

Education

KwaZulu-Natal
Department of Education
REPUBLIC OF SOUTH AFRICA

downloaded from stanmorephysics.com

CURRICULUM DIRECTORATE

LEARNER ASSISTANCE REVISION DOCUMENT

SOLUTIONS P2

GRADE 12-2020

PHYSICAL SCIENCES

downloaded from stanmorephysics.com

Downloaded from Stanmorepfysics.com

CHEMISTRY- PAPER 2

ORGANIC CHEMISTRY

	Question 1	(2)
1.1	A $\checkmark \checkmark$	(2)
1.2	B $\checkmark \checkmark$	(2)
1.3	B $\checkmark \checkmark$	(2)
1.4	B $\checkmark \checkmark$	(2)
1.5	A $\checkmark \checkmark$	(2)
1.6	B $\checkmark \checkmark$	(2)
1.7	A $\checkmark \checkmark$	(2)
1.8	D $\checkmark \checkmark$	(2)
1.9	B $\checkmark \checkmark$	(2)
1.10	D $\checkmark \checkmark$	(2)
1.11	A $\checkmark \checkmark$	(2)
1.12	C $\checkmark \checkmark$	(2)
1.13	B $\checkmark \checkmark$	(2)
1.14	D $\checkmark \checkmark$	(2)
		$[28]$

	Question 2	
2.1.1	Alkyne \checkmark	(1)
2.1 .2	Hydroxyl \checkmark	(1)
2.1 .3	C \checkmark	(1)
2.1.4	2-methylpentan-2-one $\checkmark \checkmark$	(2)
2.1 .5		(2)
2.1.6	$2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \quad 8 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{rbal}$	(3)
2.2.1	Compounds with the same molecular formula but different positions of the side chain, substituent or functional group on the parent chain.	(2)
2.2.2	C and D \checkmark	(1)

Downloaded from Stanmorepfysics.com

2.3		(2)
2.4	Propanoic acid $\checkmark \checkmark$	(2)
		[17]

	Question 3	
3.1.1	B \checkmark	(1)
3.1.2	E \checkmark	(1)
3.1.3	F \checkmark	(1)
3.2.1	2-bromo-3-chloro-4-methylpentane	(3)
3.2.2	Ethene \checkmark	(1)
3.3.1		(2)
3.3.2		(2)
3.4.1	Compounds that have the same molecular formula but different functional groups.	(2)
3.4.2	B and F \checkmark	(1)

	Question 4	
4.1 .1	Carboxyl group \checkmark	(1)
4.1 .2	Ketones \checkmark	(1)
4.1 .3	Addition \checkmark	(1)

Downloaded from Stanmorepfysics.com

4.2	Ethene \checkmark	(1)
4.3	$\begin{aligned} & \mathrm{CO}_{2} / \text { Carbon dioxide } \\ & \mathrm{H}_{2} \mathrm{O} / \text { Water } \checkmark \end{aligned}$	(2)
4.4.1		(2)
4.4.2		(2)
		[10]

	Question 5	(2)
5.1.1	B $\checkmark \checkmark$	(2)
5.1.2		(2)
5.1.3	$\mathrm{CnH}_{2 n-2}{ }^{\text {r }}$	(1)
5.1.4	4-ethyl-5-methylhept-2-yne	(3)
5.1.5	Butan-2-one $\checkmark \checkmark$	(2)
5.2.1	Alkanes $\checkmark \checkmark$	(2)
5.2.2	 2-methylpropane $\checkmark \checkmark$	(2)
5.3.1	Haloalkanes \checkmark	(1)
5.3.2	Substitution \checkmark	(1)

	Question 6	
6.1	Temperature at which the vapour pressure of a substance is equal to the atmospheric pressure. $\checkmark \checkmark$	(2)

6.2.1	As the chain length increases, the boiling point increases \checkmark	(1)
6.2.2	An increase in chain length leads to an increase in the strength of London forces and molecular mass, resulting in higher boiling point and more energy required to overcome the London forces. $\checkmark \checkmark \checkmark$	(3)
6.2.3	Alkene - London forces \checkmark Alcohols - London forces, dipole-dipole forces and hydrogen bonds. \checkmark Since hydrogen bonds are stronger than London forces, the boiling point of alcohols will be higher. \checkmark	(3)
		[9]

