MATHEMATICS

LEARNER ASSISTANCE REVISION DOCUMENT

GRADE 11
 2020

This document has been compiled by the FET Mathematics Subject Advisors together with Lead Teachers. It seeks to unpack the contents and to give more guidance to teachers.

TABLE OF CONTENTS

	TOPIC	PAGES
1	Algebra, Equations and Inequalities	$2-10$
2	Patterns	$10-14$
3	Functions	$15-32$
4	Coordinate Geometry	$33-46$
5	Trigonometry	$47-83$
6	Euclidean Geometry	$84-102$

Downloade drym tanmorephyics com
 This section accounts for ± 25 marks in Paper 1.
 If understood properly, it also increases marks in other sections, e.g. Functions

- This section must be done really well when preparing for all the next examinations, namely JUNE, PREPARATORY AND FINAL EXAMINATIONS
- Learn solving for x in a quadratic equation, which must be in standard form. (use formula all the time if you struggle with inspection). Do this daily if you are not getting it right!
- Basic understanding of LAWS OF EXPONENTS is important when manipulating equations with exponents.
- Simultaneous equations must be learnt over and over.
- Inequalities must be learnt (to the very least...find critical values).

ALGEBRA, EQUATIONS AND INEQUALITIES - CONCEPTS INVOLVED	
TYPES AND GROUPS OF QUESTIONS:	
- $a \times b=0 \quad$ standard form - factorization: any method - transposing - formula - rounding off to 2 decimal places	- surds: squaring both sides validity of the roots (checking and verifying) - inequalities: algebraically graphically table method - simultaneous equations: subject of the formula substitution

TOPIC	ACTIVITY
Factorisation	Common factor, solve
	Transpose, factorise, solve
	Remove brackets, transpose, factorise, solve
Quadratic formula	Formula, substitution, answers correct to 2 decimal places/surd form
	Remove brackets, transpose/standard form, correct to 2 decimal places/surd form
Surds	Square both sides, solve, validate
	Transpose, square both sides, solve, validate
Simultaneous equations	Subject of the formula, substitution, standard form, factorise, solve, substitution for the other variable

Exponents	Same base, equate exponents, solve
	Laws of exponents, write as a power, factorise, equate exponents, solve
	Split, factorise, simplify
	Same bases, laws of exponents, equate exponents, solve
Inequalities	Critical values, sketch, answer
	Standard form, factorise, critical values, sketch, solve
	Remove brackets, standard form, factorise, critical values, sketch, solve
Nature of the roots	Use $\mathrm{b}^{2}-4 \mathrm{ac} \geq 0$, solve
	Formula, substitution, $\mathrm{b}^{2}-4 \mathrm{ac} \geq 0$, solve
	Rational, irrational, real/non-real

SECTION	CONCEPT	EXAMPLE
Algebra, Equations Inequalities (± 25)	Factorisation	1) $x^{2}-6 x=0$
		2) $(x-4)(x+2)=0$
		3) $x-3=\frac{4}{x}$
		4) $3 x^{2}-5 x-2=0 \quad$ (where a is greater than 1)
	Quadratic formula	1) $2 x^{2}+3 x-1=0 \quad$ (ans corr to 2 decimal digits)
		2) $2 x^{2}+3 x-1=0 \quad$ (ans in simplest surd form)
	Inequalities	1) $(x-4)(x+2)>0$
		2) $(x+1)(2-x)<0$
		3) $3^{x}(x-5)<0$
		4) $x^{2}(x+5)<0$
		5) $3 x^{2}-5 x-2 \geq 0 \quad$ (for both a >0 and a <0)
	Exponential Equations	1) $2 x^{-\frac{5}{3}}=64$
		2) $2^{x+2}+2^{x}=20$
		3) $2.3^{x}=81-3^{x}$
	Surds	1) $\sqrt{x+1}=x-1$
		2) $2+\sqrt{2-x}=x$
	Simultaneous Equations	1) $y=x^{2}-x-6$ and $2 x-y=2$
		2) $2 x-y+1=0$ and $x^{2}-3 x-4=y^{2}$
		3) $3^{x-10}=3^{3 x} \quad$ and $\quad y^{2}+x=20$

Dounloaded from S tanmoreptysics.com EXAMPLES:

Example 1
$(x-3)(x+5)=9$
$x^{2}+5 x-3 x-15-9=0$
$x^{2}+2 x-24=0$
$(x+6)(x-4)=0$
$x=-6$ or $x=4$
Example 2
Solve for x :

$$
\left.\left.\begin{array}{rl}
\sqrt{x \quad 2}+x & =4 \\
\sqrt{x} \quad 2 & =4 \\
x \quad 2 & =\left(\begin{array}{ll}
4 & x
\end{array}\right)^{2} \\
x \quad 2 & =16 \\
16 x+x^{2} \\
x^{2} \quad 8 x+16 \quad x+2 & =0 \\
x^{2} \quad 9 x+18 & =0 \\
\left(\begin{array}{llll}
x & 3
\end{array}\right)(x & 6
\end{array}\right)=0 \begin{array}{l}
\\
x
\end{array}\right)=3 \text { or } \quad x=6
$$

after checking both solutions
$x=3$ is the only solution
Example 3
Solve for x :

$$
15 x \quad 4>9 x^{2}
$$

$15 x \quad 4 \quad 9 x^{2}>0$
$9 x^{2} \quad 15 x+4<0$
$\left(\begin{array}{ll}3 x & 1\end{array}\right)\left(\begin{array}{ll}3 x & 4\end{array}\right)<0$

$\frac{1}{3}<x<\frac{4}{3}$

Doznloaded from Stanmoreprysics.com
 PRACTICE EXERCISES

QUESTION 1

1.1. Solve for \boldsymbol{x}
1.1.1. $x(x-4)=5$
1.1.2. $4 x^{2}-20 x+1=0$ (round off your answer correct to 2 decimal places)
1.1.3. Solve simultaneously for \boldsymbol{x} and \boldsymbol{y} in the following system of equations:

$$
\begin{align*}
& y-x+3=0 \\
& x^{2}-x=6+y \tag{6}
\end{align*}
$$

QUESTION 2

2.1. Solve for \boldsymbol{x}
2.1.1. $x^{2}-5 x=-6$
2.1.2. $(3 x+1)(x-4)<0$
2.1.3. $\mathbf{2 x}+\sqrt{\boldsymbol{x + 1}}=\mathbf{1}$
2.1.4. $12^{5+3 x}=1$
2.2. Solve for \boldsymbol{x} and y
$2 x-y=8$
$\boldsymbol{x}^{2}-\boldsymbol{x y}+\boldsymbol{y}^{2}=19$

QUESTION 3

3.1. Solve for \boldsymbol{x}
3.1.1. $(\boldsymbol{x}+2)^{2}=3 \boldsymbol{x}(\boldsymbol{x}-2) \quad$ Giving your answer correct to one decimal digit
3.1.2. $\boldsymbol{x}^{2}-9 x \geq 36$
3.1.3. $3^{\mathrm{x}}-3^{\mathrm{x}-2}=72$
3.2. Given $(2 m-3)(n+5)=0$

Solve for:
3.2.1. n if $m=1$
3.2.2. m if $n \neq-5$
3.2.3. m if $n=-$

QUESTION 4

4.1. Solve for \boldsymbol{x}
4.1.1. $(x-3)(x+1)=5$

Downloaded from Stanmorepfysics.com

4.1.2. $9^{2 x-1}=\frac{3^{x}}{3}$
4.1.3. $2 \sqrt{2-7 x}=\sqrt{-36 x}$

QUESTION 5

5.1. Solve for \boldsymbol{x} :
5.1.1. $10 x=3 x^{2}-8$
5.1.2. $x+\sqrt{x-2}=4$
5.1.3. $x(2 x-1) \geq 15$
5.2. Given: $\mathrm{P}=\frac{4^{x+3}+4^{x}}{8^{x+2}+8^{x}}$

5.2.1. Simplify P

5.2.2. Hence solve for $\boldsymbol{x}: \mathrm{P}=3$
5.3. State whether the following numbers are rational, irrational or non-real.
5.3.1. $\sqrt{3}$
5.3.2. $\frac{22}{7}$
5.3.3. The roots of $x^{2}+4=0$

QUESTION 6

6.1 Solve for \boldsymbol{x} :

$$
\begin{equation*}
\text { 6.1.1 } \quad 2 x^{2}+11=x+21 \tag{3}
\end{equation*}
$$

6.1.2 $3 x^{3}+x^{2}-x=0$
6.1.3 $2 \boldsymbol{x}+\boldsymbol{p}=\boldsymbol{p}(x+2)$, stating any restriction
6.1.4 $\quad x^{-1}-x^{-\frac{1}{2}}=20$
6.2. Solve for x and y simultaneously in the following equations

$$
\begin{equation*}
2 x^{2}-3 x y=-4 \text { and } 4^{x+y}=2^{y+4} \tag{6}
\end{equation*}
$$

QUESTION 7

7.1. Solve for x . Leave the answer in the simplest surd form where necessary
7.1.1. $\quad(2 x+5)\left(x^{2}-2\right)=0$
7.1.2. $\quad x^{2}-4 \geq 5$
7.2. Solve for x , correct to two decimal places:
$2(x+1)^{2}=9$
7.3. Solve for x and y simultaneously:

$$
\begin{equation*}
y=-2 x+7 \text { and } \frac{y+5}{x-1}=\frac{1}{2} \tag{4}
\end{equation*}
$$

QUESTION 8
8.1. Given $\boldsymbol{x}^{2}+2 \boldsymbol{x}=0$
8.1.1. Solve for \boldsymbol{x}
8.1.2. Hence, determine the positive values of x for which $x^{2} \geq-2 x$
8.2. Solve for \boldsymbol{x} :
$2 \boldsymbol{x}^{2}-\mathbf{3 x}-\mathbf{7}=\mathbf{0}$ (correct to two decimal places)
8.3. Given $\boldsymbol{k}+5=\frac{14}{\boldsymbol{k}}$
8.3.1. Solve for \boldsymbol{k}
8.3.2. Hence, or otherwise, solve for \boldsymbol{x} if $\sqrt{\boldsymbol{x}+5}+5=\frac{14}{\sqrt{x+5}}$
8.4. Solve for x and y simultaneously if:
$x-2 y-3=0$ and
$4 x^{2}-5 x y+y^{2}=0$
8.5. The roots of a quadratic equation is given by $x=\frac{-2 \pm \sqrt{4-20 k}}{2}$

Determine the values of \boldsymbol{k} for which the equation will have real roots

QUESTION 9

9.1 Solve for x

$$
\begin{equation*}
\text { 9.1.1 } 2 x^{2}-5 x-3=0 \tag{2}
\end{equation*}
$$

9.1.2 $(x-3)(x-4) \geq 12$
9.2 Consider: $5 x-\frac{3}{x}=1$
9.2.1 \quad Solve for x correct to two decimal places.
1.2.2 Hence, determine the value of y if $5(2 y+1)-\frac{3}{2 y+1}=1$.
9.3 Solve simultaneously for x and y in the following set of equations:

$$
\begin{equation*}
y=x-1 \quad \text { and } \quad y+7=x^{2}+2 x \tag{5}
\end{equation*}
$$

9.4 Calculate the value(s) of m if the roots of $3 m \boldsymbol{x}^{2}-7 x+3=0$ are equal.

Downloaded from Stanmorepfysics.com
 QUESTION 10

10.1 Solve for x in each of the following:
10.1.1 $x(2 x+5)=0$
10.1.2 $2 x^{2}-3 x=7$ (Give answer correct to TWO decimal places)
10.1.3 $x-7-\sqrt{x-5}=0$
10.1.4 $\quad \frac{1}{2} x(3 x+1)<0$
10.2 Solve for x and y simultaneously:

$$
\begin{align*}
& 2 x+y=3 \quad \text { and } \\
& x^{2}+y+x=y^{2} \tag{6}
\end{align*}
$$

QUESTION 11

11.1 Solve for \boldsymbol{x} :

$$
\begin{equation*}
\text { 11.1.1 } 4 x^{2}=81 \tag{2}
\end{equation*}
$$

11.1.2 (a) $x^{2}-5 x=2$, correct to TWO decimal places.
(b) Hence, or otherwise, solve $\left(x^{2}-2\right)^{2}-5\left(x^{2}-2\right)-2=0$

$$
\text { 11.1.3 }(2-x)(x+4) \geq 0
$$

$$
\text { 11.1.4 } 3^{x+1}-4+\frac{1}{3^{x}}=0
$$

11.2 Solve for \boldsymbol{x} and \boldsymbol{y} simultaneously:

$$
\begin{align*}
& x+y=3 \\
& 2 x^{2}+2 y^{2}=5 x y \tag{6}
\end{align*}
$$

QUESTION 12

12.1 Solve for x :
12.1.1 $3 x^{2}+10 x+6=0$ (correct to TWO decimal places)
12.1.2 $\sqrt{6 x^{2}-15}=x+1$
12.1.3 $\quad x^{2}+2 x-24 \geq 0$
12.2 Solve simultaneously for x and y :
$5 x+y=3 \quad$ and $\quad 3 x^{2}-2 x y=y^{2}-105$
12.3 12.3.1 Solve for p if $p^{2}-48 p-49=0$
12.3.2 Hence, or otherwise, solve for x if $7^{2 x}-48\left(7^{x}\right)-49=0$

QUESTION 13

13.1 Solve for x :
13.1.1 $x^{2}+9 x+14=0$
13.1.2 $4 x^{2}+9 x-3=0 \quad$ (correct to TWO decimal places)
13.1.3 $\quad \sqrt{x^{2}-5}=2 \sqrt{x}$
13.2 Solve for x and y if:
$3 x-y=4$ and $x^{2}+2 x y-y^{2}=-2$
13.3 Given: $f(x)=x^{2}+8 x+16$
13.3.1 Solve for x if $f(x)>0$.

NUMBER PATTERNS

Quadratic Sequences

Examples

1. Consider the sequence: $5 ; 18 ; 37 ; 62 ; 93 ; \ldots$
1.1 If the sequence behaves consistently, determine the next TWO terms of the sequence.
1.2 Calculate a formula for the nth term of the sequence.
1.3 Use your formula to calculate n if the $n^{\text {th }}$ term in the sequence is 1278 .

Worked Solution

$1.1 \quad 130 ; 173$
$1.2 \underbrace{5}_{6}$
sequence of first difference second difference is constant
$2 a=6$
$a=3$

$$
\therefore \quad T_{n}=3 n^{2}+b n+c
$$

$$
\begin{align*}
& 5=3(1)^{2}+b(1)+c \\
& b+c=2 \tag{1}\\
& 18=3(2)^{2}+b(2)+c \\
& 2 b+c=6 \tag{2}
\end{align*}
$$

(2) $-(1): b=4$
$c=-2$
$\therefore T_{n}=3 n^{2}+4 n-2$
$1.3 \quad 3 n^{2}+4 n-2=1278$
$3 n^{2}+4 n-1280=0$
$(3 n+64)(n-20)=0$
$n=\frac{-64}{3}$ or $n=20$
$n=\frac{-64}{3}$ is not valid $\therefore n=20$

Exercise 4

1. Given the quadratic sequence: $-1 ;-7 ;-11 ; p ; \ldots$
1.1 Write down the value of p.
1.2 Determine the $n^{\text {th }}$ term of the sequence.
1.3 The first difference between two consecutive terms of the sequence is 96 .

