Education

KwaZulu-Natal
Department of Education
REPUBLIC OF SOUTH AFRICA
downloaded from stanmorephysics.com

CURRICULUM DIRECTORATE

LEARNER ASSISTANCE REVISION DOCUMENT

P1 SOLUTIONS

GRADE 12-2020

PHYSICAL SCIENCES

downloaded from stanmorephysics.com

Downloaded from Stanmorepfysics.com

PHYSICS P1-SOLUTIONS

1. Force diagrams

a)	P - Normal force , Q - gravitational force
b)	P - Normal force , Q - gravitational force, R- Applied force, S- kinetic frictional force
c)	P - Normal force , Q - gravitational force, R- Applied force, S- kinetic frictional force
d)	P - Tension force Q- gravitational force
e)	P- gravitational force
f)	A - Normal force B - Applied force C -Frictional force D-Gravitational force
2.	HOMEWORK : FREE BODY DIAGRAMS,
1.	
2.	

Downloaded from Stanmorepfysics.com

3.

$F_{\text {net }}=m a$
1.Take initial motion to the right as being positive

```
1.1 \(R x=R \cos \theta=100 \cos 60^{\circ}=50 \mathrm{~N}\)
    \(F_{\text {net }}=m a\)
    \(R_{x}+\left(-F_{f}\right)=m a\)
    \(50-12=20 a\)
    \(\mathrm{a}=1,9 \mathrm{~ms}^{-2}\)
```

$1.2 F_{f}=\mu \mathrm{K} \mathrm{F}_{\mathrm{N}} \quad, \mathrm{F}_{\mathrm{N}}=\mathrm{mg}+\mathrm{R}_{\mathrm{y}}=20 \times 9.8+17.321=213.321 \mathrm{~N}$
$12=\mu k(213.321)$
$\mu \mathrm{k}=0,0563$

```
\(1.3 \Delta x=v_{i} \Delta t+1 / 2 a \Delta t^{2}\)
    \(=0+1 / 2(1,9)(10)^{2}\)
    \(=95 \mathrm{~m}\)
```

2. Take the initial upward motion of the crate as being positive
2.1 $\mathrm{F}_{\text {net }}=\mathrm{ma}$
$\mathrm{F}_{\text {cable }}+\left(-\mathrm{F}_{\text {weight }}\right)=\mathrm{ma}$, constant velocity »» " $\mathrm{a}=0$
$\mathrm{F}_{\text {cable }}+(-500)(9.8)=(500)(0)$
$\mathrm{F}_{\text {cable }}=500(9.8)=4900 \mathrm{~N}$
2.2 $\mathrm{F}_{\text {net }}=\mathrm{ma}$
$\mathrm{F}_{\text {cable }}+\left(-\mathrm{F}_{\text {weight }}\right)=\mathrm{ma}$
$\mathrm{F}_{\text {cable }}+(-500)(9.8)=(500)(2)$
$\mathrm{F}_{\text {cable }}=5900 \mathrm{~N}$

Downloaded from Stanmorepfysics.com

3.

Take the downward motion of the 3 kg mass piece as being positive

$$
\begin{gather*}
\text { 3kg } \\
F_{\text {net }}=m a \\
\mathrm{~F}_{\text {weight }}+\left(-\mathrm{F}_{\mathrm{T}}\right)=\mathrm{ma} \\
(3 \times 9.8)-\mathrm{F}_{\mathrm{T}}=3 \mathrm{a} \\
29,4-\mathrm{F}_{\mathrm{T}}=3 \mathrm{a} \\
\mathrm{~F}_{\mathrm{T}}=29,4-3 \mathrm{a} \ldots \ldots(1) \tag{1}\\
\\
19,6-(29,4-3 \mathrm{a})=-2 \mathrm{a} \\
\mathrm{a}=1,96 \mathrm{~ms}^{-2}
\end{gather*}
$$

$$
\begin{aligned}
& \mathbf{2 k g} \\
& \mathrm{F}_{\text {net }}=\mathrm{ma} \\
& \quad \mathbf{F}_{\text {weight }}+\left(-\mathrm{F}_{\mathrm{T}}\right)=\mathrm{m}(-\mathrm{a})
\end{aligned}
$$

$$
(2 \times 9.8)-F_{T}=-2 \mathrm{a}
$$

$$
\begin{equation*}
19,6-\mathrm{F}_{\mathrm{T}}=-2 \mathrm{a} \tag{2}
\end{equation*}
$$

Substitute (1) in (2)
4. Take the initial upward motion of the lift to be positive

4.1 $\mathrm{F}_{\text {net }}=\mathrm{ma}$

$$
\begin{aligned}
& F_{\text {scale }}+\left(-F_{\text {weight }}\right)=m a \\
& F_{\text {scale }}-(80 \times 9.8)=(80)(2) \\
& F_{\text {scale }}=944 \mathrm{~N}
\end{aligned}
$$

```
4.2 \(\mathrm{F}_{\text {net }}=\mathrm{ma}\)
    \(\mathrm{F}_{\text {scale }}+\left(-\mathrm{F}_{\text {weight }}\right)=\mathrm{m}(-\mathrm{a})\)
    \(\mathrm{F}_{\text {scale }}-(80)(9.8)=(80)(-2)\)
    \(F_{\text {scale }}=624 \mathrm{~N}\)
```

4.3 $\mathrm{F}_{\mathrm{NET}}=\mathrm{ma}$
$\mathrm{F}_{\text {scale }}+\left(-\mathrm{F}_{\text {weight }}\right)=\mathrm{m}(-\mathrm{a})$
$F_{\text {scale }}-(80)(9.8)=(80)(0)$, constant velocity »»"» $a=0$
$F_{\text {scale }}=784 \mathrm{~N}$
$4.4 \mathrm{a}=\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
$\mathrm{F}_{\text {net }}=\mathrm{ma}$
$\mathrm{F}_{\text {scale }}+\left(-\mathrm{F}_{\text {weight }}\right)=\mathrm{m}(-\mathrm{a})$
$\mathrm{F}_{\text {scale }}-(80)(9.8)=(80)(-9.8)$
$F_{\text {scale }}=0 \mathrm{~N}$
5. Take the motion down the incline as positive.

5.1 Constant velocity »»" $\Sigma \mathrm{F}=\mathrm{F}_{\text {net }}=0 \mathrm{~N}, \mathrm{a}=0 \mathrm{~ms}^{-2}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{F}_{\text {NET }}=\mathrm{ma} \\
\mathrm{~F}_{\mathrm{g} / /+\left(-\mathrm{F}_{\mathrm{f}}\right)}=\mathrm{m} \cdot(\mathrm{a}) \quad \mathrm{Fg}_{/ /}=\mathrm{m} \cdot \mathrm{~g} \cdot \sin \theta=50 \cdot 9 \cdot 8 \cdot \sin 20^{\circ} \\
167,5898+\left(-\mathrm{F}_{\mathrm{f}}\right)=0 \\
\mathrm{~F}_{\mathrm{f}}=167,59 \mathrm{~N}, \text { up the slope }
\end{array}
\end{aligned}
$$

$5.2 \mu=\tan \theta=\tan 20^{\circ}=0,3639$
OR $\quad F_{f}=\mu_{k} F_{N} \quad F_{N}=m g \cos \theta=50\left(9,8 \cos 20^{\circ}\right)=460,449 N$
167, $59=\mu_{k} \cdot 460,449$
$\mu_{k}=0.3639$
6.
6.1 $R X=R \cdot \cos \theta=150 \cdot \cos 15^{\circ}=144,8888 \mathrm{~N}$
$F_{\text {net }}=m a$
$R x=m a$