	Question 7	
7.1	Single bonds between carbon atoms \checkmark	(1)
7.2.1	- $\mathrm{O}-\mathrm{H} \checkmark$	(1)
7.2.2		(2)
7.3.1	What is the relationship between the boiling point and chain length in alkanes?	(2)
7.3.2	Alkanes have London forces. As chain length increases, so does London forces.	(2)
7.4	Propane - London forces. Propanol - London forces, dipole-dipole forces and hydrogen bonds. $\checkmark \checkmark$ Since hydrogen bonding is stronger than london forces, the boiling point of propanol is greater than the boiling point of propaneas more energy is required to overcome the intermolecular forces.	(2)
		[10]

Question 8

8.1.1 Alkene \checkmark
8.2.1 Addition \checkmark
8.2.2 Substitution \checkmark
8.2.3 Dehydration \checkmark
8.2.4 Addition \checkmark
8.3 Propan-2-ol \checkmark
8.4 Catalyst / Dehydration agent \checkmark
8.5 Concentrated strong base / NaOH

Warm ethanolic, Mild heat
any $2 \checkmark \checkmark$
[9]

Question 9

9.1 Haloalkane/alkyl halide \checkmark

9.2

9.2.1 Elimination/dehydrohalogenation \checkmark
9.2.2 Substitution/hydrolysis \checkmark
9.2.3 Esterification/condensation \checkmark
9.3
9.3.1 • (Mild) heat/Heating/

- Dilute (strong base) $\mathrm{NaOH} / \mathrm{KOH} / \mathrm{LiOH}) \checkmark$

OR

Add water $/ \mathrm{H}_{2} \mathrm{OH}_{2} \mathrm{O}$ by
9.3.2 Propan-1-ol/1-propanol $\checkmark \checkmark$

Marking criteria

- Correct stem and functional group i.e. propanol \checkmark
- Whole name correct propan-1-ol \checkmark
9.4

9.5

POSITIVE MARKING FROM Q4.3.2 ONLY IF THE COMPOUND IN Q4.3.2 IS AN ALCOHOL.
9.5.1

$H \checkmark$
9.5.2 (Concentrated) sulphuric acidH $\mathrm{SO}_{4} \checkmark$

Downloaded from Stanmorepfysics.com

CHEMICAL CHANGE

Energy changes

Class activity

1.1 A - Energy of reactants \checkmark

B - Activation energy for the forward reaction without the catalyst
C - Activated complex \checkmark
D - Activation energy for the forward reaction with the catalyst \checkmark
E - Energy of products \checkmark
F - Enthalpy / heat of reaction \checkmark
1.2 $\begin{aligned} \Delta \mathrm{H} & =\mathrm{E} \text { products }-\mathrm{E}_{\text {reactants }} \checkmark \\ & =60-40 \checkmark \\ & =20 \mathrm{~kJ} \checkmark\end{aligned}$
1.3 Exothermic \checkmark
1.4 Non-spontaneous $\checkmark \checkmark$
1.5 Decreases \checkmark

CHEMICAL EQUILIBRIUM

Question 1

1.1.1 dynamic equilibrium \checkmark
1.1.2 NH_{3} was added to the system \checkmark
1.1.3 According to Le Chatelier an increase in the $\left[\mathrm{NH}_{3}\right]$ will cause the equilibrium system to counteract the stress by favouring the side that decreases $\mathrm{NH}_{3} \checkmark$.
The reverse reaction is favoured \checkmark (equilibrium system shifts to the left). The H_{2} and N_{2} increases.

