## Downloaded from Stanmorepfysics.com



## education

Department:
Education
PROVINCE OF KWAZULU-NATAL

## NATIONAL SENIOR CERTIFICATE

GRADE 11


MARKS: 100
TIME: 2 Hours

This question paper consists of 8 pages and an addendum with 4 annexures.

## INSTRUCTIONS AND INFORMATION

1. This question paper consists of FOUR questions. Answer ALL the questions.
2. Use the ANNEXURES in the ADDENDUM to answer the following questions.
2.1 ANNEXURE A for Question 1.1
2.2 ANNEXURE B for Question 1.2
2.3 ANNEXURE C for Question 2.3
2.4 ANNEXURE D for Question 4
3. Number the answers correctly according to the numbering system used in this question paper.
4. Start EACH question on a NEW page.
5. An approved calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
6. ALL the calculations must be clearly shown.
7. Round off ALL final answers appropriately according to the given context unless stated otherwise.
8. Maps and diagrams are NOT drawn to scale.
9. Units of measurement must be indicated where applicable.
10. Write neatly and legibly.

## Downloaded from Stanmorepfysics.com

## QUESTION 1

1.1 Bradley Wood works for CHS Network Installations as a technician. ANNEXURE A shows Bradley`s payslip for the period 01 June 2019 to 30 June 2019.

Use the information in ANNEXURE A to answer the questions that follow.

> 1.1.1 Explain the term "net pay" on the payslip?
1.1.2 Calculate the value of $\mathbf{A}$.
1.1.3 Calculate the value of $\mathbf{B}$.
1.1.4 Calculate the value of $\mathbf{C}$.

### 1.1.5 Explain why the UIF amount is R148.72.

1.2 ANNEXURE $B$ shows the side views and the respective elevations. Match each side view with the correct elevation.
1.3 The picture below shows a scale drawing of Bradley's three-bedroomed house.


NOTE: Concrete ratio mix cement $:$ sand $:$ stone $=1: 4: 5$ $1 \mathrm{~m}^{3}$ of concrete has a mass of $\mathbf{2 4 0 6}, \mathbf{5 3} \mathrm{kg}$ 1 bag of cement has a mass of 50 kg

Source:www.google.com
Use the information above and answer the following questions:

> 1.3.1 Calculate the width (TU) of the main bedroom, in centimetres given that JK on the scale drawing is $0,5 \mathrm{~cm}$.
1.3.2 Calculate the actual perimeter of the floor of the house in metres.
1.3.3 If the actual perimeter of the floor of the house is 30 m . the width of the external foundation trench is 50 cm and the trench depth is 40 cm , calculate the volume of concrete needed to be filled, in cubic metres.

You may use the formula: Volume $=$ length $\times$ width $\times$ depth
1.3.4 The builder told Bradley that he will need at least 30 bags of cement for the external foundation trench concrete.
Verify, showing all calculations, whether the builder's claim is correct.

## QUESTION 2

Vector High School economics learners are investigating the effects of inflation on transport cost in South Africa. The graph below shows how the Transportation Consumer Price Index (TCPI) has changed from April 2018 to March 2019.

2.1
2.1.1 Define the term inflation.
2.1.2 Calculate the percentage change in the TCPI from January 2019 to March 2019.

You may use the following formula:

$$
\begin{equation*}
\text { Percentage Change }=\frac{\text { March } 2019 \text { TCPI-January } 2019 \mathrm{TCPI}}{\text { January } 2019 \mathrm{TCPI}} \times 100 \% \tag{3}
\end{equation*}
$$

Downloaded from Stanmorephysics.com
2.2

CHS Network Installations was contracted by Vector High School to install and manage their network systems. Table 1 below shows the installation statement for April 2019.