Calculate the values of these two terms.
2. Given the following quadratic sequence: $-2 ; 0 ; 3 ; 7 ; \ldots$
2.1 Write down the value of the next term of this sequence.
2.2 Determine an expression for the $n^{\text {th }}$ term of this sequence.
2.3 Which term of the sequence will be equal to 322 ?
3. Look at the following sequence and answer the questions that follow:

10; 21; 38; 61; \qquad
3.1 Determine the type of sequence.
3.2 Determine the general term.

ANSWERS TO EXERCISES

Exercise 4
$1.1 p=13$
$1.2 T_{n}=n^{2}-9 n+7$
$1.3 n=52 \quad T_{52}=2243$
2.1 The next term of the sequence is 12
$2.2 T_{n}=\frac{1}{2} n^{2}+\frac{1}{2} n-3 S_{500}=31000$
2.3 The $25^{\text {th }}$ term has a value of 322 .

EXAMINATION QUESTIONS FROM PAST PAPERS

QUESTION 1

1.1 Given the sequence $3 ; 6 ; 13 ; 24 ; \ldots$
1.1.1 Derive the general term of this sequence. (4) L 2
1.1.2 Which term of this sequence is the first to be greater than 500 .

QUESTION 2

Given: $1 ; 11 ; 26 ; 46 ; 71$; \qquad
2.1 Determine the formula for the general term of the sequence.
(4)L2
2.2 Which term in the sequence has a value of 521?
(4)L2

QUESTION 3

The sequence $3 ; 9 ; 17 ; 27 ; \ldots$ is quadratic.
3.1 Determine an expression for the n-th term of the sequence. (4)L2
3.2 What is the value of the first term of the sequence that is greater than 269 ? (4)L3

QUESTION 4

Given the quadratic sequence: $5 ; 7 ; 13 ; 23 ; \ldots$
4.1 Calculate the $\mathrm{n}^{\text {th }}$ term of the quadratic sequence.
(4) L2
4.2 Determine between which two consecutive terms of the quadratic sequence the first difference will be equal to 2018 .
5.1 The above sequence $3 ; b ; 19 ; 27 ; \ldots$ forms the first differences of a quadratic sequence. The first term of the quadratic sequence is 1 .
5.1 Determine the fourth term $\left(T_{4}\right)$ of the quadratic sequence. (2)L3
5.2 Determine the $n^{\text {th }}$ term of the quadratic sequence.
(4)L2
5.3 Calculate the value of n if $T_{n}-1=7700$
(3)L2

QUESTION 6

Given the quadratic sequence: $4 ; 4 ; 8 ; 16 ; \ldots$
6.1 Calculate the $n^{\text {th }}$ term of the quadratic sequence.
6.2 Between which two consecutive terms of the quadratic sequence, will the first difference be equal to 28088 ?

QUESTION 7

Given the quadratic sequence: $\quad 3 ; 5 ; 11 ; 21 ; x$
7.1 Write down the value of x.
(1) L 1
7.2 Determine the value of the $48^{\text {th }}$ term.
(5)L2
7.3 Prove that the terms of this sequence will never consist of even numbers. (2)L3
7.4 If all the terms of this sequence are increased by 100 , write down the general term of the new sequence.

QUESTION 8

8.1 In a quadratic pattern, with $T_{n}=a n^{2}+b n+c$, the second term is equal to 8 and the first differences of the quadratic sequence are given as: $6 ; 12 ; 18$;
8.1.1 Write down the values of the first four terms of the quadratic sequence.
8.1.2 Calculate the value of T_{40} of the quadratic sequence.

QUESTION 9

9.1 A quadratic number pattern $T_{n}=a n^{2}+b n+c$ has a third term equal to -1 , while the first differences of the quadratic sequence are given by: $-12 ;-8 ;-4$
9.1.1 Write down the values of the first four terms of the quadratic sequence.
9.1.2 Calculate the value of a, b and c.

QUESTION 10

The first four terms of a quadratic sequence are $9 ; 19 ; 33 ; 51 ; \ldots$
10.1 Write down the next TWO terms of the quadratic sequence.
10.2 Determine the $n^{\text {th }}$ term of the sequence.

QUESTION 11

Given the quadratic sequence $1 ; 6 ; 15 ; 28 ; \ldots$
11.1 Write down the second difference.
11.2 Determine the nth term.
11.3 Calculate which term of the sequence equals 2701.

QUESTION 12

The first four terms of a quadratic sequence are $8 ; 15 ; 24 ; 35 ; \ldots$
12.1 Write down the next TWO terms of the quadratic sequence. (1)L1
12.2 Determine the $n^{\text {th }}$ term of the sequence.
12.3.1 Write down the values of x and y in terms of k.
12.3.2 Hence, calculate the value of $T_{x}+T_{y}$ in terms of k in simplest form.

Downloaded from S tanmorepfysics.com FUNCTIONS

1. FUNCTION AND MAPPING NOTATION

In Grade 10 learners were introduced to different ways of representing functions.
The different notations are summarised below:

- $y=$.. \qquad equation notation
- $f(x)=$ \qquad function notation
- $f: x \rightarrow \ldots$. mapping notation

2. INTERCEPTS WITH THE AXES

To determine the x-intercept(s), substitute $y=0$.
For example: If $f(3)=0$, then the function has an x intercept at ($3 ; 0$).
To determine the y-intercept(s), substitute $x=0$.
For example: If $f(0)=4$, then the function has a y intercept at $(0 ; 4)$.

3. GRAPH INTERPRETATION

3.1 Axes of symmetry:

If a function has a line of symmetry, it means that the function is a mirror image of itself about that line. In other words, if the graph was folded along the line of symmetry, it would duplicate itself on the other side of the line.

3.2 Asymptotes:

Asymptotes are imaginary lines that a graph approaches, but never touches or cuts.

3.3 Domain and range:

Domain: The domain refers to the set of possible \boldsymbol{x}-values for which a function is defined.
Range: The range refers to the set of possible \boldsymbol{y}-values that the function can assume.

4. BASELINE ACTIVITY

For each of the following functions
(I) Sketch the graph of the function.
(II) Determine the domain and the range of each function.
(III) Determine the equation of the axes of symmetry and asymptotes, where applicable.

Straight Line

$1.1 \quad y=x+3$
$1.2 y=(x-2)$
$1.3 \quad y=-x$
$1.4 \quad y=-2 x-3$
Parabola
$2.1 \quad y=x^{2}+3$
$2.2 \quad y=(x-2)^{2}$
$2.3 \quad y=-x^{2}$
$2.4 y=-2 x^{2}-3$

Hyperbola

$3.1 \quad y=\frac{6}{x}+3$
$3.2 y=\frac{6}{x-2}$
$3.3 \quad y=-\frac{6}{x}$
$3.4 \quad y=\frac{-2}{x}-3$

Exponential graph

BASIC INFORMATION ON THE DIFFERENT TYPES OF GRAPHS

A. STRAIGHT LINE

General representation or equation:
$y=a x+q$ or $f(x)=m x+c, a$ or m is the gradient, and q or c is the y-intercept.
Also note the shape of the following linear functions:

$a<0$
$q<0$

$a=0$

$a>0$

a is undefined
$y=q$
$q<0$
there is no q-value

For all the linear functions, except horizontal and vertical lines, the domain is $x \in R$, and the range is $y \in R$.

B. HYPERBOLA

General representation or equation:

$$
y=\frac{a}{x+p}+q
$$

- The value of q represents the vertical translation (shift) from the x-axis.
- The value of p represents the horizontal translation (shift) from the y-axis.
- In the case of $y=\frac{a}{x}, p=0$ and $q=0$. The vertical asymptote is the y-axis $(x=0)$ and the horizontal asymptote is the x-axis $(y=0)$. The axes of symmetry are $y=x$ (+ve gradient) and $y=-x$ (-ve gradient).
The domain is $x \in R, x \neq 0$; and the range is $y \in R, y \neq 0$.
- In the case of $y=\frac{a}{x}+q, p=0$. The vertical asymptote is the y-axis $(x=0)$ and the horizontal asymptote is $y=q$. The axes of symmetry are $y=x+q$ (+ve gradient) and $y=-x+q$ (-ve gradient). The domain is $x \in R, x \neq 0$; and the range is $y \in R, y \neq q$.
- In the case of $y=\frac{a}{x+p}+q$, the vertical asymptote is $x=-p$ and the horizontal asymptote is $y=q$. The axes of symmetry are $y= \pm(x+p)+q$. The domain is $x \in R, x \neq-p$ and the range is $y \in R, y \neq q$.
- Alternative method to determine the equations of the axes of symmetry:

In all cases the one axis of symmetry has a gradient of +1 and the other a gradient of -1 . Therefore the equations of the axes of symmetry are $y=x+c$ and $y=-x+c$. In all cases the value of c may be determined by simply substituting the coordinates of the point of intersection of the two asymptotes into the above equations - since the axes of symmetry always pass through this point.

Example no. 1:

Given: $f(x)=\frac{3}{x-2}+1$
1.1. Write down the equations of the asymptotes of f.
1.2. Determine the coordinates of B , the x-intercept of f.
1.3. Determine the coordinates of D , the y-intercept of f.
1.4. Determine the domain and the range of f.
1.5. Determine the equations of the two axes of symmetry of f.
1.6. Draw a sketch graph of f.

Solution:

1.1 For the vertical asymptote:

$$
\begin{array}{r}
x-2=0 \\
x=2
\end{array}
$$

Horizontal asymptote:

$$
y=1
$$

1.3 For the y-intercept, substitute $x=0$:

$$
y=\frac{3}{-2}+1=\frac{3-2}{-2}=-\frac{1}{2}
$$

1.5 Point of intersection of asymptotes: $(2 ; 1)$

Axis of symmetry with positive gradient:
Substitute $(2 ; 1)$ into $y=x+c$:

$$
\begin{aligned}
1 & =2+c \\
c & =-1 \\
y & =x-1
\end{aligned}
$$

Axis of symmetry with negative gradient:
Substitute $(2 ; 1)$ into $y=-x+c$:

$$
\begin{aligned}
& 1=-2+c \\
& c=3 \\
& y=-x+3
\end{aligned}
$$

1.2 For the x-intercept, substitute $y=0$:

$$
\begin{array}{r}
\frac{3}{x-2}+1=0 \\
\frac{3}{x-2}=-1 \\
-1(x-2)=3 \\
x=-1
\end{array}
$$

1.4 Domain is $\quad x \in R ; x \neq 2$ Range is $\quad y \in R ; x \neq 1$
1.6)

Downloaded from Stanmorepfysics.com

C. PARABOLA

Defining Equation:

$$
y=a(x+p)^{2}+q \quad \text { or } \quad y=a x^{2}+b x+c \quad \text { or } y=a\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

Sketching a parabola:

$$
\text { for } a<0 \quad \text { for } a>0
$$

Shape

For $y=a x^{2}+b x+c$, the turning point is $\left(\frac{-b}{2 a} ; f\left(\frac{-b}{2 a}\right)\right)$ and the y-intercept is $y=c$.

Given: $y=a x^{2}+b x+c$
\boldsymbol{y}-intercept: $(0 ; c)$
Turning point (TP) :

$$
x=\frac{-b}{2 a} \text { (the axis of symmetry) }
$$

Given: $y=a(x+p)^{2}+q$
Multiply out the expression to get it in the form $y=a x^{2}+b x+c$
y-intercept: $(0 ; c)$
Turning Point (TP): $(-p ; q)$

Substitute this value into the equation to find the y coordinate of the TP, i.e. the minimum or maximum value.

If there are x-intercepts: Let $y=0$ and solve for x (factorise or use the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$).

- If $a<0$, the function has a maximum value, represented by the \boldsymbol{y} value of the turning point.
- If $a>0$, the function has a minimum value, represented by the y value of the turning point.
- The equation of the axis of symmetry is given by $x=\frac{-b}{2 a}$, (is the x value of the turning point)
- The domain is $x \in R$
- The range: If $\boldsymbol{\alpha}>\mathbf{0}$ then $\boldsymbol{y} \geq$ minimum value; If $\boldsymbol{\alpha}<\mathbf{0}$ then $\boldsymbol{y} \leq$ maximum value.

To determine the equation of a parabola:

Given: TP and one other point
Given: x-intercepts and one other point
Use

Use

DP is Dinloaded from Stanmorepfysics.com
TP is $(-p ; q)$; substitute that in above equation. Substitute the x-intercepts for x_{1} and x_{2}.

Substitute the other point for x and y.
Solve for a.
Rewrite the equation with the values for a, p and q.

If required, rewrite in the form $y=a x^{2}+b x+c$.

Substitute the other point for x and y.
Solve for a.
Rewrite the equation with the values for a, x_{1} and x_{2}.
If required, rewrite in the form

$$
y=a x^{2}+b x+c .
$$

Example no. 2:

Sketched below are the graphs of: $g(x)=-2 x+8 ; \quad f(x)=x^{2}+k ; \quad$ and $\quad h(x)=\frac{6}{x-2}+1$.
A is an x-intercept and B a y-intercept of $h . \mathrm{C}(-6 ; 20)$ and E are the points of intersection of f and g.

2.1 Determine the coordinates of A, B and E.
2.2 Show that the value of $k=-16$
2.3 Determine the domain and the range of f.
2.4 Write down the values of x for which $g(x)-f(x) \geq 0$.
2.5 Determine the equation of the axis of symmetry of h that has a negative gradient.
2.6 Write down the range of s, if $s(x)=f(x)+2$.
2.7 Write down the range of t, if $t(x)=h(x)+2$.

Solution:

Downloaded from Stanmorepfysics.com

2.1 At A, substitute $y=0$:

At B, substitute $x=0$:

$$
\begin{aligned}
\frac{6}{x-2}+1 & =0 \\
6 & =-x+2 \\
\therefore x & =-4
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{6}{-2}+1 \\
& y=-3+1 \\
& \therefore y=-2
\end{aligned}
$$

Thus: $\mathrm{A}(-4 ; 0)$
Thus: B $(0 ;-2)$
E is the x-intercept of the straight line and the parabola. It is easy and straight-forward to use the equation of the straight line to get the coordinates of E .

At E, substitute $y=0, \quad \therefore 0=-2 x+8$

$$
x=4
$$

Thus: $\mathrm{E}(4 ; 0)$
2.2 $\mathrm{C}(-6 ; 20)$ is on f and g.