Downloaded from Stanmorepfysics.com

$144,8888=30 a$
$\mathrm{a}=4,83 \mathrm{~ms}^{-2}$
6.2 $\mathrm{F}_{\text {net }}=\mathrm{ma}$
$\mathrm{Rx}+\mathrm{F}_{\mathrm{f}}=\mathrm{ma}$
$144,8888+(-24)=30 \cdot a$
$a=4,03 \mathrm{~ms}^{-2}$
6.3 $F_{N}=F_{w}-R_{y} \quad, R_{y}=R \sin \theta=100 \sin 15^{\circ}=25,882 N$

$$
\begin{aligned}
& =(30)(9.8)-25,882 \\
& =268,81 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{k}} \mathrm{~F}_{\mathrm{N}} \\
& 24=\mu_{\mathrm{k}}(268,81) \\
& \mu_{\mathrm{k}}=0,0893
\end{aligned}
$$

VERTICAL PROJECTILE MOTION SOLUTIONS

Activity 1

1. $1.1 \mathrm{vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y}$

$$
\begin{gathered}
(0)^{2}=(4)^{2}+2(-9,8) \Delta y \\
0=16+(-19,6) \Delta y \\
-16=-19,6 \Delta y \\
\therefore \Delta y=0,81 \mathrm{~m}
\end{gathered}
$$

1.2

$$
\begin{align*}
\mathrm{vf} & =\mathrm{vi}+\mathrm{a} \Delta \mathrm{t} \\
0 & =(-4)+(9,8) \Delta \mathrm{t} \\
\Delta \mathrm{t} & =0,41 \mathrm{~s} \tag{5}
\end{align*}
$$

\therefore The ball takes $0,41 \mathrm{~s}$ to reach the highest point in its projection
1.3.

Time upwards = time downwards
\therefore total time in the air is
(2) $(0,41)=0,82 \mathrm{~s}$
1.4. Total displacement $=\Delta y=0 \mathrm{~m}$

Displacement is measured in a straight line from the initial position (the thrower's line from the original to the final position (the thrower's hand is the initial and final position).

Activity 2

Downloaded from Stanmorepfysics.com

2.2

Option 1

$\Delta y=v i \Delta t+12 a \Delta t^{2}$
$=(10)(3)+12(-9,8)(3)^{2}$
$=14,1 \mathrm{~m}$
$\Delta y=14,1 \mathrm{~m}$ below the starting point
$\mathrm{vf} 2=\mathrm{vi} 2+2 \mathrm{a} \Delta \mathrm{y}$
$0=100+2(-9,8) \Delta y$
$\Delta y=5,1 \mathrm{~m}$
Maximum height above the ground $=5,1+14,1=19,2 \mathrm{~m}$

Option 2

$\Delta y=v i \Delta t+12 a \Delta t^{2}$
$=0+12(-9,8)(3-1,02)$
$=-19,21 \mathrm{~m}$
$\Delta y=19,21 \mathrm{~m}$ (maximum height above the ground)
Option 3
$\mathrm{vf} 2=\mathrm{vi} 2+2 \mathrm{a} \Delta \mathrm{y}$
$(-19,4)=0+2(-9,8) \Delta y$
$\Delta y=19,2 \mathrm{~m}$ (maximum height above the ground

Activity 3

1. $15 \mathrm{~m}_{\mathrm{m}} \mathrm{s}^{-1}$
2. Inelastic collision

The speed/velocity at which the ball leaves the floor is less / different than that at which it strikes the floor OR The speed/ velocity of the ball changes during the collision.
Therefore, the kinetic energy changes/is not conserved.
$3 . \mathrm{vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{y}$
$(20)^{2}=(10)^{2}+2(9,8) \Delta y$
$\therefore \Delta y=15,31 \mathrm{~m}$
Displacement from floor to maximum height
$\mathrm{vf} 2=\mathrm{vi} 2+2 \mathrm{a} \Delta \mathrm{y}$
$(0)^{2}=(-15)^{2}+2(9,8) \Delta y$
$\Delta y=-11,48 \mathrm{~m}$
Total displacement
$=-11,48+15,3$

$$
=3,82 \mathrm{~m} \text { or } 3,83 \mathrm{~m}
$$

Activity 4
4.1 B
4.2 A
4.3 C

MOMENTUM \& IMPULSE

Activity 1

1.1 Momentum is defined as the product of mass and velocity of an object.
1.2 Impulse is the product of the net force and the time in which the net force acts on an object.
1.3 Elastic collision is defined as collision in which the kinetic energy is conserved.
1.4 Inelastic collision is defined as collision in which the kinetic energy is not conserved.
1.5 Principle of conservation of linear momentum it states that the total linear momentum of an isolated system remains constant.
1.6 An isolated system is the one on which the net external force acting on the system is zero.

Activity 2

2.1

Diagram A:

$\mathrm{m}=150 \div 1000=0,15 \mathrm{~kg}$
$\mathrm{vi}=+18 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$v_{f}=-12 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Diagram B:
$\mathrm{m}=0,15 \mathrm{~kg}$
\rightarrow
$v_{i}=+18 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
\rightarrow
$v_{f}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Let the direction towards the wall be positive
$\mathrm{m}=150 \mathrm{~g}=0,15 \mathrm{~kg}$ (divide the mass by 1000)
$\mathrm{vi}=18 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\mathrm{p}_{\mathrm{i}}=\mathrm{mvi}$
$=(0,15)(18)$
$=2,7 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}$ towards the wall

2.2

$$
\begin{aligned}
\mathrm{m} & =150 \mathrm{~g}=0,15 \mathrm{k} \\
\mathrm{~V}_{\mathrm{f}} & =-12 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\mathrm{P}_{\mathrm{f}} & =\mathrm{mvf} \\
& =(0,15)(-12) \\
& =1,8 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { away from the wall }
\end{aligned}
$$

2.3

$$
\begin{aligned}
m & =0,15 \mathrm{~kg} \\
\Delta \mathrm{p} & =m \mathrm{vf}_{\mathrm{f}}-\mathrm{mvi} \\
& =(0,15)(-12-18) \\
& =-4,5 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Downloaded from Stanmorepfysics.com

$\therefore \Delta \mathrm{p}$ is $4,5 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}$ away from the wall

2.4

Diagram A: Fnet $=\Delta t$

$$
\begin{aligned}
& =\frac{M V_{f}-M V_{i}}{\Delta t} \\
& =\frac{(0,15)(-12)-(0.15)(+18)}{0,1}
\end{aligned}
$$

\therefore Force exerted by the wall is 45 N away from the wall
Diagram B $\mathrm{F}_{\text {net }}=\frac{\Delta P}{\Delta t}$

$$
\begin{aligned}
& =\frac{m v f-m v i}{\Delta t} \\
& =\frac{0,15(0)-0,15(18)}{0,1} \\
= & -27 \mathrm{~N}
\end{aligned}
$$

\therefore Force exerted by the wall is 27 N away from the wall
$2.5 \mathrm{p}_{\mathrm{f}}=-1,8 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}$ away from the wall
$\mathrm{p}_{\mathrm{i}}=+2,7 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}$ toward the wall

$$
\begin{aligned}
\Delta \mathrm{p}= & m_{\mathrm{vt}}-m_{\mathrm{vi}} \\
& =-1,8-(+2,7) \\
& =4,5 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { away from the wall }
\end{aligned}
$$

$$
\Delta \mathrm{p}=-4,5 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

$\mathrm{F}_{\text {net }} \Delta t=\Delta \mathrm{p}$

$$
\begin{equation*}
=(0,175)[(-30)-(12)]=-7,35 \mathrm{~N} \cdot \mathrm{~s} \tag{4}
\end{equation*}
$$

Therefore 7, $35 \mathrm{~N} \cdot \mathrm{~s}$ away from the bat
2.
$F_{\text {net }} \Delta t=-7,35=F_{\text {net }}(0,05)$
$\therefore F_{\text {net }}=\frac{-7,35}{0,05} \quad=-147 \mathrm{~N}$
Therefore 147 N away from the bat