1.1.4

	N_{2}	H_{2}	NH_{3}
Ratio	1	3	2
Initial	1,5	2	0
Change	$-0,5 \checkmark$	$-1,5 \checkmark$	$+1 \checkmark$
Equilibrium	$1 \checkmark$	$0,5 \checkmark$	1
[]	2	1	2

$$
\begin{align*}
\mathrm{K}_{\mathrm{c}} & =\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]^{1}} \\
& =\frac{2^{2}}{1^{3} 2} \quad \checkmark \\
\mathrm{~K}_{\mathrm{c}} & =8 \quad \checkmark \tag{8}
\end{align*}
$$

1.1.5 (a) Decrease \checkmark
(b) According to Le Chatelier, an increase in temperature will cause the system to counteract by favouring the side that will decrease the temperature \checkmark. The endothermic reaction will cause a decrease in temperature \checkmark and thus the reverse reaction is favoured \checkmark. When the reverse reaction is favoured [reactants] increases and [products] decreases \checkmark. Kc is the ratio of [products] and [reactants] \checkmark.

The Kc value will therefore decrease.
1.2.1 decrease $\checkmark \checkmark$
1.2.2 remains the same $\checkmark \checkmark$

Question 2

2.1 $\quad 2 X A_{2}+A_{2} \rightleftharpoons 2 X A_{3} \checkmark \checkmark$
2.2.1 When an external stress (change in pressure, temperature or concentration) is applied to a system in chemical equilibrium, the equilibrium point will change in such a way as to counteract the stress.
2.2.2 Stress: Decrease pressure

Response: Favour reverse reaction \checkmark Graph shows rates of both reactions decreased but reverse decreased the least (favoured).
Reason: the reverse reaction produces more moles of gas \checkmark relieving stress of decreased pressure. \checkmark
$2.3 \mathrm{~K}_{\mathrm{c}}=\frac{[\mathrm{XA}]^{2}\left[\mathrm{~A}_{2}\right]}{\left[\mathrm{XA} \mathrm{A}_{3}\right]^{2}} \checkmark \checkmark$
2.4

	$2 \mathrm{XA}_{3}$	$2 \mathrm{XA}_{2}$	$\mathrm{~A}_{2}$
Mol ratio (R)	2	2	1
Mol start (I)	5	0	0
Mols used/formed (C)	$3 \checkmark$	$(3$	$1,5) \checkmark$
Mol eqm (E)	2	$(3$	$1,5) \checkmark$
Conc. at eqm (vol $\left.=2 \mathrm{dm}^{3}\right)$	1	1,5	$0,75 \checkmark$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\frac{(1,5)^{2}(0,75)^{\checkmark}}{1^{2}} \\
& =1,69 \checkmark
\end{aligned}
$$

Question 3

3.1 Forward reaction \checkmark because the reaction rate increases / there were only products at the start of the reaction \checkmark
$3.2 \mathrm{Kc}<1 \checkmark$ The amount of reactants are greater than the amount of products \checkmark
3.35 minutes \checkmark
3.4 Equal to $\checkmark \checkmark$
3.5 - Both the forward and reverse reaction rates will initially decrease \checkmark

- The rate of the forward reaction will decrease more as the forward reaction is endothermic \checkmark
- Thus, the reverse reaction is initially favoured \checkmark
- Decreasing the yield of NO \checkmark
3.6

$$
\begin{equation*}
\mathrm{Kc}=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]} \checkmark \checkmark \tag{2}
\end{equation*}
$$

Downloaded from Stanmorephysics.com

3.7 Concentrations:

R	N_{2}	+	O_{2}	\rightleftharpoons	2 NO
I	0	0		8	
C	+x		+x		-2 x
E	x	x		$8-2 \mathrm{x}$	

$$
\begin{align*}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]} \\
& \left(4,8 \times 10^{-4}\right)=\frac{(8-2 \mathrm{x})^{2}}{(\mathrm{x})(\mathrm{x})} \checkmark \checkmark \\
& \mathrm{x}=\left[\mathrm{N}_{2}\right]=3,96 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \tag{5}
\end{align*}
$$

Question 4

4.1.1 Greater than \checkmark - steeper gradient \checkmark at time $t_{i} /$ gradient decreases from t_{1} to $t_{2} \checkmark$
4.1.2 Equal to \checkmark
4.1.3