TABLE 1: CHS NETWORK INSTALLATIONS STATEMENT FOR APRIL 2019
BSV BANK STATEMENT OF ACCOUNT ACCOUNT NUMBER: 016754328770 CHS NETWORK INSTALLATIONS (PTY)

No. 487 Anglers Road, Meerensee
Richards Bay
3901

Contact No: 0357930301
Fax No. 0357930300
Email: chsinst@chs.co.za

Period: 2019/04/01 to 2019/04/30

| Date | Description | Transaction (R) | Balance (R) |
| :--- | :--- | :--- | :---: |
|  | Balance brought forward |  | 185960,00 |
| $2019 / 04 / 01$ | Credit Interest | 67,25 | 186027,25 |
| $2019 / 04 / 03$ | Premises Rent: Debit Order | $-10800,00$ | A |
| $2019 / 04 / 03$ | Isolezwe Security: Debit Order | $-8909,00$ | 166318,25 |
| $2019 / 04 / 09$ | Cheque Deposit: M A High School | B | 183518.25 |
| $2019 / 04 / 15$ | Internet Transfer: Vector Academy | 10643.89 | 194162.14 |
| $2019 / 04 / 23$ | Cheque Deposit: Excel Maths Academy | 8000.00 | 202162.14 |
| $2019 / 04 / 30$ | Salary: M Zugu (Assistant Technician) | C | 182662.14 |
| $2019 / 04 / 30$ | Cheque Account Fees | $-480,00$ | 182182.14 |
| $2019 / 04 / 30$ | Balance carried forward |  | D |

Use TABLE 1 above to answer the questions that follow.
2.2.1 Write down the balance (excluding interest) that was brought forward on the last day of the previous month.
2.2.2 Calculate the annual interest rate that was used on the balance brought forward to obtain the credit interest.

You may use the following formula:
Annual Interest Rate $=\frac{\text { Credit Interest } \times 365}{\text { Balance Brought Forward }} \times \mathbf{1 0 0} \%$
2.2.3 Calculate the missing values $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and $\mathbf{D}$ in TABLE 1 above.
2.2.4 Explain why the negative signs appear on some amounts in the statement.
2.2.5 Calculate the total amount credited to CHS Network Installations account.'

## 2.3

The change in the average annual salary for each Eskom employee and the increase in the number of employees from 2003 to 2017 is shown in ANNEXURE C. The pie chart on ANNEXURE C shows the amount of cash that Eskom needs to survive and the projected operating cost for 2018-2019.
Use the information in ANNEXURE $C$ to answer the questions that follow.
2.3.1 According to the information in ANNEXURE C, how much of the government guarantees is still available to Eskom?
2.3.2 Describe the trend on the average salary per annum for Eskom employees from 2003 to 2017 and state the financial implications it has on the power utility.

## QUESTION 3

3.1

The Gumede family lives in Mbongolwane. To alleviate the critical problem of water shortage, Mr Gumede bought a Jojo tank with a diameter of $\mathbf{1 , 8 0 m}$ and a height of 2,34m .


NOTE: $1=1000 \mathrm{~cm}^{3}$
3.1.1 Convert the diameter and height of the tank above to centimeters.
3.1.2 Determine the radius of the tank in centimeters.
3.1.3 Calculate the volume (in $\mathbf{~ c m}^{\mathbf{3}}$ ) of the tank.

You may use the following formula:
Volume of a cylinder $=\boldsymbol{\pi} \times(\text { radius })^{\mathbf{2}} \times$ height, and using $\pi=3,142$
3.1.4 Convert the volume in $3 \cdot 1.3$ to litres rounded off to TWO decimal places.
3.1.5 After two days of heavy rainfall, the volume of water in the tank was a quarter of the tank's capacity.

Calculate the height of the water in the tank. Round off your answer to the nearest metre.

You may use the formula:

3.2 People living away from their families regularly send canned food packaged in rectangular boxes.


TIN

3.2.1 John, a Mathematical Literacy learner, stated that a maximum of 100 tins could be packaged into the box.

Verify, showing all calculations, whether John`s statement is correct.
3.2.2 If each tin of baked beans weighs 410 grams, calculate the total mass of the rectangular box (in kilograms) if a maximum of 80 tins have been packaged.

## QUESTION 4

4.1 Mnotho and his friend Tristen took part in the Two Oceans Marathon that was held in Cape Town on 11 April 2019. ANNEXURE D shows the route map for the Two Oceans Marathon.