Downloaded from Stanmorepfysics.com

Activity 4

4.1 An isolated system is the one on which the net external force acting on the system is zero.
4.2
$m_{1}=4000 \mathrm{~kg}$ and $\mathrm{m}_{2}=3000 \mathrm{~kg} \quad \mathrm{v}_{1 i}=+1,5 \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad \mathrm{v}_{2 i}=0$
$\mathrm{m} \cdot \mathrm{s}^{-1}$
$\mathrm{V}_{1 \mathrm{f}}=? \quad \mathrm{~V}_{2 \mathrm{f}}=+2,8 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\Sigma p i=\Sigma p f$
$m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$
$(4000)(1,5)+(3000)(0)=(4000) v_{1 f}+(3000)(2,8)$
$4000 \mathrm{v}_{1 \mathrm{f}}=6000-8400$
$\mathrm{V}_{1 \mathrm{f}}=0,6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\therefore 0,6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to the west
4.3

$$
\begin{aligned}
\Sigma E_{K i} & =1 / 2 m_{1} v_{1 i}{ }^{2}+1 / 2 m_{2} v_{2} i^{2} \\
& =1 / 24000)(0,6)^{2}+1 / 2(3000)(2,8)^{2} \\
& =720+11760
\end{aligned}
$$

$\sum E_{k f}=1 / 2 m_{1} V_{1 f}{ }^{2}+1 / 2 m_{2} V_{2 f}{ }^{2}$
$=1 / 2(4000)(1,5)^{2}+1 / 2(3000)(0)^{2}$
$=4500 \mathrm{~J}$
$4500 \mathrm{~J} \neq 12480 \mathrm{~J}$
\therefore Collision is inelastic

Work, Energy and Power

Activity 1

1.1 Work energy and power - The net work done on an object is equal to the change in the object's kinetic energy.
1.2 Conservative forces - A force for which the work done (in moving an object between two points) is independent of the path taken.
1.3 Non - conservative forces - A force for which the work done (in moving an object between two points) depends on the path taken.

Downloaded from Stanmorepfysics.com

1.4 Isolated system - A system in which the net external force acting on the system is zero.
1.5 Principle of Mechanical energy - The total mechanical energy (sum of gravitational potential energy and kinetic energy) in an isolated system remains constant.
1.7Power - The rate at which work is done or energy is expended.

Activity 2

1.1 B
1.2 D
1.3 D
1.4 A
1.5 B
1.6 B

Activity 3

1.1 The total mechanical energy (sum of gravitational potential energy and kinetic energy) in an isolated system remains constant.
1.2 No.
1.3

w

1.4.1

1.4.2 The net work done on an object is equal to the change in the object's kinetic energy.
1.4.3 A force for which the work done (in moving an object between two points) depends on the path taken.

Activity 4

1.1 WFapplied $=$ Fapplied $\cdot \Delta x \cdot \cos \theta=(220)(10)\left(\cos 0^{\circ}\right)=(220)(10)(1)$
$=2200 \mathrm{~J}$
1.2. WFnormal $=$ Fnormal $\cdot \Delta x \cdot \cos \theta=\mathrm{mg} \cdot \Delta x \cdot \cos 90^{\circ}=(50)(9,8)(10)(0)$
$=0 \mathrm{~J}$
1.3. WFfriction $=$ Ffriction $\Delta x \cdot \cos \theta=(40)(10)\left(\cos 180^{\circ}\right)=(40)(10)(-1)$
$=-400 \mathrm{~J}$
1.4. W net $=\Sigma \mathrm{W}=\mathrm{W}$ Fapplied +W friction $=(2200)+(-400)=1800 \mathrm{~J}$

Activity 5

1.1 The net work done on an object is equal to the change in the object's kinetic energy.(2)
1.2
1.5 $\mathrm{W}_{\mathrm{Fg}}=\mathrm{F}_{\mathrm{g}} \cdot \Delta x \cdot \cos \theta=(6)(9,8)(1.6)\left(\cos 0^{\circ}\right)=94.08 \mathrm{~J}$

DOPPLER EFFECT SOLUTIONS

Assignment

1. Doppler Effect is the change in frequency (or pitch) of the sound detected by a listener, because the sound source and the listener have different velocities relative to the medium of sound propagation.
2.

$2.1 f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$
$f_{L}=\frac{340+0}{340-25} 350=377,78 \mathrm{~Hz}$
$2.2 f_{L}=\frac{340+0}{340+25} 350=326,03 \mathrm{~Hz}$
3. $f_{L}=\frac{340+5}{340-0} 450=456,62 \mathrm{~Hz}$
$4.1 f_{L}=\frac{340+0}{340-240} 1200=4080 \mathrm{~Hz}$
$4.2 f_{L}=\frac{340+240}{340-0} 4080=6960 \mathrm{~Hz}$
5. $f_{L}=\frac{340+0}{340-25} 350=377,78 \mathrm{~Hz}$
$450=\frac{340+v L}{340-0} 400$
$\mathrm{VL}=42,5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

More exercises

1.1

$$
\begin{gathered}
f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \\
f_{L}=\frac{1500}{1500-20}(250000) \\
=253,38 \times 10^{3} \mathrm{~Hz}
\end{gathered}
$$

1.2Remains the same

2.1 Doppler Effect

2.2

$$
f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s}
$$

$90 / 100 f_{s}=\frac{340}{340+v_{s}}\left(f_{s}\right)$

$$
\therefore \mathrm{vs}_{\mathrm{s}}=37,78 \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}
$$

2.3 Smaller than
3.1 Doppler Effect
3.2

$$
f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s}
$$

$90 / 100 f_{s}=\frac{340}{340+v_{s}}\left(f_{s}\right)$

$$
\therefore \mathrm{vs}=37,78 \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

The detected frequency is independent of the distance between the source and the observer.
4.1 Towards
4.2
$4.3 f_{L}=\frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$
$450=\frac{340+0}{340-20} f s$
153000-9000 $=340$ fs
$f_{s}=423,53 \mathrm{~Hz}$

ELECTROSTATICS SOLUTIONS
 QUESTION ONE

1.1 The electrostatic force between charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them
1.2 $\mathrm{Q}_{\text {new }}=\frac{Q+Q 2}{2}$

$$
\begin{aligned}
& =\frac{-6 \times 10^{-6}+2 \times 10^{-6}}{2} \\
& =-2 \times 10^{-6} \mathrm{C}
\end{aligned}
$$

$1.3 \mathrm{nelectrons}=\frac{Q}{q e}$

$$
=\frac{-2 \times 10^{-6}}{-1,6 \times 10^{-19}}
$$

$$
=1,25 \times 10^{13} \text { electrons }
$$

$$
\begin{aligned}
1.4 \mathrm{~F} & =\mathrm{k} \frac{Q 102}{r^{2}} \\
& =9 \times 10^{9} \frac{2 \times 10^{-6} .2 \times 10^{-6}}{\left(20 \times 10^{-2}\right) 2} \\
& =9 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

1.51.5 $\mathrm{F}=\mathrm{k} \frac{Q 1 Q 2}{r^{2}}$

$$
\begin{aligned}
& =9 \times 10^{9} \frac{2 \times 10^{-6} .4 \times 10^{-6}}{\left(30 \times 0^{-2}\right) 2} \\
& =8 \times 10^{-1} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{FR}^{2} & =\mathrm{Fx}^{2}+\mathrm{Fy}^{2} \\
& =\left(9 \times 10^{3}\right)^{2}+\left(4 \times 10^{-1}\right)^{2} \\
& =9 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

$$
\operatorname{Tan} \theta=\frac{8 \times 10^{-1}}{9 \times 10^{3}}
$$

$$
{ }^{\theta}=5,09 \times 10
$$

QUESTION 2

2.1 The electrostatic force between charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them 2.2 $\mathrm{F}=\mathrm{k} \frac{Q 1 \mathrm{Q}^{2}}{r^{2}}$

$$
=9 \times 10^{9} \frac{4 \times 10^{-6} .2 \times 10^{-6}}{\left(50 \times 10^{-3}\right)^{2}}
$$

$$
2,88 \times 10^{1} \mathrm{~N}
$$

2.3

2.4 $\mathrm{F}=\mathrm{k} \frac{Q 1 Q 2}{r^{2}}$

$$
=9 \times 10^{9} \frac{8 \times 10^{-6} .2 \times 10^{-6}}{\left(100 \times 10^{-3}\right) 2}
$$

$$
=1,44 \mathrm{X} 10^{1} \mathrm{~N}
$$

$\mathrm{F}_{\text {NET }}=\mathrm{F}_{1}+\mathrm{F}_{2}$
$=2,88 \times 10^{1}+1,44 \times 10^{1}$
$=1,44 \mathrm{X} 10^{1} \mathrm{~N}$

$$
\begin{aligned}
\operatorname{Tan} \theta & =\frac{2,44 \times 10^{1}}{1,44 \times 10^{1}} \\
\theta & =5,95 \times 10^{1}
\end{aligned}
$$