Substitute C into $f(x)=x^{2}+k$

$$
\begin{aligned}
20 & =(-6)^{2}+k \\
k & =-16
\end{aligned}
$$

2.4 These are the values of x for which the graphs
2.5 Point of intersection of asymptotes: $(2 ; 1)$ of g and f intersect or where f is below g.

It occurs from $C(-6 ; 20)$ and $E(4 ; 0)$.
That is $-6 \leq x \leq 4$.
2.6 The "+ 2 " implies a shift vertically upwards by 2 units. The new minimum value will now be -14 . The range of s is $y \geq-14$.
2.3 Domain is $x \in R$

Range is $y \geq-16 ; y \in R$

For axis of symmetry with negative gradient:

$$
y=-x+c
$$

Substitute $(2 ; 1): \quad 1=-2+c$

$$
\begin{aligned}
& c=3 \\
& y=-x+3
\end{aligned}
$$

2.7 The " +2 " implies a shift vertically upwards by 2 units.

The range of t is $y \neq 1+2 ; y \in R$

$$
y \neq 3 ; y \in R
$$

D. EXPONENTIAL GRAPH

Defining equation: $y=a b^{x+p}+q$.
If $q=0$ and $p=0$ then $y=a b^{x}$.
If $p=0$ then $y=a b^{x}+q$.
The restriction is $b>0 ; b \neq 1$

Shape:

for $a>0$ and $b>1$ for $a>0$ and $0<b<1 \quad$ for $a<0$ and $b>1$ for $a<0$ and $0<b<1$

- For $y=a b^{x}$, the asymptote is $y=0$ and the y-intercept is $y=a$.
- For $y=a b^{x}+q$, the asymptote is $y=q$ and the \boldsymbol{y}-intercept is $y=a+q$.
- For $y=a b^{x+p}+q$, the asymptote is $y=q$ and the \boldsymbol{y}-intercept is $y=a b^{p}+q$.

Example no. 3:

Given: $f(x)=3^{-x+1}-3$
3.1 Write $f(x)$ in the form $y=a b^{x}+q$
3.2 Draw the graph of f, showing all the intercepts with the axes and the asymptote.
3.3 Write down the domain and the range of f.

Solution:
$3.1 \quad y=3^{-x+1}-3=3^{-x} \cdot 3-3=3.3^{x}-3=3\left(\frac{1}{3}\right)^{x}-3$
3.2 The asymptote is $y=-3$.

For the x-intercept, let $y=0: 3\left(\frac{1}{3}\right)^{x}-3=0$

$$
\begin{aligned}
\left(\frac{1}{3}\right)^{x} & =1 \\
x & =0
\end{aligned}
$$

3.3. The domain is $x \in R$, and the range is $y>-3 ; y \in R$.

QUESTION 5 (GR. 12 DBE NOVEMBER 2010)
Consider the function $f(x)=4^{-x}-2$
5.1 Calculate the coordinates of the intercepts of f with the axes.
5.2 Write down the equation of the asymptote of f.
5.3 Sketch the graph of f.
5.4 Write down the equation of g if g is the graph of f shifted 2 units upwards.
5.5 Solve for x if $f(x)=3$. (You need not simplify your answer.)

QUESTION 5 (Gr. 12 DBE MARCH 2011)

Consider the function $f(x)=\frac{3}{x-1}-2$.
5.1 Write down the equations of the asymptotes of f.
5.2 Calculate the intercepts of the graph of f with the axes.
5.3 Sketch the graph of f.
5.4 Write down the range of $y=-f(x)$.
5.5 Describe, in words, the transformation of f to g if $g(x)=\frac{-3}{x+1}-2$.

QUESTION 5 (GR. 12 DBE MARCH 2010)

Given: $f(x)=\frac{2}{x-3}+1$
5.1 Write down the equations of the asymptotes of f.
5.2 Calculate the coordinates of the x - and y-intercepts of f.
5.3 Sketch f. Show all intercepts with the axes and the asymptotes.

Downloaded from Stanmore pfysics.com

QUESTION 6 (GR. 12 DBE MARCH 2010)

The graphs of $f(x)=-x^{2}+7 x+8$ and $g(x)=-3 x+24$ are sketched below.
f and g intersect in D and B . A and B are the x-intercepts of f.

6.1 Determine the coordinates of A and B.
6.2 Calculate a, the x-coordinate of D.
6.3 $\mathrm{S}(x ; y)$ is a point on the graph of f, where $a \leq x \leq 8$. ST is drawn parallel to the y-axis with T on the graph of g. Determine ST in terms of x.
6.4 Calculate the maximum length of ST.

QUESTION 4 (GR. 12 DBE MARCH 2015)

Given: $g(x)=\frac{6}{x+2}-1$
4.1 Write down the equations of the asymptotes of g.
4.2 Calculate:
4.2.1 \quad The y - intercept of g
4.2.2 \quad The x - intercept of g
4.3 Draw the graph of g, showing clearly the asymptotes and the intercepts with the axes.
4.5 Determine the value(s) of x for which: $\frac{6}{x+2}-1 \geq-x-3$

QUESTION 6 (GR. 12 DBE MARCH 2011)

A parabola f intersects the x-axis at B and C and the y-axis at E . The axis of symmetry of the parabola has equation $x=3$. The line through E and C has equation $g(x)=\frac{x}{2}-\frac{7}{2}$.

6.1 Show that the coordinates of C are $(7 ; 0)$.
6.2 Calculate the x-coordinate of B .
6.3 Determine the equation of f in the form $y=a(x-p)^{2}+q$.
6.4 Write down the equation of the graph of h, the reflection of f in the x-axis.
6.5 Write down the maximum value of $t(x)$ if $t(x)=1-f(x)$.
6.6 Solve for x if $f\left(x^{2}-2\right)=0$.

QUESTION 4 (GR. 12 DBE NOVEMBER 2015)

Given: $f(x)=2^{x+1}-8$
4.1 Write down the equation of the asymptote of f.
4.2 Sketch the graph of f. Clearly indicate ALL intercepts with the axes as well as the
4.3 The graph of g is obtained by reflecting the graph of f in the y-axis. Write down the equation of g.

QUESTION 6 (GR. 12 DBE NOVEMBER 2015)

6.1 The graphs of $f(x)=-2 x^{2}+18$ and $g(x)=a x^{2}+b x+c$ are sketched below. Points P and Q are the x-intercepts of f. Points Q and R are the x-intercepts of g. S is the turning point of g . T is the y-intercept of both f and g.

6.1.1 Write down the coordinates of T .
6.1.2 Determine the coordinates of Q .
6.1.3 Given that $x=4,5$ at S , determine the coordinates of R .
6.2 The function defined as $y=\frac{a}{x+p}+q$ has the following properties:

- The domain is $x \in R, x \neq 2$.
- $y=x+6$ is an axis of symmetry.
- The function is increasing for all $x \in R, x \neq 2$.

Draw a neat sketch graph of this function. Your sketch must include the asymptotes, if any.

The graph of $f(x)=a x^{2}+b x+c ; a \neq 0$ is drawn below. $\mathrm{D}(1 ;-8)$ is a point on f.
f intersects the x-axis at $(-3 ; 0)$ and $(2 ; 0)$.

6.1 For which value(s) of x is $f(x) \leq 0$?
6.2 Determine the values of a, b and c.
6.3 Determine the coordinates of the turning point of f.
6.4 Write down the equation of the axis of symmetry of h if $h(x)=f(x-7)+2$.

QUESTION 5 (GR. 12 DBE NOVEMBER 2011)

5.1 Consider the function: $f(x)=\frac{-6}{x-3}-1$
5.1.1 Calculate the coordinates of the y-intercept of f.
5.1.2 Calculate the coordinates of the x-intercept of f.
5.1.3 Sketch the graph of f in your ANSWER BOOK, showing clearly the asymptotes and the intercepts with the axes.
5.1.4 For which values of x is $f(x)>0$?
5.1.5 Calculate the average gradient of f between $x=-2$ and $x=0$.
5.2 Draw a sketch graph of $y=a x^{2}+b x+c$, where $a<0, b<0, c<0$ and $a x^{2}+b x+c=0$ has only ONE solution.

Given: $f(x)=\frac{a}{x-p}+q$.
The point $\mathrm{A}(2 ; 3)$ is the point of intersection of the asymptotes of f.
The graph of f intersects the x-axis at $(1 ; 0)$.
D is the y-intercept of f.

4.1 Write down the equations of the asymptotes of f.
4.2 Determine an equation of f.
4.3 Write down the coordinates of D.
4.4 Write down an equation of g if g is the straight line joining A and D .
4.5 Write down the coordinates of the other point of intersection of f and g.

ADDITIONAL EXERCISES

QUESTION 1

1.1 Given: $f(x)=x^{2}-2 x-3$
1.1.1 Calculate the intercepts with axes.
1.1.2 Calculate the coordinates of the turning point.
1.1.4 Draw a graph of \mathbf{f} showing all the intercepts with axes and the turning point.
1.1.5 Write down the range and domain of \mathbf{f}.
1.2 Given: $f(x)=(x-2)^{2}-9$
1.2.1 Write down the coordinates of the turning point of the graph of \mathbf{f}.
1.2.2 Calculate the x and the y intercept of the graph of f.
1.2.3 Draw a neat graph of \mathbf{f} and show the intercepts of the axes and the turning point.
1.2.4 Hence write the range and the domain of the function.
1.2.5 For which values of \mathbf{x} is $f(x)$ decreasing?
1.2.6 Use your graph to solve the inequality: $\mathrm{f}(\mathrm{x}) \leq 0$.
1.2.7 Write down the equation (in turning point form) of the graph obtained by
(a) shifting f, 2 units left and 9 units up.
(b) reflecting \mathbf{f} in the y-axis.
(c) reflecting \mathbf{f} in the x-axis.

QUESTION 2.

2.1 Sketch below are the graphs of:
$f(x)=-(x+2)^{2}+4$ and $g(x)=a x+q, \mathrm{R}$ is the turning point of \mathbf{f}.

2.2.1 Write down the coordinates of R.
2.2.2 Calculate the length of $A B$.
2.2.3 Determine the equation of \mathbf{g}.
2.2.4 For which values of \mathbf{x} is $g(x)>f(x)$.
2.2.5 Write down the equation of the axis of symmetry of h if $h(x)=f(-x)$.
2.2.6 Write down the range of p if $p(x)=-f(x)$

QUESTION 3

The graph of $f(x)=x^{2}+b x+c ; a \neq 0$ and $g(x)=m x+k$
$\mathrm{D}(1 ; 8)$ is a common point on \mathbf{f} and \mathbf{g}. \mathbf{f} intersects the x -axis at $(-3 ; 4)$ and $(2 ; 0)$
g is the tangent to f at D .

3.1 For which value(s) of \mathbf{x} is $\mathrm{f}(\mathrm{x}) \leq 0$?
3.2 Determine the value of a, b and c.
3.3 Determine the coordinates of the turning points of \mathbf{f}.
3.4 Write down the equation of the axis of symmetry of \mathbf{h} if $h(x)=f(x-7)+2$.
3.5 Calculate the gradient of \mathbf{g}.

QUESTION 4 (DBE NOV. 2018)
Given: $f(x)=\frac{-1}{x-1}$
4.1 Write down the domain of \mathbf{f}.
4.2 Write down the asymptotes of \mathbf{f}.
4.3 Sketch the graph of f, clearly showing all intercepts with the axes and any asymptotes.

QUESTION 5

Given: $f(x)=\frac{6}{x+2}-1$
5.1 Write down the equations of the asymptotes of \mathbf{g}.
5.2 Calculate:
5.2.1 The y - intercept of \mathbf{g}.
5.2.2 The x - intercept of \mathbf{g}.
5.3 Draw the graph of g , show clearly the asymptotes and the intercepts with the axes.
5.4 Determine the equation of the line of symmetry, that has a negative gradient, in
\qquad
5.5

Downloaded from Stanmorepfysics.com
Determine the value(s) of x for which $\frac{6}{x+2}-1 \geq-x-3$

QUESTION 6

Given: $f(x)=2^{x+1}-8$
6.1 Write down the equation of the asymptote of \mathbf{f}.
6.2 Sketch the graph of \mathbf{f}, clearly indicate ALL the intercepts with the axes as well as the asymptote.
6.3 The graph of g is obtained by reflecting the graph of y about the y-axis. Write down the equation of g.

Q UESTION 7

Given: $f(x)=2^{-x}+1$
7.1 Determine the coordinates of the y-intercepts
7.2 Sketch the graph of \mathbf{f}, clearly indicate ALL the intercepts with the axes as well as the asymptote.
7.3 Calculate the average gradient of \mathbf{f} between the points on the graph where $\mathrm{x}=-2$ and x $=1$.
7.4 If $h(x)=3 f(x)$, write down the equation of the asymptote of \mathbf{h}.

Downloaded from Stanmorepfysics.com
QUESTION 5 (DBE November 2016)

QUESTION 5

Sketched below is the parabola f. with equation $f(x)=-x^{2}+4 x-3$ and a hyperbola g. with equation $(x-p)(y+t)=3$.

- B, the turning point of f, lies at the point of intersection of the asymptotes of g.
- $\mathrm{A}(-1 ; 0)$ is the x-intercept of g.

5.1 Show that the coordinates of B are $(2 ; 1)$
5.2 Write down the range of f.
5.3 For which value(s) of x will $g(x) \geq 0$?
5.4 Determine the equation of the vertical asymptote of the graph of h if $h(x)=g(x+4)$
5.5 Determine the values of p and t.

ANALYTICAL (COORDINATE) GEOMETRY

LEARNING HINTS

Mathematical language and terminology must be learnt in more detail

1. Learners should then follow the method laid out below:

- Select the correct formula from the data sheet
- Label the ordered pairs using the correct two points, e.g. A and B.
- Substitute correctly and accurately into your chosen formula and use brackets where necessary to avoid operations that require isolated expressions and negative signs.
- Emphasis on the application of distributive law of multiplication.

$$
\text { e. } g-(x+1)=-x-1
$$

2. Often Analytical Geometry questions follow on, (scaffolding). Look out for that, as you might have already calculated or proven an aspect before, that you will require for the next sub-question :

- Even if you failed to show or prove in the previous question, accept that as true in the follow up questions.

3. Use the diagram more effectively.
e.g. Highlight the sides you are going to use for proving perpendicular lines, so you can see clearly which points you are going to use for the substitution.

You must answer the question, and remember to conclude, exactly what you were asked to show / prove / conclude.
4. Learners need to know the properties of all geometric figures e.g. triangles and quadrilaterals
5. Learners need to be able to determine whether a particular point is inside, outside or on the circle by comparing that distance and the radius.
6. Practice exercises are often required to teach the above points.
7. Grade 11 work must NOT be ignored, e.g.

NOTE:

Always refer to a diagram when doing problems involving Analytical Geometry. A diagram helps you to visualise the problem accurately.

Median: The median of a triangle bisects the opposite side of a triangle.
The median of a triangle bisects the area of a triangle.

Downloaded from Stanmorepfysics.com

To find the equation of the median:

- Determine the coordinates of D using the formula for the midpoint
- Use the coordinates of C and D to find the equation.