Note:
Date of Race: 11 April 2019
Starting Time: 06:30
Distance: 56 km
Starting Point: Main Road in Newlands

## Cut-off for 21 km

- Official cut-off time at the finish line is 09:20.
- Runners who fail to reach the 18 km mark by 09:00 are not ALLOWED to continue.
- Runners who CANNOT walk an average of 9 minutes per kilometer are strongly discouraged from participating.

Source: [www.twooceansmarathon.co.za]
Use the information above and ANNEXURE D to answer the questions that follow.

### 4.1.1 How many kilometres is the Two Oceans Marathon?

4.1.2 Name the finishing point of the marathon.
4.1.3 How many refreshment stations were set for the marathon?
4.1.4 If a station is chosen at random, what is the probability that it is a Medical Station?
4.1.5 If Mnotho was aiming at reaching the 18 km mark at $07: 15$, calculate the average speed, in metres per second he should have maintained.

You may use the following formula:
Speed $=\frac{\text { Distance }}{\text { Time }}$
4.1.6 Tristen was confident that he would be able to sustain a constant speed of $15 \mathrm{~km} / \mathrm{h}$ throughout the marathon.

Calculate the time, in hours and minutes, it took him to complete the marathon.

You may use the same formula given in 4.1.5 above.

## education

Department:
Education
PROVINCE OF KWAZULU-NATAL

## NATIONAL SENIOR CERTIFICATE

## GRADE 11

## MATHEMATICAL LITERACY

 COMMON TEST ADDENDUM
## SEPTEMBER 2019

This addendum consists of 5 pages with 4 annexures.

ANNEXURE A

QUESTION 1.1
BRADLEY WOOD'S PAYSLIP

| CHS NETWORK INSTAULATIONS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| No. 487 John Ross Highway |  | Contact No: 0354740301 |  |  |
| Eshowe |  | Fax No. 0354740300 |  |  |
| 3815 |  | Email: chsinst@chs.co.za |  |  |
| Name of Employee |  | Employee ID | Tax Refe | ence Number |
| Bradley Wood |  | 8407115428188 |  | 399017 |
| Employee Designation | Number | Department | Sala | Period |
| Technician | T10153 | Information Technology | 01/06/20 | -30/06/2019 |
| Earnings |  | Deductions |  |  |
| Basic Salary | R25 900 | P.A.Y.E |  | R2 540,52 |
| Travel Allowance | R 4700 | UIF |  | R 148.72 |
| Housing Allowance | R 1200 | Pension Fund (7,5\% of Bas | Salary) | B |
|  |  | Medical Aid (5 dependents) |  | R3 876.59 |
| Gross | A | Total Deductions |  |  |
|  |  |  |  |  |
| NET PAY |  |  |  | C |

## ANNEXURE B

## QUESTION 1.2

## HOUSE SIDE VIEWS AND ELEVATIONS



Elevation A


Elevation B


Eleration C
downloaded from stanmorepfysics.com

ANNEXURE C
QUESTION 2.3
ESKOM OPERATING COSTS (2018/2019)


## ANNEXURE D

## QUESTION 4

TWO OCEANS MARATHON ROUTE - CAPE TOWN 2019

downloaded from stanmorepfysics.com

## Downloaded from Stanmorepfysics.com



## education

Department:
Education
PROVINCE OF KWAZULU-NATAL

## NATIONAL SENIOR CERTIFICATE



MARKS: 100

| Symbol | Explanation |
| :--- | :--- |
| M | Method |
| M/A | Method with Accuracy |
| CA | Consistent Accuracy |
| A | Accuracy (Answer) |
| AO | Answer only full marks |
| C | Conversion |
| S | Simplification |
| RT / RG / RM/RP | Reading from table/graph /map/plan |
| F | Choosing the correct formula |
| E | Explanation/Comment |
| D | Correct definition |
| SF | Substitution in formula |
| O | Opinion |
| J | Justification |
| P | Penalty e.g. for no units, incorrect rounding, etc |
| R | Rounding off / Reason |

This marking guideline consists of $\mathbf{6}$ pages.