QUESTION 3

3.1 Electric field is a region of space in which an electric charge experiences a force.
3.2

$3.3 \mathrm{E}_{1}=\frac{k Q}{r^{2}}$

$$
\begin{aligned}
& =9 \times 10^{9} \frac{3 \times 10^{-9}}{\left(10 \times 10^{-3}\right)^{2}} \\
& =2,7 \times 10^{5} \mathrm{~N} \cdot \mathrm{C}^{-1}
\end{aligned}
$$

$\mathrm{E}_{2}=\frac{k Q}{r^{2}}$

$$
\begin{aligned}
& =9 \times 10^{9} \frac{5 \times 10^{-9}}{\left(30 \times 10^{-3}\right)^{2}} \\
& =5 \times 10^{4} \mathrm{~N} \cdot \mathrm{C}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}_{\text {NET }}=\mathrm{E}_{1} & +\mathrm{E}_{2} \\
=\mathrm{E}_{1} & =\frac{k Q}{r^{2}} \\
& =9 \times 10^{9} \frac{3 \times 10^{-9}}{\left(10 \times 10^{-3) 2}\right.} \\
& =5 \times 10^{4}+2,7 \times 10^{5} \\
& =3,20 \times 10^{5} \mathrm{~N} \cdot \mathrm{C}^{-1}
\end{aligned}
$$

$3.4 \mathrm{E}=\frac{F}{e}$
$3,20 \times 10^{5}=\frac{F}{1,6 \times 10^{-19}}$
$\mathrm{F}=5,12 \times 10^{-14} \mathrm{~N}$

QUESTION 4

4.1 Because we need to charge the sphere.
$4.2 \mathrm{E}_{1}=\frac{k Q}{r^{2}}$

$$
=9 \times 10^{9} \frac{4,8 \times 10^{-8}}{\left(5 \times 10^{-2) 2}\right.}
$$

$$
=1,73 \times 10^{5} \mathrm{~N} \cdot \mathrm{C}^{-1}
$$

4.3

4.4

4.5 $\mathrm{F}=\mathrm{k} \frac{Q 1 \mathrm{Q}}{r^{2}}$

$$
=9 \times 10^{9} \frac{4,8 \times 10^{-8} .4 \times 10^{-8}}{\left(5 \times 10^{-2}\right)_{2}}
$$

$$
=8,29 \times 10^{-3} \mathrm{~N}
$$

$4.6 \mathrm{E}=\frac{F}{Q}$
$E=\frac{8,29 \times 10-3}{4,8 \times 10^{-8}}$
$\mathrm{F}=1,73 \times 10^{5} \mathrm{NC}^{-1}$

QUESTION 5

5.1 Electric field is a region of space in which an electric charge experiences a force.
$5.2 \mathrm{n}_{\mathrm{e}}=\frac{Q}{q e}$
$=\frac{10 \times 10^{-6}}{1,6 \times 10^{-19}}$
$=6,25 \times 10^{13}$ electrons
5.3 $\mathrm{E}=\frac{k Q}{r^{2}}$

$$
\begin{aligned}
& =9 \times 10^{9} \frac{10 \times 10^{-6}}{\left(2 \times 10^{-2) 2}\right.} \\
& =2,25 \times 10^{8} \mathrm{NC}^{-1}
\end{aligned}
$$

5.4

5.5 The electrostatic force between charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them
5. $\mathrm{F}=\mathrm{k} \frac{Q 1 Q 2}{r^{2}}$

$$
\begin{aligned}
& =9 \times 10^{9} \frac{10, x 10^{-6} \cdot 20 \times 10^{-6}}{\left(3 x^{-2}\right)_{2}} \\
& =2,00 \times 10^{-3} \mathrm{~N}
\end{aligned}
$$

ELECTRIC CIRCUITS SOLUTIONS

MULTIPLE CHOICE QUESTIONS

1. A
2. A
3. C
4. B
5. A
6. D
7. C
$1.1 \quad \frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \checkmark$

$$
=\frac{1}{60}+\frac{1}{60} \checkmark
$$

$\therefore \mathrm{R}_{\mathrm{p}}=30 \Omega \checkmark$
1.2 Rext $=30+25=55 \Omega \checkmark$
$\mathrm{Emf}=1(\mathrm{R}+\mathrm{r})$
$\therefore 12 \checkmark=1(55+1,5) \checkmark$
$\therefore \mathrm{I}=0,21 \mathrm{~A} \checkmark$

```
\(1.3 \quad \mathrm{~V}=\mathrm{IR} \checkmark\)
    \(=(0,21)(30) \checkmark\)
    \(=6,3 \mathrm{~V}\)
```


QUESTION 2

$2.1 \quad 1,5 \vee \checkmark$
2.2 gradient $/ \mathrm{m}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{l}}$

$$
\begin{aligned}
& =\frac{0,65-1,5^{\checkmark}}{1,0-0^{\checkmark}} \\
& =-0,85 \Omega \checkmark
\end{aligned}
$$

2.3 Internal resistance $\checkmark \checkmark$
2.4 Decreases \checkmark

When I increase:
"Lost volts"/ Ir increases. \checkmark
$V_{\text {ext }}=$ emf - Ir decreases.

QUESTION 3

$3.1 \quad 12 \mathrm{~V} \checkmark$

3.2
3.2.1 Option 1

$$
I=\frac{V}{R} \checkmark=\frac{9,6}{2,4} \checkmark=4 \mathrm{~A}
$$

Option 2

$\mathrm{emf}=\mathrm{IR}+\mathrm{Ir} \checkmark$

$$
12=\mathrm{I}(2,4)+2,4 \checkmark \quad \therefore \mathrm{I}=4 \mathrm{~A} \checkmark
$$

3.2.2 $\mathrm{emf}=\mathrm{IR}+\mathrm{Ir} \checkmark$ $12=9,6+4 r v$ $\therefore r=0,6 \Omega \checkmark$
3.3

$$
\begin{aligned}
& \frac{\text { Option } 1}{\text { emf }=I(R+r) \checkmark} \\
& 12=6(R+0,6) \checkmark \\
& \text { Rext }=1,4 \Omega \\
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Option 2 } \\
& \text { Emf }=\mathrm{V}_{\text {terminal }}+\operatorname{lr} \checkmark \\
& 12=\mathrm{V}_{\text {terminal }}+6(0,6) \checkmark \\
& \therefore \mathrm{V}_{\text {terminal }}=8,4 \mathrm{~V} \\
& \downarrow \\
& \mathrm{I}_{2,4 \Omega}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{8,4}{2,4}=3,5 \mathrm{~A}
\end{aligned}
$$