	HCl	O_{2}	$\mathrm{H}_{2} \mathrm{O}$	Cl_{2}
R	4	1	2	2
I	1	0,3	0	0
C	$4 \times 0,2=0,8 \checkmark$	$0,2 \checkmark$		
E	0,2	$0,1 \checkmark$	0,4	0,4

$n(\mathrm{HCl})=10,8-0,2 \mathrm{~mol} \checkmark$
4.1.4 $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=0,4 \mathrm{~mol} \checkmark$
$n\left(C l_{2}\right)=0,4 \checkmark+\checkmark$ for method.
4.1.5
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} \checkmark\left[\mathrm{Cl}_{2}\right]^{2}}{[\mathrm{HCl}]^{4} \sqrt{ }\left[\mathrm{O}_{2}\right] \checkmark} \checkmark$
4.1.6
$\mathrm{HCl}: \quad \mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}} \checkmark=\frac{0,2}{5}=0,04 \checkmark$
$\mathrm{O}_{2}: \quad \frac{0,1}{5}=0,02$
$\left(\mathrm{H}_{2} \mathrm{O}\right) \frac{0,4}{5}=0,08$
$\left(\mathrm{Cl}_{2}\right) \frac{0,4}{5}=0,08$
$\mathrm{K}_{\mathrm{c}}=\frac{(0,08)^{2} \cdot(0,08)^{2}}{(0,04)^{4} \cdot 0,02}$
$\mathrm{K}_{\mathrm{c}}=800 \mathrm{~V}$
4.2 Decrease \checkmark.An increase in temperature will favour the reverse \checkmark reaction, as it is endothermic \checkmark, to try to reduce the heat. This will decrease the yield \checkmark
low Kc.
4.3.1 Decrease $\checkmark \checkmark$
4.3.2 Remain the same $\checkmark \checkmark$
4.3.3 Decreases $\checkmark \checkmark$

Question 5

5.1 Small, thus low concentration of product. Equilibrium lies to the left\{little NO \checkmark
$5.20,2 \mathrm{~mol} \checkmark$
$5.31,8 \mathrm{~mol} \checkmark$
5.4

$$
\begin{equation*}
\mathrm{c}=\frac{\mathrm{n}}{\mathrm{~V}} \checkmark=\frac{0,4}{2} \checkmark=0,2 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \tag{2}
\end{equation*}
$$

5.5

$$
\begin{align*}
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{N}_{2}\right]} & \checkmark \\
= & \frac{(0,2)^{2}}{(3,4)(0,9)} \checkmark \checkmark \\
= & 0,013 \checkmark \tag{4}
\end{align*}
$$

5.6 Kc increased at higher temperature \checkmark

Downloaded from Stanmorepfysics.com

Thus more products \checkmark
Thus equilibrium shifts to right \checkmark
Thus forward reaction is endothermic \checkmark

Question 6

$6.12 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{2} \checkmark \checkmark$
6.2 concentration of $\mathrm{SO}_{3} \checkmark$ decreases \checkmark
6.3 forward reaction rate increases more than the reverse

$$
\begin{equation*}
\text { thus the forward reaction is endothermic } \checkmark \checkmark \tag{2}
\end{equation*}
$$

6.4 equilibrium \checkmark
6.5 both rates decrease immediately $\checkmark \checkmark$

Question 7

7.1 Reversible reaction \checkmark
7.2 To favour the forward reaction/production of ammonia./

To increase the yield of ammonia./Prevent the decomposition of $\mathrm{NH}_{3} . \checkmark$
7.3 20\%
7.4.1 The (forward) reaction is exothermic \checkmark

An increase in temperature favours the endothermic reaction \checkmark

The reverse reaction is favoured (resulting in a lower yield of ammonia) \checkmark OR
The (forward) reaction is exothermic \checkmark
A decrease in temperature favours the exothermic reaction \checkmark

The forward reaction is favoured (resulting in a higher yield of ammonia) \checkmark
7.4.2 An increase in pressure favours the reaction that produces the lower number of moles/volume of gas \checkmark