| QUESTION 1 [31 marks] |  |  |  |
| :---: | :---: | :---: | :---: |
| Question | Solution | Explanation | T/L |
| 1.1.1 | It is the amount that is deposited into Bradley's bank account after the deductions. $\checkmark \sqrt{ }$ D | 2D correct definition (2) | $\begin{array}{\|l\|} \hline \text { F } \\ \text { L1 } \end{array}$ |
| 1.1.2 | $\begin{aligned} \mathrm{A} & =\text { R25 } 900+\mathrm{R} 4700+\mathrm{R} 1200 \sqrt{ } \mathrm{M} \\ & =\text { R31 } 800 \sqrt{ } \mathrm{~A} \end{aligned}$ | 1M adding earnings 1A correct answer | $\begin{aligned} & \hline \text { F } \\ & \text { L1 } \end{aligned}$ |
| 1.1.3 | $\begin{aligned} \mathrm{B} & =7,5 \% \times \mathrm{R} 25900 \sqrt{ } \mathrm{M} \\ & =\text { R1 } 942,50 \sqrt{ } \mathrm{~A} \end{aligned}$ | 1 M for multiplying by 7,5\% 1A correct answer | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$ |
| 1.1.4 | $\begin{aligned} \mathrm{C} & =\text { R31 800-R8 } 508,33 \sqrt{ } \mathrm{M} \\ & =\text { R23 } 291,67 \sqrt{ } \mathrm{~A} \end{aligned}$ | 1 M subtracting deductions from gross salary 1A correct answer | $\begin{aligned} & \hline \text { F } \\ & \text { L1 } \end{aligned}$ |
| 1.1.5 | Bradley's earns more thanR14872 per month therefore his maximum contribution is R148,72 per month,which is the celing amount $\checkmark$ $\checkmark$ J | 2J for justification (2) | $\begin{array}{\|l\|} \hline \text { F } \\ \text { L4 } \end{array}$ |
| 1.2 | Front View: Elevation $C \sqrt{ } A$ <br> Back View: Elevation A $\sqrt{ } \mathrm{A}$ <br> Right Side View: Elevation B $\sqrt{A}$ | 1A correct match <br> 1A correct match <br> 1A correct match | $\begin{aligned} & \mathrm{M} \\ & \text { L3 } \end{aligned}$ |
| 1.3.1 | $\begin{aligned} \mathrm{TU} & =4-0,5 \sqrt{ } \mathrm{M} \\ & =3,5 \mathrm{~cm}^{\sqrt{2}} \mathrm{~A} \end{aligned}$ | 1 M for subtracting $0,5 \mathrm{~cm}$ 1A correct answer | $\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$ |
| 1.3.2 | $\begin{aligned} & \mathrm{LN}=5 \mathrm{~cm}-2,5 \mathrm{~cm}-1 \mathrm{~cm} \checkmark \mathrm{M}=1,5 \checkmark \mathrm{~A} \\ & \mathrm{PN}=3 \mathrm{~cm}-1 \mathrm{~cm}=2 \mathrm{~cm} \checkmark \mathrm{~A} \\ & \mathrm{P}=3+1+4+2+1+3,5+5+0,5+3+7 \checkmark \mathrm{M} \\ & \quad=30 \mathrm{~cm} \checkmark \mathrm{CA} \\ & \begin{aligned} \text { Actual Perimeter } & =30 \times 100 \checkmark \mathrm{M} \\ & =30 \mathrm{~m} \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ | 1M for subtracting correct values 1A correct value for LN <br> 1 M adding all values 1CA correct perimeter 1 M for multiplying by 100 1CA correct answer/accuracy | $\begin{aligned} & \mathrm{M} \\ & \text { L3 } \end{aligned}$ |
| 1.3.3 | $\begin{aligned} \text { Width } & =0,5 \mathrm{~m} \text { and depth }=0,4 \mathrm{~m} \checkmark \mathrm{M} \\ \text { Volume } & =30 \times 0,5 \times 0,4 \checkmark \mathrm{SF} \\ & =6 \mathrm{~m}^{3} \checkmark \mathrm{~A} \\ & \\ \text { Volume } & =3000 \times 50 \times 40 \checkmark 1 \mathrm{SF} \\ & =6000000 \mathrm{~cm}^{3} \div 1000000 \checkmark \mathrm{M} \\ & =6 \mathrm{~m}^{3} \checkmark \mathrm{~A} \end{aligned}$ | 1C converting cm to m 1SF substitution <br> 1A correct answer <br> OR <br> 1SF correct substitution <br> 1 M dividing by 1000000 <br> 1A correct answer | $\begin{array}{\|l\|} \hline \text { M } \\ \text { L2 } \end{array}$ |