$\begin{aligned} & \frac{1}{1,4}=\frac{1}{2,4}+\frac{1}{R} \\ & \therefore R=3,36 \Omega \\ & \text { Each tail lamp } \\ & : R=1,68 \Omega \end{aligned}$	$\begin{aligned} & I_{\text {tail lamps }}=6-3,5=2,5 \mathrm{~A} \\ & R_{\text {tail lamps }}=\frac{\mathrm{V}}{\prime} \downarrow=\frac{8,4}{2,5} \checkmark=3,36 \Omega \\ & \text { Rtail lamp }^{\prime}=1,68 \Omega \checkmark \end{aligned}$
Option 3	Option 4
$\mathrm{V}=\mathrm{IR} \checkmark$	For parallel combination:
$12=(6) R \checkmark$	$l_{1}+l_{2}=6 \mathrm{~A}$
$R_{\text {ext }}=2 \Omega$	$\therefore \frac{\mathrm{V}}{2,4}+\frac{\mathrm{V}}{\mathrm{R}_{\text {taillamps }}} \checkmark=6$
$\begin{aligned} & \therefore R_{\text {parallel }}=2-0,6=1,4 \Omega \\ & \frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \end{aligned}$	$8,4 \checkmark\left(\frac{1}{2,4}+\frac{1}{R_{\text {taillamps }}}\right) \checkmark=6$
$\sqrt{1} \frac{1}{1,4}=\frac{1}{2,4}+\frac{1}{R}$	$\therefore \text { Rtail lamps }=3,36$
$\therefore R=3,36 \Omega$ Each tail lamp $R=1,68 \Omega \checkmark$	$R_{\text {tail }}$ lamp $=1,68 \Omega \checkmark$

3.4 Increases \checkmark

Resistance increases, current decreases \checkmark
Ir (lost volts) decreases \checkmark

QUESTION 4

4.1 The current in a conductor is directly proportional to the potential difference \checkmark across its ends at constant temperature. $\sqrt{ }$

OR
The ratio of potential difference to current is constant \checkmark at constant temperature. \checkmark
4.2
4.2.1 $\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \checkmark=\frac{1}{1,4}+\frac{1}{1,4} \checkmark \therefore R_{p}=0,7 \Omega \checkmark$

OR
$R_{p}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \checkmark=\frac{1,4 \times 1,4}{1,4+1,4} \checkmark=0,7 \Omega \checkmark$
4.2.2

OPTION 1: emf $=\mathrm{I}(\mathrm{R}+\mathrm{r}) \checkmark$ $\therefore \frac{12=\mathrm{I}(0,7+0,1)}{} \checkmark$ $\therefore \mathrm{I}=15 \mathrm{~A}$ $\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$ $0,7=\frac{\mathrm{V}}{15} / \checkmark$ $\therefore \mathrm{V}=10,5 \mathrm{~V} \checkmark$

OPTION 3

Voltage divides 0,7: 0,1 / 7:1
$\therefore V_{\text {headight }}=\frac{7}{8} \checkmark \checkmark \times 12 \checkmark$
$=10,5 \mathrm{~V}$
$=11,83 \vee \checkmark$
4.2.3

$$
\begin{aligned}
& \frac{\text { OPTION } 1}{\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \checkmark} \\
& =\frac{10,5^{2}}{1,4} \checkmark \\
& =78,75 \mathrm{~W} \checkmark
\end{aligned}
$$

OPTION 2

I (light) $=7,5 \mathrm{~A}$
$\begin{aligned} \mathrm{P} & =\mathrm{VI} \checkmark \\ & =(10,5)(7,5) \checkmark \\ & =78.75 \mathrm{~W} \checkmark\end{aligned} \quad$.

OPTION 3

I (light) $=7,5 \mathrm{~A}$
$\begin{aligned} \mathrm{P} & =\mathrm{I}^{2} \mathrm{R} \checkmark \\ & =(7,5)^{2}(1,4) \checkmark \\ & =78.75 \mathrm{~W} \checkmark\end{aligned}$

4.3 Decreases \checkmark

- (Effective/ total) resistance decreases.
(Total) current increases.
"Lost volts" / Vinternal / Ir increases, thus potential difference / V (across headlights) decreases. $\sqrt{ }$
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ decreases.

QUESTION 5

$5.19 \vee \checkmark$
Potential difference measured when:
switch is open / no current flows / circuit is open/no work done is in external
circuit \checkmark
5.2

5.3 Decreases \checkmark

5.4 Increases \checkmark

Resistance decreases. \checkmark
Current increases. ${ }^{\checkmark}$
Ir increases.

QUESTION 6

6.1 Any two:

Temperature \checkmark
Cross sectional area (thickness) of material \checkmark
Length
6.2

Conductor Q \checkmark
For the same potential difference, \checkmark wire Q has a higher current than wire P. \checkmark Therefore wire Q has a lower resistance than wire P.

OR
Conductor Q \checkmark
The gradient of the graph for wire Q is bigger than that for wire P. \checkmark Gradient $=\frac{\mathrm{I}}{\mathrm{V}}$ is bigger \checkmark, thus $\frac{\mathrm{V}}{\mathrm{I}}=\mathrm{R}$ is smaller. \checkmark

QUESTION 7

7.1 $V_{\text {int }}=45-43,5=1,5 \vee \checkmark$
$I=\frac{V}{R} \checkmark=\frac{1,5}{0,5} \checkmark=3 \mathrm{~A}$
$\mathrm{V}_{12 \Omega}=\mathrm{IR}_{12 \Omega}=3 \times 12 \checkmark=36 \mathrm{~V}$
$\mathrm{V}_{/ /}=43,5^{\checkmark}-36=7,5 \mathrm{~V}$
(If only $\mathrm{V}_{/ /}=7,5 \mathrm{~V}$: 2 marks)
$I=\frac{V_{\| I}}{R}=\frac{7,5}{10 \checkmark}=0,75 \quad A \checkmark$
7.2 $\quad \mathrm{I}_{\mathrm{R}}=3-0,75=2,25 \mathrm{~A} \checkmark$
$R=\frac{V_{I I}}{l}=\frac{7,5}{2,25}=3,33 \Omega \checkmark$
7.3 Increases \checkmark

The total resistance increases, \checkmark
Therefore the current decreases \checkmark therefore $\mathrm{V}_{\text {internal }}$ decrease \checkmark therefore reading on V increases.

QUESTION 8

8.1

Criteria for circuit diagram	Mark
Battery connected to the resistor as shown - correct symbols used.	\checkmark
Rheostat connected in series with resistor - correct symbols used.	\checkmark
Ammeter connected in series so that it measures the current through resistor - correct symbols used.	\checkmark
Voltmeter connected in parallel across resistor - correct symbols used.	\checkmark

8.2 Temperature \checkmark

8.3 B \checkmark

The ratio $\frac{V}{l}$ is greater than that of A. $\checkmark \checkmark$

QUESTION 9

$9.1 \quad \frac{1}{R}=\frac{1}{r_{1}}+\frac{1}{r_{2}} \quad \checkmark=\frac{1}{4}+\frac{1}{16} \checkmark$

$$
\begin{aligned}
& \therefore R=3,2 \Omega \\
& \begin{aligned}
\therefore R \text { effective } & =3,2 \Omega+2 \Omega+0,8 \Omega \checkmark \\
& =6 \Omega \checkmark
\end{aligned}
\end{aligned}
$$

9.2

$$
\begin{aligned}
& \text { Option 1: } \\
& \text { V = IR } \checkmark \\
& 12=I(6) \checkmark \\
& I=2 A \checkmark
\end{aligned}
$$

Option 2:

emf $=I(R+r) \checkmark$
$12=I(5,2+0,8) \checkmark$
$\mathrm{I}=2 \mathrm{~A} \checkmark$
$9.3 \quad V_{\text {paralle }}=I R \checkmark$

$$
=(2)(3,2) \checkmark
$$

$$
=6,4 \mathrm{~V}
$$

$\mathrm{V}_{8 \Omega}=\frac{6,4}{2} \checkmark=3,2 \mathrm{~V} \checkmark$

10.1 Option 1

$\frac{1}{R_{e}}=\frac{1}{r_{1}}+\frac{1}{r_{2}} \checkmark=\frac{1}{9}+\frac{1}{23} \checkmark \therefore R=6,47 \Omega$
$R_{\text {tot }}=6,47+2+0,2 \checkmark=8,67 \Omega$
$I=\frac{V}{R} \quad=\frac{12}{8,67 V}=1,38 \mathrm{~A} \checkmark$