Altitude: The altitude of a triangle is perpendicular to the opposite side of a triangle.

To find the equation of an altitude:

- Determine the gradient $\mathrm{AC}=m_{A C}$
- Determine the $m_{B D}$ using the fact that $m_{B D} \times m_{A C}=-1$
- Use the coordinates of B and $m_{B D}$ to find the equation.

Perpendicular bisector: The perpendicular bisector of a line segment is also found in a triangle.

To find the equation of the perpendicular bisector:

- Determine the coordinates of M using the midpoint formula.
- Find the gradient AB i.e. $m_{A B}$
- Determine $m_{D P}$ using the fact that $\mathrm{DP} \perp \mathrm{AB} \therefore m_{D P} \times m_{A B}=-1$
- Use the coordinates of M and $m_{D P}$ to find the equation.
- Determine the gradient $\mathrm{AB}, m_{A B}$
- Determine the gradient $C D$, using $A B \perp C D$
- Use the gradient $C D$ and the point B to find the equation $C D$

PROPERTIES OF QUADRILATERALS

	1. Opposite sides parallel. 2. Opposite sides equal. 3. Opposite angles are equal. 4. Co-interior angles on same side of a transversal are supplementary. 5. Diagonals bisect each other.
A	1. All properties of parallelogram 2. Has 4 right angles. 3. Diagonals are equal.
	1. All properties of parallelograms. 2. Has 4 equal sides, 3. Diagonals bisect opposite angles. 4. Diagonals each other at right angle.
	1. All properties of parallelogram, rectangle, and rhombus 2. 4 equal sides and 4 equal (right) angles.
	1. One pair of parallel sides.
	1. 2 pairs of adjacent sides equal. 2. 1 pair of opposite angles equal 3. The long diagonal bisects the short one at right angle. 4. Diagonals bisect opposite angles. $\begin{aligned} & \hat{A}_{1}=\hat{A}_{2} \\ & \hat{C}_{1}=\hat{C}_{2} \end{aligned}$

FUNDAMENTAL COMPETENCE

Represent geometric figures on a Cartesian co-ordinate system by understanding that a point is determined by coordinates in the form of $\left(x_{1} ; y_{1}\right),\left(x_{2} ; y_{2}\right),\left(x_{3} ; y_{3}\right)$, etc.

Use a Cartesian co-ordinate system to apply the following formulae:
(a) the distance between the two points:
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(b) the gradient of the line segment joining the points (including collinear points) or the inclination of a line.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $\boldsymbol{m}=\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$ where $\boldsymbol{\theta}$ is the anlge that a line makes with a positive direction of the x axis.

- The lines joining collinear points have the same gradient.
- The gradient or slope of a straight line through the points $\mathrm{A}\left(x_{1} ; y_{1}\right)$ and $\mathrm{B}\left(x_{2} ; y_{2}\right)$ in which $x_{1} \neq x_{2}$ is given by: Gradient of $\mathrm{AB}=m_{A B}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { increase iny }}{\text { increase in } x}$

Perpendicular and Parallel Lines

- The product of the gradients of perpendicular lines is $\mathbf{- 1}$, i.e. $m_{1} \times m_{2}=-1$
- $m_{1} \times m_{2}=-1$ cannot be applied when one of the lines is parallel to the y-axis
- When two lines are parallel, then $m_{1}=m_{2}$

If $\mathrm{AB} \| \mathrm{PQ}$, then $m_{A B}=m_{P Q}(\mathrm{AB}$ and PQ not parallel to the y-axis)
If $m_{A B}=m_{P Q}$, then $\mathrm{AB} \| \mathrm{PQ}$

If $\mathrm{AB} \perp \mathrm{AQ}$, then $m_{A B} \times m_{A Q}=-1(\mathrm{AB}$ and PQ not parallel to the y-axis)
If $m_{A B} \times m_{A Q}=-1$, then $\mathrm{AB} \perp \mathrm{AQ}$
Parallel Lines

Perpendicular Lines

Collinear Points
$m_{1} \times m_{2}=-1$

$$
m_{A B}=m_{B C}
$$

(c) the co-ordinates of the mid-point of the line segment joining the points:
$\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$
(d) the equation of a line through two given points and the equation of a line through one point and parallel or perpendicular to a given line:
$y-y_{1}=m\left(x-x_{1}\right)$ or $y=m x+c$
viz. : If $A B \| C D$, then $m_{A B}=m_{C D}$
If $A B \perp C D$, then $m_{A B} \times m_{C D}=-1$

Downloaded from Stanmorepfysics.com

WORKED EXAMPLES (METHODOLOGY)

In the diagram below, $\mathrm{P}(1 ; 1), \mathrm{Q}(0 ;-2)$ and R are the vertices of a triangle and $\mathrm{P} \hat{\mathrm{R}}=\theta$. The x -intercepts of PQ and PR are M and N respectively. The equations of the sides PR and QR are $y=-x+2$ and $x+3 y+6=0$ respectively. T is a point on the x-axis, as shown.

1.1 Determine the gradient of QP.

Solution:

$$
\begin{aligned}
m_{\mathrm{PQ}} & =\frac{1-(-2)}{1-0} \\
& =3
\end{aligned}
$$

1.2 Prove that $\mathrm{PQR}=90^{\circ}$.

Solution:
QR: $\quad y=-\frac{1}{3} x-2$
$\therefore m_{\mathrm{QR}}=-\frac{1}{3}$

$$
\begin{aligned}
m_{\mathrm{PQ}} \times m_{\mathrm{QR}} & =3 \times-\frac{1}{3} \\
& =-1
\end{aligned}
$$

$\therefore \mathrm{PQ} \perp \mathrm{QR} \quad \therefore \mathrm{PQR}=90^{\circ}$

1.3 Determine the coordinates of R.

Solution:
$-\frac{1}{3} x-2=-x+2$

$$
\begin{aligned}
\frac{2}{3} x & =4 \\
x & =6 \\
y & =-4
\end{aligned}
$$

$\therefore \mathrm{R}(6 ;-4)$
1.4 Calculate the length of PR. Leave your answer in surd form.

Solution

$$
\begin{aligned}
\mathrm{PR} & =\sqrt{(1-6)^{2}+(1-(-4))^{2}} \\
& =\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

1.5 Determine the equation of a circle passing through P, Q and R in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$.

Solution
PR is a diameter [chord subtends 90°]
Centre of circlel: $\left(\frac{1+6}{2} ; \frac{1-4}{2}\right)$
$=\left(3 \frac{1}{2} ;-1 \frac{1}{2}\right)$
$r=\frac{\sqrt{50}}{2}$ OR $\frac{5 \sqrt{2}}{2}$ OR 3,54
$\therefore\left(x-\frac{7}{2}\right)^{2}+\left(y+\frac{3}{2}\right)^{2}=\frac{50}{4}$ OR $\frac{25}{2}$ OR 12,5
1.6 Determine the equation of a tangent to the circle passing through P, Q and R at point P in the form $y=m x+c$.

Downloaded from Stanmorepfysics.com
Solution
m of radius $=-1$
$\therefore m$ of tangent $=1$
Equation of tangent:

$$
\begin{aligned}
& y-y_{1}=\left(x-x_{1}\right) \\
& y-1=x-1 \\
& \therefore y=x
\end{aligned}
$$

1.7 Calculate the size of θ.

Solution:

$$
\begin{aligned}
& \tan \mathrm{PNT}=m_{\mathrm{PR}}=-1 \\
& \therefore \mathrm{PNT}=135^{\circ} \\
& \tan \mathrm{PMT}=m_{\mathrm{PQ}}=3 \\
& \therefore \mathrm{PMT}=71,57^{\circ}
\end{aligned}
$$

$$
\begin{array}{lc}
\hat{\mathrm{P}}=63,43^{\circ} & {[\operatorname{ext} \angle \mathrm{of} \Delta]} \\
\therefore \theta=26,57^{\circ} & {[\text { sum of } \angle \mathrm{s} \text { in } \Delta]}
\end{array}
$$

Downloaded from Stanmorepfysics.com

QUESTION 2

In the diagram, $\mathrm{A}(-7 ; 2), \mathrm{B}, \mathrm{C}(6 ; 3)$ and D are the vertices of rectangle ABCD .
The equation of AD is $\mathrm{y}=2 x+16$. Line AB cuts the y -axis at G . The x -intercept of line BC is $\mathrm{F}(p ; 0)$ and the angle of inclination of BC with the positive x-axis is α. The diagonals of the rectangle intersect at M .

2.1 Calculate the coordinates of M.
2.2 Write down the gradient of BC in terms of p .
2.3 Hence, calculate the value of p .
2.4 Calculate the length of DB.
2.5 Calculate the size of α.
2.6 Calculate the size of $O \hat{G} B$
$2.1\left(-\frac{1}{2} ; \frac{5}{2}\right)$
$2.2-\frac{3}{p-6}$
$2.3 p=4 \frac{1}{2}$
$2.4 \sqrt{170}$
$2.5 \alpha=63,43^{0}$
$2.6116,57^{0}$

Downloaded from Stanmorepfysics.com

ACTIVITIES

1. Determine the distance between the points given below. Leave answers in surd form.
(a) $(3 ; 0)$ and $(0 ; 3)$
(b) $(4 ; 0)$ and $(2 ; 3)$
2. The distance between $\mathrm{A}(x ; 15)$ and $\mathrm{B}(-7 ; 3)$ is $\mathbf{1 3}$ units. Calculate the possible values of x.
3. Given the following diagram:

(a) Prove that $\mathbf{A B C D}$ is a parallelogram using the lengths of the sides.
(b) Prove that $\mathbf{A B C D}$ is a parallelogram using the diagonals.
4. In the diagram below, ABCD is rhombus:

4.1 Determine the gradients of AC and BD.

Downloaded from Stanmorepfysics.com

4.2 Show that $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$
5. Determine the $4^{\text {th }}$ vertex of a parallelogram $P Q R T$, if the three given vertices are $P(6 ;-3)$, $Q(3 ; 3)$ and $C(-2 ; 1)$
6. Use the diagram below to answer the questions that follow:

(a) Calculate the coordinates of M the midpoint of AC.
(b) Determine the gradient BC.
(c) Determine the equation of the line parallel to BC that passes through M .
(d) Give the coordinates of P , the midpoint of AB .
(e) Calculate the length of BC.
(f) Prove that: $B C=2 P M$.
7. The points $\mathrm{A}(-5 ; 9), \mathrm{B}(-3 ; y)$ and $\mathrm{C}(2 ;-5)$ are given.
(a). Determine the value of y if A ; B and C are collinear.
(b). Determine the value of y if $\mathrm{BC} \perp \mathrm{AC}$
8. Calculate the value of t, if AB is parallel to the line which passes through the points $C(2 ; 3)$ and
$\mathrm{D}(-2 ;-5)$ if $\mathrm{A}(-3 ; t)$ and $\mathrm{B}(0 ;-2)$

Downloaded from Stanmorepfysics.com

9. Prove that the following points are on the same line.

$$
\mathrm{N}(-7 ;-8), \mathrm{A}(-1 ; 2) \text { and } \mathrm{G}(2 ; 7)
$$

10. Find the missing coordinates if these points are collinear.

$$
\mathrm{H}(-3 ; 3), \mathrm{O}(-1 ; y), \mathrm{B}(2 ;-7)
$$

11. Determine the equation of a straight line passing through the points:
(a) $(3 ; 7)$ and $(-6 ; 1)$
(b) $(8 ; t)$ and $(t ; 8)$
12. Determine the equation of the straight line:
(a) passing through the point $\left(-1 ; \frac{10}{8}\right)$ and with gradient $m=\frac{2}{3}$
(b) parallel to the x-axis and passing through the point $(0 ; 11)$
(c) perpendicular to the x-axis and passing through the point $\left(-\frac{3}{2} ; 0\right)$
(d) with undefined gradient and passing through the point $(4 ; 0)$
(e) with $m=3 a$ and passing through the point $(-2 ;-6 a+b)$
13. Determine whether or not the following two lines are parallel:
(a) $y+2 x=1$ and $-2 x+3=y$
(b) $\frac{y}{3}+x+5=0$ and $2 y+6 x=1$
(c) $y=2 x-7$ and the line passing through $(1 ;-2)$ and $\left(\frac{1}{2} ;-1\right)$
(d) $y+1=x$ and $x+y=3$
14. Determine the equation of the straight line that passes through the point $(1 ;-5)$ and is parallel to the line $y+2 x-1=0$
15. Determine the equation of the straight line that passes through the point $\left(-2 ; \frac{2}{5}\right)$ and is parallel to the line with the angle of inclination $\theta=145^{\circ}$

Downloaded from Stanmore pfysics.com

16. Determine whether or not the following two lines are perpendicular.
(a) $y-1=4 x$ and $4 y+x+2=0$
(b) $10 x=5 y-1$ and $5 y-x-10=0$
(c) $x=y-5$ and the line passing through $\left(-1 ; \frac{5}{4}\right)$ and $\left(3 ;-\frac{11}{4}\right)$
(d) $y=2$ and $x=1$
(e) $\frac{y}{y}=x$ and $3 y+x=9$
17. Determine the equation of a straight line that passes through the point $(-2 ;-4)$ and is perpendicular to the line $y+2 x=1$
18. Determine the equation of the straight line that passes through the point $(3 ;-1)$ and is perpendicular to the line with an angle of inclination $\theta=135^{\circ}$.

For $\tan \theta=m$ where $m \geq 0, \theta=\tan ^{-1} m$
19. Determine the gradient correct to one decimal place of each of the following straight lines, given that the angle of inclination is equal to:
(a) 60°
(b) 135°
(c) 0°
(d) 54°
(e) 90°
20. Calculate the angle of inclination correct to one decimal place for each of the following:
(a) a line with $m=\frac{3}{4}$
(b) $2 y-x=6$
(c) the line passes through the points $\mathrm{A}(-4 ;-1)$ and $\mathrm{B}(2 ; 5)$
(d) $y=4$
21. Determine the equation of a straight line passing through the point $(3 ; 1)$ and with an angle of inclination equal to 135°
22. Determine the acute angle between the line passing through the points $A\left(-2 ; \frac{1}{5}\right)$ and $B(0 ; 1)$ and the line passing through the points $C(1 ; 0)$ and $D(-2 ; 6)$
23. Determine the angle between the line $y+x=3$ and the line $x=y+\frac{1}{2}$

Downloaded from Stanmorepfysics.com

24. Find the angle between the line $y=2 x$ and the line passing through the points $\mathrm{P}\left(-1 ; \frac{7}{3}\right)$ and Q ($0 ; 2$)
25. ABCD is a parallelogram with $\mathrm{A}(-1 ; 4), \mathrm{B}(3 ; 6), \mathrm{C}(x ; y)$ and $\mathrm{D}(4 ; 1)$.