The forward reaction is favoured (resulting in a higher yield of ammonia) \checkmark OR

A decrease in pressure favours the reaction that produces the higher number of moles/volume of gas \checkmark
Forward reaction is favoured (resulting in a higher yield of ammonia) \checkmark

ACIDS AND BASES

Activity 1

1. $B \checkmark \checkmark$
2. $B \checkmark \checkmark$
3. $A \checkmark \checkmark$
4. $C \checkmark \checkmark$
5. $B \checkmark \checkmark$

Structured Activities

Question 1

1.1.1 Each molecule can donate two hydrogen atoms $\checkmark \checkmark$
1.1.2 $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$
1.2.1 Strong acid \checkmark
1.2.2 $p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \checkmark$
$1=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \checkmark$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-1}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.1 \mathrm{~mol} . \mathrm{dm}^{-3} \checkmark$

Question 2 (NORTH-WEST (SEPTEMBER) 2015)

2.1 An acid as a proton $\left(\mathrm{H}^{+}\right)$donor $\checkmark \checkmark$
2.2.1 $\mathrm{HF} / \mathrm{F}^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$
2.2.2 Water \checkmark
2.3.1 Sulphuric acid ionises completely in water.

Downloaded from Stanmorepfysics.com

2.3.2 $\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$

$$
\begin{gather*}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2 \times 0,025} \\
=0.05 \mathrm{~mol} . \mathrm{dm}^{-3} \checkmark \\
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \checkmark \\
p H=-\log [0.05] \checkmark \\
p H=1.30 \checkmark \tag{4}
\end{gather*}
$$

Question 3 (MPUMALANGA (SEPTEMBER) 2015)

3.1.1 A solution of precisely known concentration $\checkmark \checkmark$
(2)
3.1.2

$$
\begin{align*}
& c=\frac{m}{M V} \checkmark \\
& 0,2 \checkmark=\frac{m}{56 \times 0,3} \checkmark \tag{4}
\end{align*}
$$

$m=3,36 \mathrm{~g} \checkmark$
3.1.3
$p O H=-\log \left[\mathrm{OH}^{-}\right] \checkmark$
$p O H=-\log [0,2] \checkmark$
$p O H=0,70 \checkmark$
$p O H+p H=14$
$0,70+p H=14 \checkmark$
$p H=13,30 \checkmark$
3.1.4 Bromothymol blue \checkmark
3.1.5 $\quad \frac{C_{a} V_{a}}{C_{b} V_{b}}=\frac{n_{1}}{n_{2}} \quad \checkmark$
$\frac{C_{a \times 20}}{0,2 \times 15} \checkmark=\frac{1}{2} \checkmark$
$C_{a}=0,075 \mathrm{~mol} . \mathrm{dm}^{-3} \checkmark$

ELECTROCHEMICAL CELLS

MULTIPLE CHOICE QUESTIONS

$1.1 \mathrm{C} \checkmark \checkmark$
1.2 $D \checkmark \checkmark$
1.3 C $\checkmark \checkmark$
1.4 A $\checkmark \checkmark$
$1.5 A \checkmark \checkmark$

Downloaded from Stanmorephysics.com

Question 2 DBE FEB-MARCH 2017

2.1
2.1.1 Salt bridge \checkmark
2.1.2 Voltaic / Galvanic cell \checkmark
2.2
2.2.1 Decreases \checkmark
2.2.2 Increases \checkmark
2.3
2.3.1 $\mathrm{Y}(\mathrm{s}) \rightarrow \mathrm{Y}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \checkmark \checkmark \quad$ Ignore phases

OR

$\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
(2)
2.3.2 $\mathrm{Y}(\mathrm{s})\left|\mathrm{Y}^{2+}(\mathrm{aq})\left\|\mathrm{Al}^{3+}(\mathrm{aq})|\mathrm{Al}(\mathrm{s}) \mathrm{OR} \quad \mathrm{Mg}(\mathrm{s})| \mathrm{Mg}^{2+}(\mathrm{aq})\right\| \mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})\right| \mathrm{Al}(\mathrm{s}$