Option 2

$\frac{1}{R_{e}}=\frac{1}{r_{1}}+\frac{1}{r_{2}} \checkmark=\frac{1}{9}+\frac{1}{23} \checkmark \therefore R=6,47 \Omega$
$R_{\text {ext }}=6,47+2 \checkmark=8,47 \Omega$
$E m f=\mathrm{I}(\mathrm{R}+\mathrm{r}) \checkmark \therefore 12=\mathrm{I}(8,47+0,2) \checkmark \therefore \mathrm{I}=1,38 \mathrm{~A} \checkmark$
10.2 Decreases \checkmark
(Effective) resistance of circuit decreases \checkmark (No current through 15Ω and 8Ω resistances)

Current (I) increases \checkmark
Ir (lost volts) increases \checkmark
Vexternal decreases

QUESTION 11

11.1 The current through a conductor is directly proportional to the potential difference across its ends at constant temperature. $\checkmark \checkmark$

11.2 Equal \checkmark

$11.3 \mathrm{emf}=\operatorname{IR}+\operatorname{Ir} \checkmark \therefore 17=14+\operatorname{lr} \checkmark \therefore \mathrm{Ir}=3 \mathrm{~V}$
$r=\frac{V_{\text {lost }}}{I} \checkmark=\frac{3}{2} \checkmark=1,5 \Omega \checkmark$
$11.4 \mathrm{~V}_{\mathrm{N}}=\operatorname{IR}_{\mathrm{N}} \checkmark=(1)(2) \checkmark=2 \mathrm{~V} \checkmark$
$11.5 \mathrm{~V}_{\mathrm{Y}}=14-2=12 \mathrm{~V} \checkmark$
$V_{Y}=\operatorname{IRY}_{Y} \checkmark \therefore 12=(2) \operatorname{RY} \checkmark$
$\therefore \mathrm{R}_{\mathrm{Y}}=6 \Omega \checkmark$

ELECTRODYNAMICS SOLUTIONS

QUESTION 1

1.1 $\mathrm{Q} /$ split ring commutator/commutator Q
1.2 Replace $\mathrm{Q} /$ split ring commutator with slip rings.
1.3 AC can be stepped-up at power stations to reduce energy loss during transmission.
1.4.1

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{rms} / \mathrm{wgk}}=\frac{\mathrm{I}_{\text {max/maks }}}{\sqrt{2}} \checkmark \\
& \quad=\frac{0,35}{\sqrt{2}} \checkmark \\
& \therefore \mathrm{I}_{\mathrm{rms} / \mathrm{wgk}}=0,25 \mathrm{~A}
\end{aligned}
$$

1.4 .2

OPTION 1	
$\begin{aligned} & P_{\text {ave }}=\frac{V_{m s}^{2}}{R} \\ & 60=\frac{240^{2}}{R} \checkmark \\ & \therefore R=960 \Omega \end{aligned}$	\checkmark
$\begin{aligned} & \frac{\text { OPTION 2 }}{P_{\text {ave }}=I^{2} \text { rms }} \\ & 60=(0,25)^{2} R \checkmark \\ & \therefore R=960 \Omega \checkmark \end{aligned}$	$R \checkmark$
OPTION 3 $\begin{aligned} R & =\frac{V_{\text {ms }}}{I_{\text {ms }}} \\ & =\frac{240}{0,25} \checkmark \\ & =960 \Omega \end{aligned}$	

QUESTION 2

2.1
2.1.1 slip rings
2.1.2 brush (es)
2.2 Maintains electrical contact with the slip rings.

OR
To take current out/in of the coil.

Mechanical /kinetic energy to electrical energy.
$2.4 \quad 11 / 2$
2.5

$$
\begin{align*}
& \text { OPTION } 1 \\
& f=\frac{1}{T} \checkmark \\
&=\frac{1}{0,02} \\
&=50 \mathrm{~Hz} \tag{3}
\end{align*}
$$

OPTION 2

$$
\begin{align*}
\mathrm{f} & =\frac{\text { number of cycles }}{\text { time }} \checkmark \\
& =\frac{1,5}{0,03} \text { or/of } \frac{1}{0,02} \text { or/of } \frac{0,5}{0,01} \checkmark \\
& =50 \mathrm{~Hz} \tag{3}
\end{align*}
$$

2.6 Parallel to

(3)
2.7

$$
\begin{aligned}
& \mathrm{V}_{\text {rms }}
\end{aligned}=\frac{\mathrm{V}_{\max }}{\sqrt{2}}=\frac{311}{\sqrt{2}} \checkmark=219,91 \mathrm{~V}, ~ \begin{aligned}
& \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{\max }}{\sqrt{2}}=\frac{21,21}{\sqrt{2}} \checkmark=14,998 \mathrm{~A} \\
& \begin{aligned}
\mathrm{P}_{\mathrm{ave}} & =\mathrm{V}_{\text {rms }} \mathrm{I}_{\text {rms }} \checkmark \\
& =(219,91)(14,998) \\
& =3298,21 \mathrm{~W} \checkmark
\end{aligned}
\end{aligned}
$$

QUESTION 3

3.1
3.1.1 A: coil / rotor / armature

B: brushes
C: commutator OR
Split-ring (commutator)

3.1.2

ANY ONE:
Takes current into the coil.
Maintains contact with the commutator.
3.1.3 DC motor
3.1.4

Due to the motor effect.
OR
There is an interaction between the external magnetic field and the magnetic field produced by the current in the conductor.
3.2.1

$$
\begin{aligned}
\mathrm{V}_{\text {rms }} & =\frac{\mathrm{V}_{\max }}{\sqrt{2}} \checkmark \\
& =\frac{1}{\sqrt{2}} \checkmark \\
& =0,707 \mathrm{~V}
\end{aligned}
$$

$$
\text { 3.2. } 0,04 \mathrm{~s}
$$

3.2.3

$$
\begin{aligned}
\frac{\text { OPTION } 1}{P_{\text {ave }}} & =\mathrm{V}_{\mathrm{rms}} I_{\mathrm{rms}} \checkmark \\
& =\left(\frac{\mathrm{V}_{\max }}{\sqrt{2}}\right)\left(\frac{I_{\max }}{\sqrt{2}}\right) \checkmark \quad(1 \text { mark for formula } \\
& =\left(\frac{1}{\sqrt{2}}\right) \checkmark\left(\frac{2}{\sqrt{2}}\right) \\
& =1 \mathrm{~W} \checkmark
\end{aligned}
$$

OPTION 2

$$
\begin{aligned}
P_{\text {ave }} & =V_{\text {rms }} I_{\text {rms }} \checkmark \\
& =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{I_{\max }}{\sqrt{2}}\right) \checkmark \\
& =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}}\right) \checkmark \\
& =1 \mathrm{~W} \checkmark
\end{aligned}
$$

QUESTION 4

4.1 Electromagnetic induction.
4.2 Rotate the coil faster/Increase the number of coils/ Increase the strength of the magnetic field.
4.3 Slip rings
4.4.1 It is the value of the voltage in a DC circuit that will have the same heating effect as an AC circuit.