Determine:
(a) the gradient of AB .
(b) the midpoint P of BD .
(c) the coordinates of C .
(d) the equation of CD .
(e) the coordinates of E if E is the x-intercept of the line CD .
(f) the inclination of line $\mathrm{AE} \quad$ (g) the size of AÊD.
(h) the length of BC

Downloaded from Stanmorepfysics.com

TRIGONOMETRY

Cartesian plane

For each point $(x ; y)$ on the terminal arm of θ, the following

CAST DIAGRAM

The Cartesian plane is divided into four quadrants. The angle formed will determine the sign of each trigonometric functions. Complete the table by putting appropriate sign of variable and ratios.

	Interval				$\sin \theta$	$\cos \theta$	$\tan \theta$
Quad	θ	r	x	y	$\frac{y}{r}$	$\frac{x}{r}$	$\frac{y}{x}$
1	$\left(0^{\circ} ; 90^{\circ}\right)$						
2	$\left(90^{\circ} ; 180^{\circ}\right)$						
3	$\left(180^{\circ} ; 270^{\circ}\right)$						
4	$\left(270^{\circ} ; 360^{\circ}\right)$						

Conclusion

- All trig functions are \qquad in the \qquad quadrant
- $\sin \theta$ is \qquad in the \qquad quadrant and the other two are \qquad
- $\quad \tan \theta$ is \qquad in the \qquad quadrant and the other two are \qquad
- $\cos \theta$ is \qquad in the \qquad quadrant and the other two are \qquad

Downloaded from Stanmorepfysics.com

Grade 10 Revision Exercise

PART A: Complete this exercise without using a calculator.

1. $\mathrm{P}(3 ; 4)$ is a point in the Cartesian plane.

OP makes an angle θ with the positive x -axis.
Determine:
a) OP
b) $\sin \theta$
c) $\cos \theta$

d) $\tan \theta$
2. $\mathrm{OQ}=\mathrm{r}=10$ and $\mathrm{Q}(-6 ; \mathrm{y})$

Determine the value of:
a) y
b) $\sin \theta+\tan \theta$
c) $\sin ^{2} \theta+\cos ^{2} \theta$

3. If $13 \cos \theta-12=0$ and $180^{\circ}<\theta<360^{\circ}$, calculate with the aid of a diagram the value of:
(a) $\tan \theta$
(b) $(\sin \theta+\cos \theta)^{2}$
(c) $1-\sin ^{2} \theta$

Downloaded from Stanmorepfysics.com

4. If $\sin \alpha=\frac{3}{5}$ with $\alpha \in\left[90^{\circ} ; 270^{\circ}\right]$ and $\cos \beta=-\frac{12}{13}$ with $\beta \in\left[0^{\circ} ; 180^{\circ}\right]$, calculate the aid of the diagram the value of $\cos \alpha+\tan \beta$.

PART B: You may use a calculator to answer these questions. Leave your answer rounded off to TWO decimal places.

1. Find the values of θ in the equations below:
(a) $\sin \theta=0,78$
(b) $\tan \theta=\cos 21^{\circ}$
(c) $\quad \sin \theta=\tan 12^{\circ}+\cos 72^{\circ}$
(d) $5 \cos \theta+2=3$

Exercise 1 (Reduction Formulae)

1. If $\sin 40^{\circ}=p$ write the following in terms of p.
(a) $\sin 50^{\circ}$
(b) $\sin 140^{\circ}$
(c) $\cos 50^{\circ}$
(d) $\sin \left(-40^{\circ}\right)$
(e) $\tan 320^{\circ}$
2. If $\tan 202^{\circ}=\mathrm{t}$ write the following in terms of t .
(a) $\tan \left(-202^{\circ}\right)$
(b) $\cos 518^{\circ}$
(c) $\sin 338^{\circ}$
(d) $\frac{\cos 68^{\circ}}{\cos 22^{\circ}}$
(e) $\frac{\cos \left(-202^{\circ}\right)}{\tan 22^{\circ}}$

IDENTITIES

- $\tan \theta=\frac{\sin \theta}{\cos \theta} ; \theta \neq k \cdot 90^{\circ}, k$ is an odd integer

Use the definition of trigonometric ratios in the above table

LHS $=\tan \theta=$
RHS $=\frac{\sin \theta}{\cos \theta}=$ \qquad
\qquad
\qquad
$=$ \qquad
\therefore

- $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\text { LHS }=\sin ^{2} \theta+\cos ^{2} \theta
$$

$$
\left(\frac{y}{r}\right)^{2}+\left(\frac{x}{r}\right)^{2}
$$

$$
\frac{y^{2}+x^{2}}{r^{2}} \ldots . . . h \text { int }: x^{2}+y^{2}=r^{2}
$$

$$
\therefore \frac{r^{2}}{r^{2}}=1
$$

$$
\therefore L . H . S=\text { R.H.S }
$$

$\sin ^{2} \theta+\cos ^{2} \theta=1$
This identity can be written in the following ways:
a)
$\sin ^{2} \theta=$ \qquad
b) $\quad \cos ^{2} \theta=$ \qquad

Examples:

Factorise the following:
1)

$$
\begin{aligned}
& 2 \sin \theta \cos \theta-\cos \theta \\
& =\cos \theta(2 \sin \theta-1)
\end{aligned}
$$

2)

$$
\begin{aligned}
& 2 \sin ^{2} \theta-3 \sin \theta-2 \\
& =(2 \sin \theta+1)(\sin \theta-2)
\end{aligned}
$$

Alternative Method

let $\mathrm{k}=\sin \theta$
$2 \sin ^{2} \theta-3 \sin \theta-2$
$=2 \mathrm{k}^{2}-3 \mathrm{k}-2$
$=(2 \mathrm{k}+1)(\mathrm{k}-2)$
$=(2 \sin \theta+1)(\sin \theta-2)$

Downloaded from Stanmorepfysics.com

3)

$$
\begin{aligned}
& \sin ^{2} x-2 \sin x \cos x+\cos ^{2} x \\
& =(\sin x-\cos x)(\sin x-\cos x)
\end{aligned}
$$

Alternative Method

Let $\sin x=\mathrm{k}$ and $\cos x=\mathrm{p}$
$\sin ^{2} x-2 \sin x \cos x+\cos ^{2} x$
$=\mathrm{k}^{2}-2 \mathrm{pq}+\mathrm{p}^{2}$
$=(\mathrm{k}-\mathrm{p})(\mathrm{k}-\mathrm{p})$
$=(\sin x-\cos x)(\sin x-\cos x)$
4)

$$
\begin{aligned}
& 1-\tan ^{2} y \\
& =(1-\tan y)(1+\tan y)
\end{aligned}
$$

Proving Identities

To prove identities follow these steps:

- Make $\tan \theta=\frac{\sin \theta}{\cos \theta}$ or $\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}$ so that all the ratios are in terms of \sin and cos.
- Consider the LHS or RHS as an algebraic expression and use algebraic manipulations to simplify further.
- If there are fractions, find the LCD and add.
- If there are fractions over fractions, simplify as you would in algebra.
- Factorise where possible.
- Use the square identity where possible in any of the forms:

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \text { or } \sin ^{2} \theta=1-\cos ^{2} \theta \text { or } \cos ^{2} \theta=1-\sin ^{2} \theta
$$

- Simplify both sides of the identity as far as possible.

Examples

1. Prove the identity

$\frac{\tan x+\sin x}{1+\frac{1}{\cos x}}=\sin x$

Solution

$$
\begin{aligned}
\text { LHS } & =\frac{\frac{\sin x}{\cos x}+\sin x}{1+\frac{1}{\cos x}} \\
& =\frac{\frac{\sin x+\sin x \cdot \cos x}{\cos x}}{\frac{\cos x+1}{\cos x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Downloaded from Stanmorepfysics.com } \\
= & \frac{\sin x(1+\cos x)}{\cos x} \times \frac{\cos x}{1+\cos x}
\end{aligned}
$$

$=\sin x$

\therefore LHS $=$ RHS

Prove:

$$
\sin ^{2} \alpha-(\tan \alpha-\cos \alpha)(\tan \alpha+\cos \alpha)=\frac{\cos ^{2} \alpha-\sin ^{2} \alpha}{\cos ^{2} \alpha}
$$

State restrictions where applicable.

SOLUTION

Step 1: Use trigonometric identities to simplify each side separately

Simplify the left-hand side of the identity:

$$
\begin{aligned}
\mathrm{LHS} & =\sin ^{2} \alpha-(\tan \alpha-\cos \alpha)(\tan \alpha+\cos \alpha) \\
& =\sin ^{2} \alpha-\left(\tan ^{2} \alpha-\cos ^{2} \alpha\right) \\
& =\sin ^{2} \alpha-\tan ^{2} \alpha+\cos ^{2} \alpha \\
& =\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)-\tan ^{2} \alpha \\
& =1-\tan ^{2} \alpha
\end{aligned}
$$

Simplify the right-hand side of the identity so that it equals the left-hand side:

$$
\begin{aligned}
\text { RHS } & =\frac{\cos ^{2} \alpha-\sin ^{2} \alpha}{\cos ^{2} \alpha} \\
& =\frac{\cos ^{2} \alpha}{\cos ^{2} \alpha}-\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha} \\
& =1-\tan ^{2} \alpha
\end{aligned} \quad \begin{aligned}
\therefore \text { LHS } & =\text { RHS }
\end{aligned}
$$

Alternative method: we could also have started with the left-hand side of the identity and substituted $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}$ and simplified to get the righthand side.

Restrictions

We need to determine the values of α for which any of the terms in the identity will be undefined:

$$
\begin{aligned}
\cos ^{2} \alpha & =0 \\
\therefore \cos \alpha & =0 \\
\therefore \alpha & =90^{\circ} \text { or } 270^{\circ}
\end{aligned}
$$

We must also consider the values of α for which $\tan \alpha$ is undefined. Therefore, the identity is undefined for $\alpha=90^{\circ}+k .180^{\circ}$.

Exercise 2 (Identities)

1. Simplify as far as possible:
(a) $\frac{\cos \alpha}{\sin \alpha}$
(b) $\frac{1-\sin ^{2} x}{\cos x}$
(c) $\frac{\cos ^{2} \beta-1}{1-\sin ^{2} \beta}$
(d) $\frac{1}{\sin ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x}$
(e) $\frac{1+\cos \theta}{\sin \theta}+\frac{\sin \theta}{1+\cos \theta}$
(f) $\frac{\sin ^{3} \theta+\sin \theta \cdot \cos ^{2} \theta}{\cos \theta}$
2. Prove that:
$\begin{array}{ll}\text { (a) } \sin x \cdot \tan x+\cos x=\frac{1}{\cos x} & \text { (b) } \frac{\cos x}{1-\sin x}-\frac{\cos x}{1+\sin x}=2 \tan x\end{array}$
(c) $\tan x+\frac{1}{\tan x}=\frac{1}{\sin x \cdot \cos x}$
(d) $\frac{\tan x}{\cos x\left(1+\tan ^{2} x\right)}=\sin x$
(e) $\quad \frac{\left(1-\sin ^{2} x\right)^{2}}{\sin ^{2} x}=\frac{\cos ^{2} x}{\tan ^{2} x}$
(f) $\frac{1-\sin ^{2} x}{\sin ^{2} x+2 \sin x+1}=\frac{1-\sin x}{1+\sin x}$
(g) $\quad \sin ^{2} x+\sin ^{2} x \cdot \tan ^{2} x=\tan ^{2} x$

Downloaded from Stanmore pfysics.com

REDUCTION FORM AND CO-FUNCTIONS

1. The reduction formulae hold for any angle θ. For convenience, we assume θ is an acute angle ($0^{\circ}<\theta<90^{\circ}$).
2. When determining function values of $\left(180^{\circ} \pm \theta\right),\left(360^{\circ} \pm \theta\right)$ and $(-\theta)$ the function does not change.
3. When determining function values of $\left(90^{\circ} \pm \theta\right)$ and $\left(\theta \pm 90^{\circ}\right)$ the function changes to its co-function.

Negative angles

$\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=\cos \theta$

$$
\begin{aligned}
& \left(\theta-360^{\circ}\right)=-\left(360^{\circ}-\theta\right) \\
& \left(\theta-180^{\circ}\right)=-\left(180^{\circ}-\theta\right) \\
& \sin \left(\theta-180^{\circ}\right)=\sin -\left(180^{\circ}-\theta\right)=-\sin \theta
\end{aligned}
$$

$\tan (-\theta)=-\tan \theta$

Example:

$$
\begin{aligned}
& \frac{\sin \left(A-360^{\circ}\right) \cdot \cos \left(90^{\circ}+A\right)}{\cos \left(90^{\circ}-A\right) \cdot \tan (-A)} \\
& =\frac{\sin A(-\sin A)}{\sin A(-\tan A)} \\
& =\frac{\sin A}{\left(\frac{\sin A}{\cos A}\right)} \\
& =\cos A
\end{aligned}
$$

Downloaded from Stanmore pfysics.com

Special angle triangles

These values are useful when we need to solve a problem involving trigonometric functions without using a calculator. Remember that the lengths of the sides of a rightangled triangle obey the theorem of Pythagoras.