## Downloaded from Stanmorepfysics.com

| Question | Solution | Explanation | T/L |
| :---: | :---: | :---: | :---: |
| 1.3.4 | $\begin{aligned} & 6 \mathrm{~m}^{3} \times 2406,53 \mathrm{~kg}=14439,18 \mathrm{~kg} \sqrt{ } \mathrm{~A} \\ & \text { Ratio }=1: 4: 5 \\ & \text { Sum of ratio mix }=10 \end{aligned} \begin{aligned} \begin{aligned} \text { Amount of cement } & =\frac{1}{10} \times 14439,18 \checkmark \mathrm{M} \\ & =1443,918 \mathrm{~kg} \sqrt{ } \mathrm{~A} \end{aligned} \\ \begin{aligned} \text { Number of bags of cement } & =\frac{1443,918}{50} \checkmark \mathrm{M} \\ & =28,9 \checkmark \mathrm{~A} \\ & =29 \checkmark \mathrm{R} \end{aligned} \end{aligned}$ <br> The builder is correct $\sqrt{ } 0$ | 1A for $14439,18 \mathrm{~kg}$ <br> 1 M for multiplying by $1 / 10$ <br> 1A answer <br> 1 M for dividing by 50 <br> 1A correct answer <br> 1 R correct rounding <br> 10 correct opinion | $\begin{aligned} & \mathrm{M} \\ & \mathrm{I} 4 \end{aligned}$ |
| [31] |  |  |  |


| QUESTION 2 [22 marks] |  |  |  |
| :---: | :---: | :---: | :---: |
| Question | Solution | Explanation | T/L |
| 2.1.1 | General increase in transpotation cost over a given time period. $\sqrt{ } \sqrt{ } \mathrm{E}$ | 2E correct explanation | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$ |
| 2.1.2 | $\begin{aligned} \text { Percentage Change } & =\frac{111,7-109,1 \sqrt{ } \mathrm{M}}{109,1 \sqrt{ } \mathrm{M}} \times 100 \% \\ & =2,38 \% \sqrt{\mathrm{~A}} \end{aligned}$ | 1 M subtracting 109,1 from 111,7 <br> 1 M dividing by 109,1 <br> 1A correct answer | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$ |
| 2.2.1 | Balance Brought Forward is R185 960,00 $\checkmark \checkmark$ RT | 2RT correct amount | $\begin{array}{\|l} \hline F \\ 1 \end{array}$ |
| 2.2.2 | $\begin{aligned} \text { Annual Interest Rate } & =\frac{\mathrm{R} 67,25 \times 365}{\mathrm{R} 185960} \times 100 \% \sqrt{ } \mathrm{SF} \\ & =13,20 \% \sqrt{ } \end{aligned}$ | 1SF correct substitution <br> 1A correct answer | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$ |
| 2.2.3 | $\begin{aligned} & A=186027,25-R 10800=\mathrm{R} 175227,25 \sqrt{ } \mathrm{~A} \\ & B=R 17200 \sqrt{ } \mathrm{~A} \\ & C=-R 1950 \sqrt{ } \\ & \mathrm{D}=\mathrm{R} 182182,14 \sqrt{ } \mathrm{~A} \end{aligned}$ | 1A for correct value 1A for correct value 1A for correct value 1 A for correct value | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$ |