Accept:
The time averaged voltage of an AC.
$V_{\text {ms }}=\frac{V_{\text {max }}}{\sqrt{2}}$ where $V_{\text {max }}$ is the maximum (peak) voltage of the AC. $\checkmark \checkmark$

$$
\begin{align*}
\mathrm{V}_{\text {rms }} & =\frac{\mathrm{V}_{\max }}{\sqrt{2}} \checkmark \\
& =\frac{339,45}{\sqrt{2}} \tag{3}\\
\mathrm{~V}_{\text {rms }} & =240,03 \mathrm{~V} \checkmark
\end{align*}
$$

QUESTION 5

5.1.1

OPTION 1
$P_{\text {av }}=\frac{V_{\text {ms }}{ }^{2}}{R} \checkmark$
$100 \checkmark=\frac{\left(\frac{340}{\sqrt{2}}\right)^{2}}{\mathrm{R}} \checkmark$
$R=578 \Omega \checkmark$
$\frac{\text { OPTION 2 }}{}$
$V_{\text {ms }}=\frac{V_{\text {max }}}{\sqrt{2}}=\frac{340}{\sqrt{2}} \checkmark=240,04$
$P_{\text {ave }}=\frac{V_{\text {ms }}^{2}}{R} \checkmark$
$100 \checkmark=\frac{240,04^{2}}{R} \checkmark$
$R=578 \Omega \checkmark$

5.1.2

$\frac{\text { OPTION 1 }}{P_{\mathrm{av}}}=\mathrm{I}_{\mathrm{rms}} \mathrm{V}_{\text {rss }} \checkmark$			
100	$=\mathrm{I}_{\text {rms }} \frac{340}{\sqrt{2}} \checkmark$		
$I_{\text {rms }}$	$=\frac{100}{\frac{340}{\sqrt{2}}}$		
	$=0,417 \mathrm{~A} \checkmark$	\quad	OPTION 2
:---			
$\mathrm{V}_{\text {rms }}=\mathrm{I}_{\mathrm{rms}} \mathrm{R} \checkmark$			

5.2 Can be stepped up or down/ can be transmitted with less power loss.

QUESTION 6

6.1.1

Move the bar magnet very quickly
up and down inside the coil
6.1.2 Electromagnetic induction
6.1.3 Commutator/ split rings
6.2.1

$$
\begin{aligned}
I_{\text {rms }} & =\frac{V_{\text {rms }}}{R} \checkmark \\
& =\frac{220}{40,33} \checkmark \\
& =5,45 \mathrm{~A} \\
\mathrm{~W} & =\mathrm{I}_{\text {rms }}^{2} \mathrm{R} \Delta \mathrm{t} \\
& =\left(5,45^{2}\right)(40,33)(1) \checkmark \\
& =1197,9 \mathrm{~J} \text { OR/OF } 1200,10 \mathrm{~J} \checkmark
\end{aligned}
$$

6.2 .2

OPTION 1

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ms}}=\frac{\mathrm{V}_{\max }}{\sqrt{2}} \\
& 220=\frac{\mathrm{V}_{\max }}{\sqrt{2}} \\
& \mathrm{~V}_{\max }=311,13 \mathrm{~V} \\
& \mathrm{I}_{\max }=\frac{\mathrm{V}_{\max }}{\mathrm{R}}=\frac{331,13}{40,33} \\
&=7,71 \mathrm{~A} \checkmark \\
& \mathrm{OR} / \mathrm{OF} \\
& \mathrm{P}_{\mathrm{ave}}=\frac{\mathrm{V}_{\max } \mathrm{I}_{\max }}{2} \\
& 1200,1=\frac{(311,13) \mathrm{I}_{\max }}{2} \\
& \mathrm{I}_{\max }=7,71 \mathrm{~A}
\end{aligned}
$$

OPTION 2

$$
\mathrm{P}_{\text {average }}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{mms}} \checkmark
$$

$$
1200.1=\left.(220)\right|_{\mathrm{rms}^{\checkmark}}
$$

$$
\mathrm{I}_{\mathrm{rms}}=5,455 \mathrm{~A}
$$

$$
\begin{align*}
I_{\max } & =\sqrt{2}(5,455) \\
& =7,71 \mathrm{~A} \tag{7,715A}
\end{align*}
$$

OPTION 3

$$
\begin{aligned}
& \mathrm{P}_{\text {average }}=I_{\mathrm{rms}}^{2} R \\
& \begin{aligned}
& 1200,1=I^{2} \\
& \hline I_{\mathrm{mms}}=5,455 \mathrm{~A} \\
& \begin{aligned}
I_{\max } & =\sqrt{2} I_{\mathrm{rms}} \\
& =\sqrt{2}(5,43) \\
& =7.7 .1 \mathrm{~A} \checkmark
\end{aligned}
\end{aligned} .
\end{aligned}
$$

QUESTION 7

7.1
7.1.1 North pole
7.1.2 Q to P
7.2.1

$$
\begin{aligned}
& I_{\text {rms }}=\frac{I_{\text {max }}}{\sqrt{2}} \checkmark \\
& I_{\text {rms }}=\frac{8}{\sqrt{2}} \checkmark \\
& =5,66 \mathrm{~A} \\
& V_{\text {rms }}=I_{\text {rms }} R \checkmark \\
& 220=(5,66) R \\
& R=38,87 \Omega
\end{aligned}
$$

OR

$V_{\text {rms }}=\frac{V_{\text {max }}}{\sqrt{2}} \downarrow$
$220=\frac{V_{\text {max }}}{\sqrt{2}} \downarrow$
$\mathrm{V}_{\text {max }}=311,12 \mathrm{~V}$
$V_{\text {max }}=I_{\text {max }} R \checkmark$
$311,12=(8) R \checkmark$
$R=38,89 \Omega \checkmark$
7.2.2

$$
\begin{aligned}
& \begin{aligned}
& \begin{aligned}
\text { OPTION } 1
\end{aligned} \\
& \begin{aligned}
\text { Paverage } & =\mathrm{V}_{\text {rms }} \mathrm{I}_{\text {ms }} \checkmark \\
& =(220)(5,66) \checkmark \\
& =1245,2 \mathrm{~W}
\end{aligned} \\
& \mathrm{P}=\frac{\mathrm{W}}{\Delta \mathrm{t}} \checkmark
\end{aligned} \\
& \begin{array}{rl}
1245,2 & =\frac{\mathrm{W}}{7200} \checkmark \\
\mathrm{~W}=8 & 965440 \mathrm{~J} \checkmark
\end{array}
\end{aligned}
$$

$P_{\text {average }}=I_{\text {ms }}^{2} R$

QUESTION 8

8.1.1DC-generator

Uses split ring/commutator
8.1.2

8.2.1

OPTION 1	
V V max	ORIOF
$V_{\text {rms. }}=\frac{\max ^{2}}{\sqrt{2}}$	$V_{\mathrm{rms}}=\frac{V_{\max }}{}=\frac{340}{\sqrt{T}}=240,416$
$\mathrm{P}_{\text {ave }} \quad=\mathrm{V}_{\text {rms }} \quad \mathrm{I}_{\text {ms }}$	$V_{\text {ms }}=\frac{V^{2}}{}{ }^{2}$
$800=\frac{340}{\sqrt{2}}\left(1_{\mathrm{mms}}\right) \checkmark$	$\begin{aligned} & \mathrm{P}_{\text {ave }}=\mathrm{V}_{\text {rms }} \quad \mathrm{I}_{\text {ms }} \quad \checkmark \\ & \underline{800=\mathrm{I}_{\text {ms }} \quad(240,416)}, \end{aligned}$
$\mathrm{I}_{\mathrm{ms}}=3,33 \mathrm{~A}$	$\mathrm{I}_{\text {rms }}=3,33 \mathrm{~A} \checkmark$

8.2.2

$$
P_{\text {ave }} \quad=V_{\mathrm{ms}} \quad I_{\mathrm{rms}}
$$

for the kettle

$$
\begin{aligned}
2000 & =\frac{340}{\sqrt{2}}\left(I_{\text {rms }}\right)^{\checkmark} \\
I_{\text {rms }} & =8,32 \mathrm{~A} \\
\mathrm{I}_{\text {tot }} & =(8,32+3,33) \\
& =11,65 \mathrm{~A}
\end{aligned}
$$