θ	0°	30°	45°	60°	90°
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef

Determine the value of the expression, without using a calculator:

$$
\frac{\cos 420^{\circ}-\sin 225^{\circ} \cos \left(-45^{\circ}\right)}{\tan 315^{\circ}}
$$

SOLUTION

Step 1: Use reduction formulae to express each trigonometric ratio in ferms of an acute angle

$$
\begin{aligned}
& \frac{\cos 420^{\circ}-\sin 225^{\circ} \cos \left(-45^{\circ}\right)}{\tan 315^{\circ}} \\
& =\frac{\cos \left(360^{\circ}+60^{\circ}\right)-\sin \left(180^{\circ}+45^{\circ}\right) \cos \left(-45^{\circ}\right)}{\tan \left(360^{\circ}-45^{\circ}\right)} \\
& =\frac{\cos 60^{\circ}-\left(-\sin 45^{\circ}\right)\left(\cos 45^{\circ}\right)}{-\tan 45^{\circ}} \\
& =\frac{\cos 60^{\circ}+\sin 45^{\circ} \cos 45^{\circ}}{-\tan 45^{\circ}}
\end{aligned}
$$

Now use special angles to evaluate the simplified expression:

$$
\begin{aligned}
& =\frac{\cos 60^{\circ}+\sin 45^{\circ} \cos 45^{\circ}}{-\tan 45^{\circ}} \\
& =\frac{\frac{1}{2}+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)}{-1} \\
& =-\left(\frac{1}{2}+\frac{1}{2}\right) \\
& =-1
\end{aligned}
$$

Downloaded from Stanmorepfysics.com

Co-function

Use the calculate to find the values of the following, Rounding off to TWO decimal places:

1) $\cos 20^{\circ}=$
2) $\sin 70^{\circ}=$
3) $\cos 45^{\circ}=$
4) $\sin 45^{\circ}=$
5) $\cos 60^{\circ}=$
6) $\sin 30^{\circ}=$
7) $\cos 0^{\circ}=$
8) $\sin 90^{\circ}=$
9) $\sin 15^{\circ}=$
10) $\cos 75^{\circ}=$
11) $\tan 23^{\circ}=$ \qquad
12) $\frac{\cos 67}{\sin 67}=$

Conclusion \qquad
\qquad
\qquad

Example:

Determine the value of $\frac{\tan 210^{\circ} \sin 160^{\circ} \cos 300^{\circ}}{\sin 150^{\circ} \cos 290^{\circ}}$

Solution:

$$
\begin{aligned}
& \frac{\tan 210^{\circ} \sin 160^{\circ} \cos 300^{\circ}}{\sin 150^{\circ} \cos 290^{\circ}} \\
& =\frac{\tan \left(180^{\circ}+30^{\circ}\right) \sin \left(180^{\circ}-20^{\circ}\right) \cos \left(360^{\circ}-60^{\circ}\right)}{\sin \left(180^{\circ}-30^{\circ}\right) \cos \left(360^{\circ}-70^{\circ}\right)} \\
& =\frac{\tan 30^{\circ} \sin 20^{\circ} \cos 60^{\circ}}{\sin 30^{\circ} \cos 70^{\circ}} \\
& =\frac{\tan 30^{\circ} \sin 20^{\circ} \cos 60^{\circ}}{\cos 60^{\circ} \sin 20^{\circ}} \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

Exercise 1

1. Simplify the following:
(a) $\frac{\cos \left(180^{\circ}+\theta\right) \cdot \cos \left(90^{\circ}-\theta\right)}{\sin (90+\theta) \cdot \sin (180-\theta)}$
(b) $\tan \left(180^{\circ}+\theta\right) \cdot \cos \left(90^{\circ}+\theta\right)+\sin (360-\theta) \cdot \tan \left(180^{\circ}-\theta\right)$
(c) $\sin ^{2}\left(180^{\circ}+\theta\right)-\cos ^{2}\left(90^{\circ}-\theta\right)$
(d) $\frac{\sin ^{2}\left(360^{\circ}-\theta\right)}{\cos \left(90^{\circ}+\theta\right) \cdot \sin \left(540^{\circ}-\theta\right)}$
(e) $\frac{\sin \left(-\theta-900^{\circ}\right) \cdot \tan \left(180^{\circ}+\theta\right) \cdot \cos \left(\theta-360^{\circ}\right)}{\sin (-\theta) \cdot \cos \theta \cdot \tan 1485^{\circ}}$
2. Evaluate without the use of a calculator.
(a) $\tan ^{2} 135^{\circ}$
(b) $\tan \left(-300^{\circ}\right) \cdot \sin 600^{\circ}$
(d) $\tan 315^{\circ}-2 \cos 60^{\circ}+\sin 210^{\circ}$
(d) $\tan 120^{\circ} \cdot \cos 210^{\circ}-\sin ^{2} 315^{\circ}$
(e) $\frac{\tan 150^{\circ}}{\tan 240^{\circ}}-\frac{\sin 300^{\circ}}{\sin 120^{\circ}}$
(f) $\frac{\sin 315^{\circ} \cdot \cos \left(-315^{\circ}\right) \cdot \sin 210^{\circ}}{\tan 225^{\circ}}$
(g) $\sqrt{4^{\sin 150^{\circ}} \cdot 2^{3 \tan 225^{\circ}}}$
(h) $\frac{\tan 330^{\circ} \sin 120^{\circ} \sin 260^{\circ}}{\cos 225^{\circ} \sin ^{2} 315^{\circ} \cos 350^{\circ}}$
3. Calculate:
(a) $\cos 30^{\circ} \times \sin 60^{\circ}$
(b) $\sin 60^{\circ} \cos 30^{\circ}-\cos 60^{\circ} \sin 30^{\circ}$
(c) $\frac{\sin 45^{\circ} \cdot \sin 30^{\circ} \cdot \tan 60^{\circ}}{\cos 60^{\circ} \cdot \tan 30^{\circ} \cdot \cos 45^{\circ}}$
4. (a) Prove without using a calculator that:
(i) $\frac{\cos 180^{\circ} \cdot \sin 225^{\circ} \cdot \cos 80^{\circ}}{\sin 170^{\circ} \cdot \tan 135^{\circ}}=-\frac{\sqrt{2}}{2}$
(ii) $\frac{\cos 315^{\circ}+1}{\sin 315^{\circ}-1}=-1$
(iii) $\quad \theta=30^{\circ}$ is a solution to $(\sin \theta)^{\sin \theta}=\frac{1}{\sqrt{2}}$

Downloaded from Stanmorepfysics.com

Equations and General Solutions

Equations

Example 1

Solve for x if $\sin x=0,5 \quad 0^{\circ} \leq x \leq 360^{\circ}$
Solution:

$$
\begin{aligned}
\sin x & =0,5 \\
x & =\sin ^{-1}(0,5) \\
x & =30^{\circ}
\end{aligned}
$$

With an understanding of the CAST diagram, (+'ve) sine can be in the $1^{\text {st }}$ and $2^{\text {nd }}$ Quadrants.
$x=30^{\circ}$ in the first quadrant
$x=180^{\circ}-30^{\circ}$ in the second quadrant $x=150^{\circ}$

Example 2

Solve for x if $\cos (2 x)=0,87 \quad 0^{\circ} \leq x \leq 360^{\circ}$

Solution:

$$
\begin{aligned}
\cos (2 x) & =0,87 \\
2 x & =\cos ^{-1}(0,87) \\
2 x & =29,54^{\circ}
\end{aligned}
$$

With an understanding of the CAST diagram, (+ 've) cosine can be in the $1^{\text {st }}$ and $4^{\text {th }}$ Quadrant.

$$
\begin{aligned}
2 x & =29,54^{\circ} \text { in the first quadrant } \\
x & =\frac{29,54^{\circ}}{2} \\
x & =14,77^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
2 x & =360^{\circ}-29,54^{\circ} \text { in the fourth quadrant } \\
2 x & =330,46^{\circ} \\
x & =\frac{330,46^{\circ}}{2} \\
x & =165,23^{\circ}
\end{aligned}
$$

Note that the examples above are for one revolution. We can then work out general solutions to find solutions for any number of revolutions.

General Solutions

Consider the graph of the functions of $f(x)=\sin (x)$ and $g(x)=0,5$ below:

Notice that the graph of $f(x)=\sin (x)$ repeats itself every 360° and also intercepts the line of $g(x)=0,5$ at $x=30^{\circ}$ and then $x=30^{\circ}+1 \times 360^{\circ}$ and also $x=30^{\circ}+3 \times 360^{\circ}$ and so on such that $x=30^{\circ}+k \times 360^{\circ}$ where $k \in \mathrm{Z}$. The same applies to the second quadrant solution. $x=150^{\circ}$ is a solution as well as $x=150^{\circ}+1 \times 360^{\circ}$ and $x=150^{\circ}+2 \times 360^{\circ}$ and so on such that $x=150^{\circ}+k \times 360^{\circ}$ where $k \in \mathrm{Z}$.

So, the general solution for the equation given in Example 1 above would be solved as follows:

$$
\begin{aligned}
\sin x & =0,5 \\
x & =\sin ^{-1}(0,5) \\
x & =30^{\circ}+k \times 360^{\circ} \quad k \in Z
\end{aligned}
$$

and

$$
x=150^{\circ}+k \times 360^{\circ} k \in \mathrm{Z}
$$

The cosine function also repeats itself every 360°. The general solution for Example 2 above would be laid out as follows:

Downloaded from Stanmore pfysics.com

$\cos (2 x)=0,87$

$$
\begin{aligned}
2 x & =\cos ^{-1}(0,87) \\
2 x & =29,54^{\circ}+k \times 360^{\circ} \\
x & =\frac{29,54^{\circ}+k \times 360^{\circ}}{2} \\
x & =14,77^{\circ}+k \times 180^{\circ} \quad k \in \mathrm{Z}
\end{aligned}
$$

and

$$
2 x=330,46^{\circ}+k \times 360^{\circ}
$$

$$
x=\frac{330,46^{\circ}+k \times 360^{\circ}}{2}
$$

$$
x=165,23^{\circ}+k \times 180^{\circ} \quad k \in \mathrm{Z}
$$

Consider the function of $f(x)=\tan (x)$ and how it intersects the line $y=1$ below.

Because the tangent function repeats itself every 180° the general solution to the equation $\tan (x)=1$ will be presented as follows:

Solve for x if $\tan (x)=1$

Solution

$$
\begin{aligned}
\tan (x) & =1 \\
x & =\tan ^{-1}(1) \\
x & =45^{\circ}+k \times 180^{\circ} \\
x & =45^{\circ}+180^{\circ} k \quad k \in \mathrm{Z}
\end{aligned}
$$

Downloaded from Stanmorepfysics.com

the above solution includes all possible values of x.

Trigonometric Equations That Use Identities and Require Factorisation

Solve for x, finding the general solution in each case:
$12 \sin ^{2} x+\sin x=0$

Solution

$$
\begin{aligned}
2 \sin ^{2} x+\sin x & =0 \\
\sin x(2 \sin x+1) & =0 \\
\sin x & =0 \\
x & =0^{\circ}+360^{\circ} k \\
& \text { and } \\
x & =180^{\circ}+360^{\circ} k
\end{aligned}
$$

$$
\text { or } 2 \sin x+1=0
$$

$$
2 \sin x=-1
$$

$$
\sin x=-\frac{1}{2}
$$

$$
x=180^{\circ}+30^{\circ}+k 360^{\circ}
$$

$$
=210^{\circ}+k 360^{\circ}
$$

OR

$$
\begin{aligned}
x & =360^{\circ}-30^{\circ}+k 360^{\circ} \\
& =330^{\circ}+k 360^{\circ}, \kappa \in Z
\end{aligned}
$$

$22 \cos ^{2} x-2-\sin x=0$

Solution

$$
\begin{aligned}
& 2 \cos ^{2} x-2-\sin x=0 \quad \text { or } 2 \sin x+1=0 \\
& 2\left(1-\sin ^{2} x\right)-2-\sin x=0 \\
& 2-2 \sin ^{2} x-2-\sin x=0 \\
& -2 \sin ^{2} x-\sin x=0 \\
& 2 \sin ^{2} x+\sin x=0 \\
& \sin x(2 \sin x+1)=0 \\
& \sin x=0 \\
& x=0^{\circ}+360^{\circ} k \\
& \text { and } \\
& x=180^{\circ}+360^{\circ} k \\
& 2 \sin x=-1 \\
& \sin x=-\frac{1}{2} \\
& x=180^{\circ}+30^{\circ}+k 360^{\circ} \\
& =210^{\circ}+k 360^{\circ} \\
& \text { and } \\
& x=360^{\circ}-30^{\circ}+k 360^{\circ} \\
& =330^{\circ}+k 360^{\circ}, \kappa \in Z
\end{aligned}
$$

3. $\tan ^{2} x-4=0$

Solution

$$
\begin{aligned}
\tan ^{2} x-4 & =0 & & \\
(\tan x-2)(\tan x+2) & =0 & & \\
\tan x-2 & =0 & \text { or } & \tan x+2
\end{aligned}=0
$$

4. $\tan ^{3} x+8=0$

Solution

$$
\tan ^{3} x-8=0
$$

$(\tan x-2)\left(\tan ^{2} x+2 \tan x+4\right)=0$

$$
\begin{aligned}
\tan x-2 & =0 & \text { or } & \tan ^{2} x+2 \tan x+4=0 \\
\tan x & =2 & & \\
x & =\tan ^{-1}(2) & & \\
x & =63,43^{\circ}+180^{\circ} k & &
\end{aligned}
$$

5. $2 \sin ^{2} x-7 \sin x-4=0$

Solution

$$
\begin{aligned}
& 2 \sin ^{2} x-7 \sin x-4=0 \quad \text { or } \quad 2 \sin x+1=0 \\
& 2 \sin ^{2} x-8 \sin x+1 \sin x-4=0 \quad 2 \sin x=-1 \\
& 2 \sin x(\sin x-4)+1(\sin x-4)=0 \\
& (\sin x-4)(2 \sin x+1)=0 \\
& \sin x-4=0 \\
& \sin x=4 \\
& \sin x=-\frac{1}{2} \\
& x=180^{\circ}+30^{\circ}+k 360^{\circ} \\
& =210^{\circ}+k 360^{\circ} \\
& \text { no solution } \\
& \text { and } \\
& x=360^{\circ}-30^{\circ}+k 360^{\circ} \\
& =330^{\circ}+k 360^{\circ}, \kappa \in Z
\end{aligned}
$$

Mixed Exercise

2. Find the general solution for x given that $4 \sin ^{2} x-1=0$
3. Find the general solution for x in each equation below:
a) $\sin ^{2} x-\sin x \cos x=0$
b) $\quad \cos ^{2} x-\sin x-1=0$
c) $\quad-\cos x=\sin \left(x-10^{\circ}\right)$
d) $\cos x=\tan (-x)$
e) $2 \sin x=\sqrt{2+3 \cos x}$
f) $\quad 2 \cos ^{2} x+\cos x-1=0$
g) $6 \sin ^{2} x-\cos x=5$
h) $\tan ^{3} x+8=0$

TRIGONOMETRIC GRAPHS

Complete the table and draw the following graphs on the same set of axis:

x	0^{0}	30°	60°	90°	120°	150°	180°	210°	240^{0}	270^{0}	300°	330°	360^{0}
$y=\sin x$													
$y=2 \sin x$													
$y=3 \sin x$													
$y=\frac{1}{2} \sin x$													
$y=\cos x$													
$y=-2 \cos x$													
$y=3 \cos x$													
$y=\frac{1}{2} \cos x$													

$$
\begin{array}{c|ccc}
+ & + & \text { Signs in } 4 & \text { + means graph is above } x \text { - axis } \\
\cline { 1 - 1 } & - & \text { quadrants } & \text { - means graph is above } x \text { - axis }
\end{array}
$$

Shape: Wave-like shape, starting at the origin
Intercepts: y-intercept $=0$
x-intercept (zeros) $=0^{\circ} ; 180^{\circ} ; 360^{\circ}\left(\right.$ every 180° starting at $\left.0^{\circ}\right)$
Domain: \quad The domain is usually limited to the interval $\left[0^{\circ} ; 360^{\circ}\right]$ or $\left[-360^{\circ} ; 360^{\circ}\right]$ Infinite angles are possible as a line centred at the origin on the Cartesian plane can be rotated many times. Rotating the line anti-clockwise gives positive angles, and rotating clockwise gives negative angles.

Period: The period of the function is the number of degrees the function needs to complete one cycle. This corresponds to one rotation. The sine function repeats itself every 360°.

Trigonometric Functions are periodic functions and the graph form 0° to 360° is exactly the same as the graph from 360° to 720°

Range: \quad Minimum value: -1 when the angle x is 270° or -270° Maximum value: 1 when the angle x is 90° or -90° $[-1 ; 1]$
Amplitude: The amplitude of a trigonometric graph is the greatest distance the function moves above or below the x-axis.
(This only applies for sin or cos graphs). For the basic graph (also known as parent function) the amplitude is 1 . It is half the range (i.e., $\frac{1+1}{2}=1$).