| Question | Solution | Explanation | $\begin{aligned} & \mathbf{T} / \\ & \mathbf{L} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 2.2.4 | Money that went out of the account reducing the available balance. $\checkmark \checkmark \mathrm{E}$ | 2E correct opinion (2) | $\begin{aligned} & \hline \text { F } \\ & \text { L1 } \end{aligned}$ |
| 2.2.5 | $\begin{aligned} \text { Total Amount Credited }= & \text { R67,25 + R17 } 200+ \\ & \text { R10 } 643,89+\text { R8 } 000 \sqrt{ } \mathrm{M} \\ = & \text { R35 } 911,14 \sqrt{ } \mathrm{~A} \end{aligned}$ | CA from 2.2.3 <br> 1 M for adding all the credit values 1A correct answer | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$ |
| 2.3.1 | $\begin{aligned} \text { Available Amount } & =\text { R350 billion }- \text { R275 billion } \sqrt{ } \mathrm{M} \\ & =\text { R75 billion } \sqrt{ } \end{aligned}$ | 1M subtraction 1A correct answer | $\begin{aligned} & \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$ |
| 2.3.2 | The average salary per annum increased $\checkmark$ A from 2002 to 2017. <br> The utlitity is unable to generate and distribute electricity due to the increase in salary. $\checkmark \checkmark \mathrm{O}$ <br> OR (any valid reason) | 1A for increase <br> 2 O correct opinion | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$ |
| [22] |  |  |  |

Downloaded from Stanmoreptysics.com

| QUESTION 3 [27 marks] |  |  |  |
| :---: | :---: | :---: | :---: |
| Question | Solution | Explanation | T/L |
| 3.1.1 | $\begin{aligned} & \mathrm{D}=1,8 \mathrm{~m} \times 100 \checkmark \mathrm{M}=180 \mathrm{~cm} \checkmark \mathrm{~A} \\ & \mathrm{H}=2,34 \mathrm{~m} \times 100=234 \mathrm{~cm} \checkmark \mathrm{~A} \end{aligned}$ | 1M multiplying by 100 <br> 1A correct diameter <br> 1A correct height <br> AO | $\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$ |
| 3.1.2 | $\mathrm{R}=180 \div 2 \checkmark \mathrm{M}=90 \mathrm{~cm} \checkmark \mathrm{~A}$ | 1M dividing by 2 1A correct radius AO | $\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$ |
| 3.1.3 | $\begin{aligned} \text { Volume } & =3,142 \times 90^{2} \times 234 \sqrt{ } \mathrm{SF} \\ & =5955346,8 \mathrm{~cm}^{3} \sqrt{ } \sqrt{ } \sqrt{ } \mathrm{~A} \end{aligned}$ | 1SF correct substitution <br> 1A correct answer <br> 1A for unit | $\begin{array}{\|l\|} \hline \text { M } \\ \hline \end{array}$ |
| 3.1.4 | $\begin{aligned} \text { Volume } & =\frac{5955346,8}{1000 \sqrt{\mathrm{M}}} \\ & =5955,3468 \mathrm{\ell} \sqrt{\mathrm{~A}} \\ & =5955,35 \mathrm{\ell} \checkmark \mathrm{R} \end{aligned}$ | 1 M dividing by 1000 <br> 1A correct answer 1 R rounding | $\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 2 \end{aligned}$ |
| 3.1.5 | $\begin{aligned} \text { Volume of water } & =\frac{5955346,8}{4 \sqrt{ }} \\ & =1488836,7 \mathrm{~cm}^{3} \checkmark \mathrm{~A} \\ 1488836,7 & =3,142 \times 90^{2} \times h \checkmark \mathrm{M} \\ h & =\frac{1488836,7}{25450,2 \vee \mathrm{M}} \\ & =58,5 \mathrm{~cm} \sqrt{ } \mathrm{CA} \\ & =58,5 \div 100 \checkmark \mathrm{C}=0,585 \\ & =1 \mathrm{~m} \checkmark \mathrm{R} \end{aligned}$ | 1M dividing by 4 <br> 1A correct answer <br> 1 M for changing the subject of the formula 1M dividing volume by 25450,2 1CA correct answer 1C for conversion 1 R rounding | $\begin{aligned} & \hline \text { M } \\ & \text { L3 } \end{aligned}$ |
| 3.2.1 | $\begin{aligned} & \frac{30}{7,3}=4 \text { tins } \sqrt{ } \mathrm{A} \\ & \frac{40}{7,3}=5 \text { tins } \sqrt{ } \mathrm{A} \\ & \begin{aligned} \text { Number of layers } & =\frac{49}{10,6} \\ & =4 \sqrt{ } \mathrm{~A} \end{aligned} \end{aligned}$ <br> Maximum number of tins is $4 \times 5 \times 4 \sqrt{ } \mathrm{M}=80 \sqrt{ } \mathrm{~A}$ John's calculation is wrong $\sqrt{ } 0$ | 1A for 4 tins <br> 1A for 5 tins <br> 1A number of layers 1 M for multiplying the number of tins by 4 layers 1A number of tins 1 O correct opinion |  |
| 3.2.2 | $\begin{aligned} & \begin{aligned} & 410 \mathrm{~g} \times 80=32800 \mathrm{~g} \sqrt{ } \mathrm{M} \\ &=32800 \mathrm{~g} \div 1000 \vee \mathrm{C} \\ &=32,8 \mathrm{~kg} \sqrt{ } \mathrm{~A} \\ & \mathrm{OR} \\ & \checkmark \mathrm{C} \end{aligned} \\ & \text { Mass of container }=0,41 \mathrm{~kg} \times 80 \checkmark \mathrm{M} \\ &=32,8 \mathrm{~kg} \checkmark \mathrm{~A} \end{aligned}$ | 1M multiplying 410 by 80 <br> 1C dividing 32800 by 1000 <br> 1A correct answer <br> 1C conversion <br> 1 M multiplying by 80 <br> 1A correct answer | $\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 2 \end{aligned}$ |