PHOTOELECTRIC EFFECT SOLUTIONS

QUESTION 1

1.1 It is the minimum energy that an electron in the metal needs to be emitted from the metal surface
1.2 Frequency/Intensity
1.3 The minimum frequency required to remove an electron from the surface of the metal.
1.4

$$
\begin{aligned}
& \left.\begin{array}{l}
E=W_{0}+E_{k} \\
h f=h f_{0}+E_{k}
\end{array}\right\} \quad \checkmark \text { Any one } \\
& \begin{array}{l}
\mathrm{hf}=\mathrm{hfo}_{0}+\mathrm{E}_{k} \\
\left(6,63 \times 10^{-34}\right)\left(6,50 \times 10^{14}\right) \downarrow=\left(6,63 \times 10^{-34}\right)\left(5,001 \times 10^{14}\right) \checkmark+1 / 2\left(9,11 \times 10^{-31}\right) v^{2} \downarrow
\end{array} \\
& \therefore \mathrm{v}=4,67 \times 10^{5} \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark
\end{aligned}
$$

$$
\begin{aligned}
& E_{K}=1 / 2 m v^{2} v \\
& v=\sqrt{\frac{2 \mathrm{E}_{\mathrm{k}}}{\mathrm{~m}}}=\sqrt{\frac{(2)\left(9,94 \times 10^{-20}\right)}{9,11 \times 10^{-31}}} \stackrel{\rightharpoonup}{ } \\
& v=4.67 \times 10^{5} \mathrm{~m} \cdot \mathrm{~s}^{-1} \mathrm{v}
\end{aligned}
$$

1.5 The photocurrent is directly proportional to the intensity of the incident light.

QUESTION 2

2.1.1 The minimum frequency (of a photon/light) needed to emit electrons from (the surface of) a metal. (substance)

OR
The frequency (of a photon/light) needed to emit electrons from (the surface of) a metal. (substance) with zero kinetic energy.

2.1.2 Silver

Threshold/cutoff frequency (of Ag) is higher
OR
To eject electrons with the same kinetic energy from each metal, light of a higher frequency/energy is required for silver. Since $\mathrm{E}=\mathrm{Wo}+\mathrm{Ek}(\max)$ (and Ek is constant),
the higher the frequency/energy of the photon/light required, the greater is the work function/Wo.

2.1.3 Planck's constant

2.1.4 Sodium
2.2.1

Energy radiated per second by the blue light

$$
=\left(\frac{5}{100}\right)\left(60 \times 10^{-3}\right) \checkmark=3 \times 10^{-3} \mathrm{~J} \cdot \mathrm{~s}^{-1}
$$

$E_{\text {photon/fotoon }}=\frac{h c}{\lambda} \checkmark$

$$
=\frac{\left(6,63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{470 \times 10^{-9}}
$$

$$
=4,232 \times 10^{-19} \mathrm{~J}
$$

Total number of photons incident per second,

$$
\begin{align*}
& =\frac{3 \times 10^{-3}}{4,232 \times 10^{-19}} \downarrow \\
& =7,09 \times 10^{15} \tag{5}
\end{align*}
$$

2.2.2

7, 09×1015 (electrons per second)
OR
Same number as that calculated in Question 10.2.1 above 2.2.1
[13]

QUESTION 3

3.1 It is the process whereby electrons are ejected from a metal surface when light (of suitable frequency) is incident on it.

Downloaded from Stanmorepfysics.com
3.2

3.3.1

OPTION 1

$$
\begin{aligned}
& \frac{1}{\lambda}=1,6 \times 10^{6} \mathrm{~m}^{-1} \checkmark \\
& \mathrm{f}_{\mathrm{o}}=\mathrm{c} \frac{1}{\lambda} \downarrow \\
&=\left(3 \times 10^{8}\right)\left(1,6 \times 10^{6}\right) \checkmark \\
&=4,8 \times 10^{14} \mathrm{~Hz} \\
& \text { OPTION 2 }
\end{aligned}
$$

$$
\text { By extrapolation: } y \text {-intercept }=-W_{c}
$$

$$
W_{0}=h f_{0} r
$$

$$
3,2 \times 10^{-19} \checkmark=\left(6,63 \times 10^{-34}\right) \mathrm{f}_{0}
$$

$$
\mathrm{f}_{0}=4,8 \times 10^{14} \mathrm{~Hz} \checkmark
$$

(4)
(4)
3.3.2

$$
\begin{aligned}
\mathrm{hc} & =\text { Gradient } \\
& =\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}} \\
& =\frac{6,6 \times 10^{-19}}{(5-1,6) \times 10^{6}} \\
& =1,941 \times 10^{-25}(\mathrm{~J} \cdot \mathrm{~m}) \\
\mathrm{h} & =\frac{\text { gradient }}{\mathrm{c}} \\
\mathrm{~h} & =\frac{1,941 \times 10^{-25}}{3 \times 10^{8}} \\
& =6,47 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
\end{aligned}
$$

OR

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{o}}=\frac{\mathrm{hc}}{\lambda_{o}} \text { or } / \text { of } \mathrm{W}_{\mathrm{o}}=\mathrm{hc} \frac{1}{\lambda_{o}} \\
& 3,2 \times 10^{-19} \mathrm{\checkmark}=\mathrm{h}\left(3 \times 10^{8}\right)\left(1,6 \times 10^{6}\right) \checkmark \\
& \mathrm{h}=6,66 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \checkmark
\end{aligned}
$$

QUESTION 4

4.1 photoelectric effect
$4.2 \quad \mathrm{~h} \frac{c}{\lambda}=\mathrm{Wo}+\frac{1}{2} \mathrm{mv}^{2}$
$\left(6,63 \times 10^{-34}\right)\left(3 \times 10^{8}\right) \div 200 \times 10^{-9}=8,00 \times 10^{-19}+0,5 \times 9,11 \times 10^{-31} \times \mathrm{v}^{2}$ $\mathrm{v}=653454,89 \mathrm{~m} . \mathrm{s}^{-1}$

QUESTION 5

5.1 The minimum frequency (of a photon/light) needed to emit electrons from (the surface of) a metal (substance).
5.2

OPTION 1

$$
\left.\begin{array}{l}
\mathrm{E}=\mathrm{W}_{o}+\mathrm{E}_{\mathrm{k}(\max)} \\
\mathrm{E}=\mathrm{W}_{o}+\frac{1}{2} \mathrm{mv}_{\max }^{2} \\
\mathrm{~h} \frac{\mathrm{C}}{\lambda}=\mathrm{hf}_{0}+\frac{1}{2} \mathrm{mv}_{\max }^{2} \tag{5}
\end{array}\right\} \checkmark \text { Any one }
$$

OPTION 2

$$
\begin{align*}
& \left.\begin{array}{l}
\mathrm{E}=\mathrm{W}_{\mathrm{o}}+\mathrm{E}_{\mathrm{k}(\max)} \\
\mathrm{E}=\mathrm{W}_{\mathrm{o}}+\frac{1}{2} \mathrm{mv}_{\max }^{2} \\
\mathrm{hf}=\mathrm{hf}_{0}+\frac{1}{2} \mathrm{mv}_{\max }^{2}
\end{array}\right\} \checkmark \text { Any one } \\
& \left(6,63 \times 10^{-34}\right) \mathrm{f}=\left(6,63 \times 10^{-34}\right)\left(5,548 \times 10^{14}\right)^{\checkmark}+\frac{1}{2}\left(9,11 \times 10^{-31}\right)\left(5,33 \times 10^{5}\right)^{2} \checkmark \\
& f=7,5 \times 10^{14} \mathrm{~Hz} \\
& \mathrm{c}=\mathrm{f} \lambda \\
& 3 \times 10^{8}=\left(7,5 \times 10^{14}\right) \lambda \checkmark \\
& \lambda=4 \times 10^{-7} \mathrm{~m} \checkmark \tag{5}
\end{align*}
$$

5.3 Smaller (less) than
5.4 The wavelength/frequency/energy of the incident light (photon/hf) is constant \square.

Since the speed is larger, the kinetic energy is larger $\square \quad$ the work function W ㅇ/threshold frequency smaller.