OR
$\mathrm{Y}(\mathrm{s})\left|\mathrm{Y}^{2+}\left(1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}\right) \checkmark \| \mathrm{Al}{ }^{3+}\left(1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}\right)\right| \mathrm{Al}(\mathrm{s}) \checkmark \checkmark$
Accept
$Y\left|Y^{2+} \| A l^{3+}\right| A l$

2.4	$\frac{\text { OPTION 1 }}{E_{\text {cell }}^{\theta}=E_{\text {reduction }}^{\theta}-E^{\theta} \theta{ }_{\text {oxidation }}}$ $0,7^{\checkmark}=-1,66^{\prime}-E^{\theta}$ E^{θ} oxidation $=-2,36(V)^{\checkmark}$ Y is $\mathrm{Mg} \checkmark$	Notes - Accept any other correct formula from the data sheet. - Any other formula using unconventional abbreviations, e.g. - $\mathrm{E}^{\circ}{ }_{\text {cell }}=\mathrm{E}^{\circ} \mathrm{OA}-\mathrm{E}^{\circ}{ }_{\mathrm{RA}}$ followed by correct substitutions
	OPTION 2	

Downloaded from Stanmorephysics.com

Question 3 (DBE FEB-MARCH 2017)

3.1 Bauxite \checkmark
3.2 Oxidation \checkmark
3.3 Reduce melting point \checkmark

OR
To lower the temperature / energy needed to melt the $\mathrm{Al}_{2} \mathrm{O}_{3}$.

ACCEPT

To dissolve the $\mathrm{Al}_{2} \mathrm{O}_{3}$ so that it can electrolysed easier
3.4 $\quad \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s}) \checkmark \checkmark$

Ignore phases
(2)
$3.5 \quad \mathrm{C}+\mathrm{O}_{2} \checkmark \rightarrow \mathrm{CO}_{2} \checkmark \quad \checkmark \mathrm{bal}$ OR $2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Al}+3 \mathrm{CO}_{2}$

Question 4 DBE FEB-MAR 2018

4.1

4.1.1 A substance that loses/donates electrons.

4.1.2 Platinum/Pt \checkmark

4.1.3 $\mathrm{Sn}^{2+}(\mathrm{aq}) / \operatorname{tin}(\mathrm{II})$ ions/tin(II) \checkmark
4.1.4 $\mathrm{Pt}\left|\mathrm{Sn}^{2+}\left(1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}\right), \mathrm{Sn}^{4+} \checkmark\left(1 \mathrm{~mol}^{2} \cdot \mathrm{dm}^{-3}\right) \| \mathrm{Ag}^{+}\left(1 \mathrm{~mol}^{2} \cdot \mathrm{dm}^{-3}\right)\right| \mathrm{Ag}(\mathrm{s}) \downarrow \checkmark$
ACCEPT $\frac{\mathrm{ACCEP}}{\mathrm{Pt}} \mathrm{Sn}^{2+}\left|\mathrm{Sn}^{4+} \| \mathrm{Ag}^{+}\right| \mathrm{Ag}$

$$
\text { 4.1.5 } \quad \begin{aligned}
\mathrm{E}_{\text {cell }}^{\theta} & =\mathrm{E}_{\text {reduction }}^{\theta}-\mathrm{E}_{\text {oxidation }}^{\theta} \\
& =+0,80 \vee-(+0,15) \checkmark \\
& =0,65 \vee \checkmark
\end{aligned}
$$

Question 5 DBE MAY-JUNE 2017

5.1 Electrolytic (cell) \checkmark
5.2 P \checkmark
5.3
5.3.1 $\mathrm{Au}(\mathrm{s}) \rightarrow \mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \checkmark \checkmark$
5.3.2 $(+) 3 \checkmark$
5.3.3 Electrical energy (is converted) to chemical energy.
5.3.4 Becomes smaller / thinner / eroded / decrease in mass. \checkmark
5.4 ANY ONE

