,2 \mathrm{~cm}+3 \mathrm{~cm}+3 \mathrm{~cm} \checkmark \mathrm{M} \\ & =10,2 \mathrm{~cm} \times 10 \checkmark \mathrm{C} \\ & =102 \mathrm{~mm} \checkmark \mathrm{~A} \end{aligned}$	1 M adding all correct values 1 C converting to mm 1A answer in mm	M2
3.4.1	Total flour $\left.\begin{array}{l} =2 \times 6 \times 250 \mathrm{ml} \\ =13,5 \times 250 \mathrm{ml} \\ =3375 \mathrm{ml} \checkmark \mathrm{CA} \end{array}\right\} \checkmark \mathrm{M}$	1 M for multiplying by 2 and by 250 1CA for answer in ml	M2
3.4.2	$\begin{aligned} { }^{\circ} \mathrm{C} & =\left({ }^{\circ} \mathrm{F}-32^{\circ}\right) \div 1,8 \\ & =(375-32) \div 1,8 \checkmark \mathrm{SF} \\ & =190,55555 \ldots \\ & =190{ }^{\circ} \mathrm{C} \checkmark \mathrm{CA} \end{aligned}$	1 SF substituting into the formula 1CA rounded answer in ${ }^{\circ} \mathrm{C}$ Penalty for not rounding correctly	M1
3.4.3	Number of tablespoons $\begin{aligned} & =2 \checkmark \mathrm{M} \\ & =6 \checkmark \mathrm{CA} \end{aligned}$	M for dividing by 24 and multiplying by 2 1CA number of tablespoons	M2
			[27]

Q	Answer	Explanation	Level
4.1.1	North East $\checkmark \checkmark$ A	2 A Answer (2)	MP1
4.1.2	1 hour 10 min OR $1 \mathrm{~h} 10 \checkmark \checkmark \mathrm{RG}$	$2 \mathrm{RG}$ No marks if learner wrote 1:10 or 13:10	MP1
4.1.3	$\begin{aligned} & \text { 6:59 }+1 \text { hour } 10 \mathrm{~min} \checkmark \mathrm{MA} \\ & =08: 09 \checkmark \mathrm{~A} \end{aligned}$	1 M Addition 1 A Answer	MP1
4.1.4	$\begin{aligned} & \text { Time }: 50 \text { min }=0,833333 \ldots \\ &=0,83 \text { hours } \checkmark \mathrm{C} \\ & \\ & \checkmark \text { SF } \\ & \\ & \checkmark \text { MA } \\ & \checkmark \text { A } \end{aligned}$	1 C Conversion to hours 1 SF correct substitution 1 MA correct multiplication 1 A Answer Accept 750 km	MP3
4.1.5	$\begin{aligned} \mathrm{P}_{\text {(fight of } 1 \text { hour) }}=\times 100 & \checkmark \checkmark \mathrm{~A} \\ = & 33,33 \% \checkmark \mathrm{~A} \end{aligned}$	1A numerator 1A denominator 1A simplification as a percentage	P2
4.2.1	Six OR $6 \checkmark \checkmark$ A	2 A correct number of doors	MP1
4.2.2	$7 ; 8 ; 10 ; 11 ; 12 ; 20 \text { and } 21 \checkmark \checkmark \mathrm{~A}$	2 A correct number of rows (2)	MP1
4.2.3	$\begin{aligned} & \text { Length of plane on the plan } \\ & \checkmark \mathrm{RT} \\ & =50 \mathrm{~m} \times 1000 \checkmark \mathrm{C} \\ & =\checkmark \mathrm{M} \\ & =250 \mathrm{~mm} \checkmark \mathrm{CA} \end{aligned}$	1 RT correct value 1 C converting m to mm 1 M dividing by 200 1CA answer in mm	MP2
			[21]

QUESTION 5

Q	Answer	Explanation	Level
5.1.1	$0,25 \mathrm{~km}$ OR $250 \mathrm{~m} \checkmark \checkmark \mathrm{RT}$	2 RT reading from table	DH1
5.1.2	$49 \checkmark \checkmark$ RT	2 RT reading from table	DH1
5.1.3	Questionnaire $\checkmark \checkmark$ A OR Survey	2 A correct data collection instrument	DH1
5.1.4	$\begin{aligned} & \text { 15,18,19,20,25,25,27,28,28,28,29,30,30, } \\ & 30,33,34,37,38,38,39,39,40,41,43,49 \checkmark \mathrm{M} \\ & \text { Median }=30 \quad \checkmark \checkmark \mathrm{~A} \end{aligned}$	1 M arranging all correct values 2 A correct median	DH2
5.1.5	Mode(s) $=28 ; 30 \checkmark \checkmark \mathrm{~A}$	2A Bi-modal	DH1
5.1.6	$\begin{aligned} & \text { Mean } \\ & \quad \checkmark \mathrm{A} \\ & = \\ & \checkmark \mathrm{MA} \\ & =31,32 \checkmark \mathrm{CA} \end{aligned}$	1 A for sum total or addition of all correct values 1 MA dividing by 25 1CA final answer	DH2
5.1.7	Discreet data $\checkmark \checkmark$ A	2A continuous	DH1