| QUESTION 4 [20 marks] |  |  | T/L |
| :---: | :---: | :---: | :---: |
| 4.1.1 | $56 \mathrm{~km} \checkmark \checkmark \mathrm{RD}$ | 2RD correct reading (2) | $\begin{aligned} & \text { MP } \\ & \text { L1 } \end{aligned}$ |
| 4.1.2 | University of Cape Town $\checkmark \checkmark$ A | 2A correct answer (2) | $\begin{aligned} & \text { MP } \\ & \text { L1 } \end{aligned}$ |
| 4.1.3 | $19 \checkmark \checkmark$ A | 2A correct answer (2) | $\begin{aligned} & \text { MP } \\ & \text { L1 } \end{aligned}$ |
| 4.1.4 | $\mathrm{P}(\text { medical station })=\frac{8^{\sqrt{ }} \mathrm{A}}{30 \sqrt{ } \mathrm{~A}}$ | 1A number of medical stations 1A total number of stations | $\begin{aligned} & \text { MP } \\ & \text { L2 } \end{aligned}$ |
| 4.1.5 | $\begin{aligned} \text { Time } & =07: 15-06: 30 \checkmark \mathrm{M} \\ & =45 \text { minutes } \times 60 \checkmark \mathrm{C} \\ & =2700 \text { seconds } \sqrt{ } \mathrm{A} \end{aligned} \quad \begin{aligned} \text { Distance } & =18 \times 1000 \checkmark \mathrm{M}=18000 \mathrm{~m} \checkmark \mathrm{~A} \\ \text { Speed } & =\frac{18000}{2700} \checkmark \mathrm{SF} \\ & =6,67 \mathrm{~m} / \mathrm{sec} \sqrt{ } \mathrm{CA} \end{aligned}$ | 1 M for subtraction 1C conversion to seconds <br> 1A for correct seconds 1 M multiplying by 1000 <br> 1A correct metres <br> 1SF substitution <br> 1CA correct answer | $\begin{aligned} & \text { MP } \\ & \text { L3 } \end{aligned}$ |
| 4.1.6 | $\begin{aligned} \text { Time } & =\frac{56}{15} \sqrt{ } \mathrm{SF} \\ & =3,733333333 \text { hours } \sqrt{ } \mathrm{A} \\ & =3 \text { hours }+0,733333333 \times 60 \sqrt{ } \mathrm{M} \\ & =3 \text { hours } \sqrt{ } \mathrm{A} 44 \text { minutes } \sqrt{ } \mathrm{CA} \end{aligned}$ | 1SF correct substitution <br> 1A correct hours 1 M for multiplying by 60 <br> 1 A correct hours <br> 1 CA correct minutes | $\begin{aligned} & \text { MP } \\ & \text { L3 } \end{aligned}$ |
|  |  | [20] |  |

TOTAL: 100