Downloaded from Stanmorepfysics.com

Strategies for Graphical Interpretations: Typical interpretation questions

Type of question	Interpretation
$f(x)<0$	$f(x)$ must be less than zero $f(x)$ lies below the x-axis value is excluded
$f(x)<g(x)$	$f(x)$ must be less than $g(x)$ $f(x)$ lies below $g(x)$ e.g. $\sin (x)$ lies below $\cos (x)$
$f(x) \geq 0$	$f(x)$ must be greater than or equal to zero $f(x)$ lies above x-axis value is included
$f(x)>g(x)$	$f(x)$ must be greater than $g(x)$ $f(x)$ lies above $g(x)$ value is excluded
$f(x) . g(x)<0$	One of the two graphs must be above x-axis while the other must be below x-axis. Value is excluded
$f(x) \cdot g(x) \geq 0$	Both the two graphs are above the x-axis or both the two graphs are below the x-axis. Value is included.
$f(x) \cdot g(x)=0$	Either $f(x)=0$ or $g(x)=0$ x-intercepts of $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$
$f(x)-g(x)=0$	$f(x)=g(x)$ Points of intersection
(Excluded because of restriction
]	Included because of restriction
(;]	first-value excluded and last-value is included because of restriction
(;) or $<>$ or 0	Values excluded
[;] or $\geq \leq$ or.	Values included

Summary of the Basic characteristics of trigonometric graphs

Finding of	$y=a \sin b x$	$y=a \cos b x$	$y=a \tan b x$
Domain	$\left[-360^{\circ} ; 360^{\circ}\right]$	$\left[-360^{\circ} ; 360^{\circ}\right]$	$\begin{aligned} & \left(-90^{\circ} ; 0^{\circ}\right],\left(-90^{\circ} ;-270^{\circ}\right), \\ & \left(-270^{\circ} ; 360^{\circ}\right],\left[0^{\circ} ; 90^{\circ}\right), \\ & \left(90^{\circ} ; 270^{\circ}\right),\left(270^{\circ} ; 360^{\circ}\right] \end{aligned}$
Range	[-1; 1]	[-1; 1]	$[-\infty ; \infty]$
Period	$\frac{360^{\circ}}{\|b\|}=\frac{360^{\circ}}{\|1\|}=360^{\circ}$	$\frac{360^{\circ}}{\|b\|}=\frac{360^{\circ}}{\|1\|}=360^{\circ}$	$\frac{180^{\circ}}{\|b\|}=\frac{180^{\circ}}{\|1\|}=180^{\circ}$
Amplitude	$a=1$	$a=1$	No
Minimum value	-1	-1	No
Maximum value	1	1	No
Asymptote	NO	NO	$\begin{gathered} x=-90^{\circ}, x=-270^{\circ} \\ x=90^{\circ}, x=270^{\circ} \end{gathered}$
NOTE: the value of b affects the period only and the amplitude (maximum \& minimum) remains the same.			

Downloaded from Stanmorepfysics.com

1. The Worked Out Examples/Activities

Example 1.

On the same system of axes, draw the sketch graphs of:
$y=\tan x^{\circ}-1$ and $y=\cos 2 x^{\circ}$, for the interval $\left[-180^{\circ} ; 0^{\circ}\right]$. Show all the intercepts with the axes and the coordinates of the turning points. Show the asymptotes of $y=\tan x^{0}-1$.
(a) Use the sketch graphs to the value of x if: $\cos 2 x^{\circ}+1 \leq \tan x^{\circ}$, in the interval $\left[-180^{\circ} ; 0^{\circ}\right]$.
(b) If the curve of $y=\tan x^{\circ}-1$ is moved upwards by 3 units, what will the new equation be?
(c) Write down the period of $y=\cos 2 x^{\circ}$

Solution

(a) $\cos 2 x^{\circ}+1 \leq \tan x^{\circ}$
$\cos 2 x^{\circ} \leq \tan x^{\circ}-1$
$-135^{\circ} \leq x<90^{\circ}$
(b) $y=\tan x^{\circ}+2$
(c) Period of $y=\cos 2 x^{\circ}: 180^{\circ}$

Example 2

In the given figure the graphs of:
$f=\left\{(x ; y) \mid y=\operatorname{acos}\left(x^{\circ}+b\right)\right\}$ and $g=\left\{(x ; y) \mid y=c+\sin d x^{\circ}\right\}$ if $x \in\left[-180^{\circ} ; 180^{\circ}\right]$ are given.

(a) the values of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and \boldsymbol{d} by using the graphs, and write down the two equations in the form of: $y=\cdots$
(b) $f\left(0^{\circ}\right)$ without using a calculator.
(c) x from the graphs if:
(i) $g(x)=2$ and $x \in\left[-180^{\circ} ; 180^{\circ}\right]$
(ii) $f(x)<g(x)$ and $x \in\left[-180^{\circ} ; 0^{\circ}\right]$
(d) The \boldsymbol{y}-axis is moved to the $\boldsymbol{y}^{\mathbf{1}}$ position in order to pass through a turning point of \boldsymbol{f}. the equation of \boldsymbol{f} in the form: $\boldsymbol{y}=\cdots$ with respect to the new system of axes.

Solution

(a) $a=2 ; b=30^{\circ}, c=1$ and $d=2$

$$
\therefore f(x)=2 \cos \left(x^{\circ}+30^{\circ}\right) \text { and } g(x)=1+\sin 2 x^{\circ}
$$

(b) $f\left(0^{\circ}\right)=2 \cos 30^{\circ}$

$$
\begin{aligned}
& =2 \frac{\sqrt{18}}{2} \\
& \quad=\sqrt{3}
\end{aligned}
$$

(c) (i) $x=45^{\circ} ;-135^{\circ}$
(iii) $-180^{\circ} \leq x<-90^{\circ}$
(d) $y=2 \cos \left(x^{\circ}+30^{\circ}-30^{\circ}\right)$

$$
y=2 \cos x^{\circ}
$$

2. Activities

(Sketching and Interpreting Graphs)

QUESTION 1

Given the functions $f(x)=2 \sin x$ and $g(x)=\tan x-1$.
1.1 Sketch the graphs of f and g on the same system of axes on the diagram sheet,
for $x \in\left[-45^{\circ} ; 180^{\circ}\right]$, clearly labelling endpoints, turning points, intercepts with the axes and asymptotes.
1.2 Use your graphs to determine the value(s) of x for which $f(x) . g(x)<0$
1.3 If $h(x)=f(x)+2$, write down the range of h.

QUESTION 2

2.1 Draw the graphs of $y=\sin 4 x$ and $y=\sin 2 x$ on the same system of axes for $x \in\left[0^{\circ} ; 180^{\circ}\right]$
2.2 For which values of $x \varepsilon\left[0^{\circ} ; 180^{\circ}\right]$ is $\sin 4 x \geq \sin 2 x$?

QUESTION 3

3.1 Use the system of axes on DIAGRAM SHEET 3 to sketch the graphs of:

$$
\begin{equation*}
f(x)=-\frac{1}{2} \sin \left(x+30^{\circ}\right) \text { and } g(x)=\cos 2 x \text { if }-180^{\circ} \leq x \leq 180^{\circ} \tag{6}
\end{equation*}
$$

3.2 Write down the period of g.
3.3 Graph h is obtained when the y-axis for f is moved 120° to the left.

Give the equation of h in the form $h(x)=$
3.4 Determine the general solution of: $\cos 2 x=1$

(Sketching and Interpreting trig graphs/general solution)

QUESTION 4

The graph of $f(x)=\cos 2 x$ for $-270^{\circ} \leq x \leq 270^{\circ}$ is drawn below

Downloaded from Stanmorepfysics.com

4.2 Write down the range of $\frac{f(x)}{2}$.
4.3 Draw the graph of $g(x)=1+\sin x$ on the same set of axes as $f(x)$. Show all turning points and intercepts with the axes.
4.4 Use the graphs to determine the value(s) of x for which:
4.4.1 $g(x)-f(x)=3$ in the interval $0^{\circ}<x<180^{\circ}$
4.4.2 $f(x) . g(x) \leq 0$ in the interval $0^{\circ}<x<180^{\circ}$

QUESTION 5

The graphs of $f(x)=a \tan x$ and $g(x)=-\sin b x$ for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$ are drawn below

Use the graphs to answer the following:
5.1 Determine the values of a and b.
5.2 Solve for $x \in\left[0^{\circ} ; 180^{\circ}\right]$ if $2 \sin x \cos x-\tan x=0$
5.3 For which values of $x \in\left[-90^{\circ} ; 180^{\circ}\right]$ is $g(x) \geq f(x)$?
5.4 If $g(x)$ is shifted 90° to the right to form a new graph $h(x)$, write down the equation of $h(x)$ in its simplest form

Downloaded from Stanmorepfysics.com

QUESTION 6

A function is defined as $f(x)=a \sin b x+c$
The function satisfies the following conditions:

- The period is 120°
- The range is $y \in[-2 ; 6]$
- The co-ordinates of a maximum point are $\left(210^{\circ} ; 6\right)$

Write down the values of a, b and c

Question 7

The diagram shows the graphs of $f(x)=\tan (x+d)$ and
$g(x)=e \sin q x$ for the interval $-180^{\circ} \leq x \leq 180^{\circ}$.
The graphs intersect at $\mathrm{A}\left(x_{a} ; y_{a}\right)$ and $\mathrm{B}\left(x_{b} ; y_{b}\right)$.
7.1 Write down the values of d, e and q.
7.2 Use the graphs to solve for x if

$$
\text { 7.2.1 } g(x)<0
$$

7.2.2 $f^{\prime}(x)$ and $g^{\prime}(x)$ are both greater than or equal to zero but $x<0$.

Downloaded from Stanmorepfysics.com

QUESTION 8

Sketched below is $f(x)=\sin \frac{x}{2}$
8.1 For $f(x)$, write down the

8.1.1 range

8.1.2 period
8.2 Draw $g(x)=\cos \left(x+60^{\circ}\right)$ for $x \in\left[-180^{\circ} ; 180^{\circ}\right]$.Clearly draw all intercepts with axes, turning points and starting and ending points.
8.3 For which values of $x \in\left[-180^{\circ} ; 180^{\circ}\right]$ is $f(x) \cdot g(x) \geq 0$.

FORMULAE AND THE SOLUTION OFTRIANGLES

HIGHTS AND DISTANCES

The Prior Knowledge The Background Knowledge
The Assumed Knowledge The Previous Knowledge
The Perceived Knowledge

1. THE SINE FORMULA

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \text { or } \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Downloaded from Stanmorepfysics.com

Remember: The sine formula is used if two angles and a side are given in a triangle, or if two sides and a non-included angle are given.

Remember: Opposite the longest side is the largest angle.
\therefore When the triangle is obtuse-angled, the longest side is opposite the obtuse angle.

Given: An acute-angled $\triangle \mathrm{ABC}$
Required to prove: $\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}$
Construction: $\mathrm{AD} \perp \mathrm{BC}$

Proof:

$$
\begin{aligned}
\sin \mathrm{B} & =\frac{\mathrm{AD}}{c} \\
\therefore \mathrm{AD} & =c \cdot \sin \mathrm{~B} \\
\operatorname{sinC} & =\frac{\mathrm{AD}}{b} \\
\therefore \mathrm{AD} & =b \cdot \sin \mathrm{C} \\
\therefore c \cdot \sin \mathrm{~B} & =b \cdot \sin \mathrm{C} \\
\therefore \frac{\sin \mathrm{~B}}{b} & =\frac{\sin \mathrm{C}}{c}
\end{aligned}
$$

Similarly by drawing $\mathrm{CE} \perp \mathrm{AB}$, it can be proved that:

$$
\begin{aligned}
& \frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{A}}{a} \\
& \therefore \frac{\sin \mathrm{~A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}
\end{aligned}
$$

Given: $\triangle \mathrm{ABC}$ with $\mathrm{B}>90^{\circ}$
Required to prove: $\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}$
Construction: $\mathrm{AD} \perp \mathrm{BC}$ with CB produced.

Proof: $\quad \sin \mathrm{ABC}=\sin \mathrm{ABD}=\frac{\mathrm{AD}}{c}$

$$
\begin{aligned}
\therefore \mathrm{AD} & =c \cdot \sin \mathrm{~B} \\
\sin \mathrm{C} & =\frac{\mathrm{AD}}{b} \\
\therefore \mathrm{AD} & =b \cdot \sin \mathrm{C} \\
\therefore c \cdot \sin \mathrm{~B} & =b \cdot \sin \mathrm{C} \\
\therefore \frac{\sin \mathrm{~B}}{b} & =\frac{\sin \mathrm{C}}{c}
\end{aligned}
$$

Similarly by drawing $\mathrm{CE} \perp \mathrm{AB}$ with AB produced, it can be proved that:

$$
\begin{aligned}
& \frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{A}}{a} \\
& \therefore \frac{\sin \mathrm{~A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}
\end{aligned}
$$

2. THE COSINE FORMULA

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
& b^{2}=a^{2}+c^{2}-2 a c \operatorname{Cos} B \\
& c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C
\end{aligned}
$$

Remember: We use the cosine formula in this form to the third side of a triangle when two sides and the included angle are given.
$\operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \quad \operatorname{Cos} B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \quad \operatorname{Cos} C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
Remember: We use this formula in this form if three sides of a triangle are given and an angle must be calculated.

NB:

The Cosine-formula is used when the information in the triangle entails: S, S, S or S, A, S.

Given: $\triangle \mathrm{ABC}$ with $\mathrm{B}>90^{\circ}$
Required to prove: $b^{2}=a^{2}+c^{2}-2 a c \cos \mathrm{~B}$
Construction: $\mathrm{AD} \perp \mathrm{BC}$ with CB produced.