- Increase in value. Protection against rust. \checkmark
5.5 ANY ONE
- Replace $\mathrm{Au}^{3+}(\mathrm{aq})$ / electrolyte with $\mathrm{Ag}^{+}(\mathrm{aq})$ / silver(I) solution / use a silver solution
- Replace P / anode / gold with Ag(s) / silver

CHEMICAL SYSTEMS

Question 1 (DBE FEB-MARCH 2018 Q10)

1.1
1.1.1 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \checkmark \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \checkmark \quad$ bal \checkmark
1.1.2 $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \checkmark$
1.1.3 Ostwald process \checkmark
1.1.4 Ammonium nitrate \checkmark
1.2
1.2.1 The ratio of nitrogen (N), phosphorous (P) and potassium (K) in a certain fertiliser. \checkmark
1.2.2 Percentage fertiliser in the bag. \checkmark
1.2.3 OPTION 1: $\quad \% \mathrm{~K}=12$
$5 \checkmark \times 22 \% \checkmark$ = 9,17\%
$\therefore \mathrm{m}(\mathrm{N})=\underline{9,17} \times 10 \mathrm{~kg} \checkmark$
100

$$
\begin{equation*}
=0,92 \mathrm{~kg} \checkmark \tag{4}
\end{equation*}
$$

OPTION 2:
$\frac{100}{22}$
$22 \checkmark \times 10=2,2 \mathrm{~kg}$

$$
\begin{aligned}
\therefore & \mathrm{m}(\mathrm{~K})=\underline{5} \checkmark(2,2) \checkmark \\
& =0,92 \mathrm{~kg} \checkmark
\end{aligned}
$$

Question 2

2.1
2.1.1 II - IV - III - I \checkmark
2.1.2
$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \checkmark$
Bal \checkmark
2.1.3 Vanadium pentoxide \checkmark
2.1.4 $\quad \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \checkmark$

Bal \checkmark
2.1.5 Sulphuric acid will form (white) mists./The reaction is very exothermic/gives off too much heat./Corrosive reaction.

2.2

Marking criteria

- Calculate m(fertiliser).
- Use ratio

$$
\begin{gathered}
2 \\
X+3^{2} / m(P)=1 / 2 m(K) \vee \\
\hline
\end{gathered}
$$

- Use $m(K)=3,33 \mathrm{~kg} \checkmark$
- Final answer:3

Question 3

3.1
$\begin{array}{lll}3.1 .1 & \text { Ammonia } & V \\ 3.1 .2 & \mathrm{NO}_{2} & \sqrt{ }\end{array}$
3.1.3 Catalytic oxidation of ammonia $\sqrt{ }$
3.1.4 Platinum/Pt V
3.1.5 Ostwald (process) \downarrow
3.1.6

Haber (process) \downarrow
3.1.7
$\mathrm{NH}_{3}+\mathrm{HNO}_{3} \sqrt{ } \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3} \sqrt{ }$
Bal. $\sqrt{ }$
3.2
$\left.\begin{array}{l|l|r|}\hline \text { OPTION } 1 \\ \mathrm{~N}: \mathrm{P}: \mathrm{K} 10: 5: 15 \\ \mathrm{~m} \text { (fertiliser) }=\frac{30}{100} \times 15 \\ 4,5 \mathrm{~kg} \mathrm{~m}(\mathrm{P})=\frac{5}{30} \times 4,5 \mathrm{~V} \\ =0,75 \mathrm{~kg} \text { V }\end{array} \quad \begin{array}{r}\text { OPTION } 2 \mathrm{~m} \text { (fertiliser }=\frac{5}{100} \times 15 \mathrm{~V} \\ =0,75 \mathrm{~kg} \mathrm{~V}\end{array}\right]$
3.2.2

$$
\% \text { fertiliser }=10+5+15=30 \%
$$

$$
\begin{align*}
\text { \%filler } \left.=100-30=70 \% \quad \begin{array}{rl}
\text { m(filler) }) & =\frac{70}{100} \checkmark \times 15 \checkmark \\
& =10,5 \mathrm{~kg} \checkmark
\end{array}\right) .
\end{align*}
$$