Proof:

$$
\begin{aligned}
b^{2} & =\mathrm{AD}^{2}+\mathrm{DC}^{2}(\text { Pythagoras in } \triangle \mathrm{ADC}) \\
& =\mathrm{AD}^{2}+(a+\mathrm{BD})^{2} \\
& =\mathrm{AD}^{2}+a^{2}+2 a \cdot \mathrm{BD}+\mathrm{BD}^{2} \\
& =\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)+a^{2}+2 a \cdot \mathrm{BD} \\
& =c^{2}+a^{2}+2 a \cdot \mathrm{BD}
\end{aligned}
$$

$$
\begin{aligned}
\cos \mathrm{ABC} & =-\cos \mathrm{A} \hat{\mathrm{BD}} \\
& =-\frac{\mathrm{BD}}{c}
\end{aligned}
$$

$$
\therefore \mathrm{BD}=-c \cos \mathrm{~B}
$$

$$
\therefore b^{2}=a^{2}+c^{2}-2 a c \cos \mathrm{~B}
$$

3. THE AREA FORMULA

Area of a $\triangle \mathrm{ABC}=\frac{1}{2} \boldsymbol{a b S i n} \widetilde{C}$
Area of a $\Delta \mathrm{ABC}=\frac{1}{2} b c \operatorname{Sin} \widehat{A}$
Area of a $\triangle \mathrm{ABC}=\frac{1}{2} \operatorname{acSin} \widehat{B}$
Remember: The area formula is used to calculate the area of a triangle.
An unknown side can also be d if the area, a side and an angle are given. Note that this formula actually means: The area of a triangle $=\frac{1}{2}$ (product of two adjacent sides) multiplied by the sine of an included angle.
\therefore In order to apply this formula, you only need: S, A, S in the triangle.
Proof :
Given: Acute-angled $\triangle \mathrm{ABC}$.
Required to prove: Area $\triangle \mathrm{ABC}=\frac{1}{2} a b \sin \mathrm{C}$
Construction: $\mathrm{AD} \perp \mathrm{BC}$

Proof: \quad Area of $\triangle \mathrm{ABC}=\frac{1}{2} a \cdot \mathrm{AD}$

$$
\begin{aligned}
\sin \mathrm{C} & =\frac{\mathrm{AD}}{b} \\
\mathrm{AD} & =b \cdot \sin \mathrm{C} \\
\therefore \text { Area } \triangle \mathrm{ABC} & =\frac{1}{2} a b \sin \mathrm{C}
\end{aligned}
$$

Downloaded from Stanmorepfysics.com

Two-dimensional

In two-dimensional problems we will often refer to the angle of elevation and the angle of depression. To understand these two angles let us consider a person sailing alongside some cliffs. The person looks up and sees the top of the cliffs as shown below:

In this diagram θ is the angle of elevation.

Angle of elevation

The angle of elevation is the angle formed by the line of sight and the horizontal plane for an object above the horizontal plane.

In this diagram α is the angle of depression.

Angle of depression

The angle of depression is the angle formed by the line of sight and the horizontal plane for an object below the horizontal plane.

Downloaded from Stanmorepfysics.com

4. SOLVING PROBLEMS IN TWO DIMENSIONS

Always in problems involving two or more triangles, the same method as for a single triangle is used.

HINTS, CLUES

$>$ The problem usually involves two triangles with a common side
$>$ Often, one of the triangles is right-angled
$>$ Use Geometry to obtain additional information, e.g. exterior angle of a triangle, corresponding and alternate angles
$>$ Decide in which triangle the required side occurs. Start with the other triangle and calculate the common side using the sine or cosine formula
$>$ Then use the sine formula or the cosine formula or trigonometrical ratios to solve the problem.

5. PROVING A FORMULA

$>$ Sometimes we are required to prove some sort of a formula, before calculating a side or an angle.
$>$ We use the same procedure as in solving a problem
$>$ Trigonometrical identities such as: $\boldsymbol{\operatorname { S i n }}\left(\mathbf{9 0 ^ { \circ }}-\boldsymbol{\theta}\right)=\boldsymbol{\operatorname { C o s }} \boldsymbol{\theta}, \boldsymbol{\operatorname { C o s }}\left(\mathbf{9 0 ^ { \circ }}-\boldsymbol{\theta}\right)=\boldsymbol{\operatorname { S i n }} \boldsymbol{\theta}$ $\boldsymbol{\operatorname { S i n }}\left[180^{\circ}-(x+y)\right]=\boldsymbol{\operatorname { S i n }}(x+y)$, etc. are used.

PROBLEMS IN THREE DIMENSIONS

> In three-dimensional problems right angles often don't look like right angles.

> Draw all vertical lines, vertical, so that a right angle may look like this:
> Always shade the horizontal plane roughly.
$>$ Where you encounter problems with three triangles, you must work from the one with the most information via the second to the third.
$>$ The cosine formula is used more often than in problems in two dimensions.

8. Examples/Activities

QUESTION 7

In the diagram, $\triangle \mathrm{PQR}$ is drawn with T on PQ .
$\angle \mathrm{P}=64^{\circ}$
$\mathrm{QR}=7$ units
$\mathrm{PT}=2$ units
$\mathrm{QT}=4$ units

1.1.1 Calculate the size of $\angle \mathrm{Q}$, correct to the nearest degree.
1.1.2 If $\angle \mathrm{Q}=66^{\circ}$, determine the following:
1.1.2.1 the area of $\triangle T Q R$.
1.1.2.2 the length of TR.
1.2 In the figure below $\mathrm{PQ}=80 \mathrm{~mm}, \mathrm{PS}=100 \mathrm{~mm}, \mathrm{SR}=110 \mathrm{~mm} . P \hat{S} R=60^{\circ}$.
1.2.1 Show, by calculation that $\mathrm{PR}=105,36 \mathrm{~m}$ (2)
1.2.2 Find the area of $\triangle \mathrm{PRS}$.
(2)

Downloaded from Stanmorepfysics.com

1.2.1 B and C are in the same horizontal plane as D , the foot of flagpole AD . The angles of elevation to A (the top of the flagpole) are x and y degrees from B and C respectively. The sketch below illustrates the situation.

1.4.1 Show that: $A D=\frac{B C \sin x \cdot \sin y}{\sin (x+y)}$ (Hint: First find the length of $A B$)

QUESTION 2

2.1 C is the top of a tower CD. A, B and D are in the same horizontal plane. The distance between A and B is 800 m . CA is $4273 \mathrm{~m}, C \hat{A} B=59,4^{\circ}$ and the angle of elevation of C from B is $15,6^{\circ}$.

Calculate the height of the tower, CD.

Downloaded from Stanmorepfysics.com

QUESTION 3

3.1 Use the diagram on the diagram sheet or redraw the diagram in your answer book to prove that: $\quad c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C$

3.2 In the diagram below, KL is a building. Points L, M and N are in the same horizontal plane. The angle of elevation from M to the top of the building is . $L \widehat{M} N=150^{\circ}$ and $M \hat{L} N=18,2^{\circ} . L N=30$ metres.

3.2.1 Show that $K L=60 \tan \theta \cdot \sin 11,8^{\circ}$.
3.2.2 Calculate the height of the building, KL, if $\theta=52,7^{\circ}$.
3.2.3 Calculate the area of $\triangle L M N$.

Downloaded from Stanmorepfysics.com
3.4 MNP is a triangle and P is a point on NT. MP is joined.
$\mathrm{PT}=m, \mathrm{NP}=2 m$ and

$$
\mathbf{M} \hat{\mathbf{P}} \mathbf{N}=\hat{\mathbf{N}}=\theta .
$$

Prove:

Area $\triangle \mathrm{MTP}=\frac{1}{2} m^{2} \tan \theta$.

EUCLIDEAN GEOMETRY

GRADE 10

- Revise basic results established in earlier grades.
- Investigate line segments joining the mid-points of two sides of a triangle.
- Define the following special quadrilaterals: the kite, parallelogram, rectangle, rhombus, square and the trapezium. Investigate and make conjectures about properties of the sides, angles, diagonals and areas of these quadrilaterals. Prove these quadrilaterals.
- Solve problems and prove sides using the properties of parallel lines, triangles and quadrilaterals.

GRADE 11

- Investigate and prove theorems of the geometry of circles assuming results from earlier grades, together with one other result concerning tangents and radii of circles.
- The line drawn from the centre of a circle perpendicular to a chord bisects the chord;
- The perpendicular bisector of a chord passes through the centre of the circle;
- The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre);
- Angles subtended by a chord of the circle, on the same side of the chord, are equal;
- The opposite angles of a cyclic quadrilateral are supplementary;
- Two tangents drawn to a circle from the same point outside the circle are equal in length;
- The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.
- Solve circle geometry problems, providing reasons for statements when required.
- Prove riders.

TERMINOLOGY

6.1 POINT: It is a location that can be described by giving its coordinates. It has no length or width. It is usually represented by a DOT (.). A capital letter (alphabet) is used to denote a point .e.g. P.
6.2 LINE: A set of points joined together. It can be straight or curved.
6.2.1 Line Segment: is obtained when two points are joined from one point directly to another. It has a fixed length. e.g.

A B
1.2.2 RAY: a portion of a line which starts at a point and continue infinitely. It has no measurable length because it goes forever.

ANGLE: It is formed when two line segments meet at a point called a vertex. A shape formed by two lines or rays diverging from a common point (vertex).

AP is a fixed arm and AT is a rotating arm. A protractor is an instrument used to measure an angle. The unit of measurement is degrees and is denoted by

TYPES OF ANGLES

2.1 ACUTE ANGLE: angle between 0° and 90°

2.2 OBTUSE ANGLE: angle between 90° and 180°

2.3 RIGHT ANGLE: angle which is of the size 90°

2.4 STRAIGHT ANGLE: angle of which the size is 180°

2.5 REFLEX ANGLE: angle between 180° and 360°

2.6 REVOLUTION: (FULL ANGLE) angle of which its magnitude is 360°

ANGLE RELATIONSHIP

- Vertically Opposite: formed by intersection of two straight lines. Its "vertical" because they share the same vertex not that they are upright. They are equal.

- Complementary angles: they add up to 90°

- Supplementary: they add up to 180°

- Corresponding angles: Two angles that occupy corresponding positions (They form \mathbf{F} shape).

$$
\begin{aligned}
& \hat{6}=\hat{7} \\
& \hat{5}=\hat{8}
\end{aligned}
$$

Downloaded from Stanmorepfysics.com

- Alternate angles: Two angles that lie between parallel lines on opposite sides of the transversal.

$$
\hat{3}=\hat{4}
$$

- Co-interior angles: Two angles that lie between parallel lines on the same side of the transversal. They add up to 180°.

$$
\begin{aligned}
& \hat{a}+\hat{b}=180^{\circ} \\
& \hat{d}+\hat{c}=180^{\circ}
\end{aligned}
$$

- Adjacent angles: Are "side by side" and share a common ray.

TYPES OF LINES

3.1 PARALLEL LINES: Lines which will never meet. They are denoted by sign //. They are always the same distance apart.

$\mathrm{R} \longrightarrow \longrightarrow \mathrm{S}$
PQ // RS
3.2 PERPENDICULAR LINES: Lines that form an angle of 90 at their point of contact.

3.3 BISECTOR: A line, ray or line segment which cuts another line into two equal parts.

3.3 TRANSVERSAL LINE: A line that cuts across the parallel lines.

TRIANGLES

It is a closed geometrical figure with three sides and three interior angles. The three angles always add up to 180°.

TYPES OF TRIANGLES

a) Scalene: no sides are equal and no angles are equal.

Downloaded from Stanmorepfysics.com

b) Isosceles: two sides are equal and two angles opposite equal sides.

c) Equilateral: three sides are equal and three angles are equal, each equal to 60°.

d) Right-angle: one angle is equal to 90°.

Downloaded from Stanmorepfysics.com

CONGRUENCY

CONGRUENT TRIANGLES

Congruent triangles are triangles that have the same shape and size. .i.e. corresponding sides are equal and corresponding angles are equal.

$\triangle \mathrm{ABC}$ is congruent to $\triangle \mathrm{XYZ}$

Corresponding parts of these triangles are equal.
Corresponding parts are angles and sides
that "match."

CONDITIONS FOR CONGRUENCY

1

\triangle HOP 三
Δ SUN
(SSS)
i.e. corresponding sides (SSS) of the two triangles are equal.

2

i.e. if two sides and the angle between them in one triangle are equal to the corresponding parts in another triangle, then the triangles are congruent.

Downloaded from Stanmorepfysics.com

3

i.e. If two angles and a side between them in one triangle are equal to the corresponding parts in another triangle, then the triangles are congruent.
4

$\Delta_{\text {FGH }}=\Delta$ KJI (AAS)
i.e. If two angles and a side NOT between them in one triangle are equal to the corresponding parts in another triangle, then the triangles are congruent.

5

i.e. If the hypotenuse and a side of on $\ldots_{\text {. }}$ ht triangle are equal to the hypotenuse and side of another triangle, then the triangles are congruent.

SUMMARY

- For Grade 10 , congruency is limited to triangles only.
- Conditions for triangles to be congruent:
\rightarrow S,S,S
\rightarrow S,A,S (Included Angle)
$\rightarrow \mathrm{A}, \mathrm{A}, \mathrm{S}$
\rightarrow A,S,A(Included Side)
\rightarrow R,H,S

QUADRILATERALS

A quadrilateral is a plane figure bounded by four sides.

Definitions of quadrilaterals

A trapezium is a quadrilateral with only one pair of sides parallel.
A kite is a quadrilateral with two pairs of adjacent sides equal but with no side common to both pairs.
A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
A rhombus is a parallelogram with a pair of adjacent sides equal.
A rectangle is a parallelogram with a right angle.
A square is a rectangle with a pair of adjacent sides equal or a square is a rhombus with a right angle.

Five ways of proving that a quadrilateral is a parallelogram

Try to prove that:
Both pairs of opposite sides are parallel
Or both pairs of opposite sides are equal
Or both pairs of opposite angles are equal
Or the diagonals bisect each other
Or one pair of opposite sides is parallel and equal.

GRADE 11 EUCLIDEAN GEOMETRY

Note:

Proofs of theorems can be asked in examinations, but their converses (where they hold) cannot be asked.

CIRCLE GEOMETRY

Definitions

- A circle is a set of points that are equidistant from a fixed point called the center.
- The circumference of the circle is the distance around the edge of a circle.
- The radius is a line from the centre to any point on the circumference of the circle.
- A chord divides the circle into two segments.
- A diameter is a chord that passes through the centre. It is the longest chord and is equal to twice the radius.
- An arc is part of the circumference.
- A semi-circle is half the circle.
- A tangent is a line touching the circle at a point.
- Cyclic quadrilaterals have all their vertices on the circumference of a circle.

Downloaded from Stanmorepfysics.com

PARTS OF A CIRCLE

Ways Of Presenting A Proof Argument

1. Classical method: This is done by writing two columns (HOLY-CROSS), the first being a list of statements and the second column a matching list of legal justifications. i.e. theorems and axioms referred to as REASONS.
e.g.

TYPES OF QUESTIONS FOR EUCLIDEAN GEOMETRY

1. Calculations
2. Expressing an angle in terms of:
3. Proof type
4. Most of PROOF type questions would require that we first prove that angles are equal. How to Prove that angles are equal:

Suppose we are to prove that $\hat{A}=\hat{B}$
Scenario 1: (1) Write \hat{A} and below it write \hat{B}

Statement	Reason
\hat{A}	
\hat{B}	

Downloaded from Stanmore pfysics.com
(2) Look for any angle equal to \hat{A} (with reason)

Statement	Reason
$\hat{A}=\hat{P}$	Vertically opposite
\hat{B}	

(3) Compare \hat{P} with \hat{B}. In most cases the two angles will be equal, then:

Statement	Reason
$\hat{A}=\hat{P}$	Vertically opposite
$\hat{B}=\hat{P}$	tan-chord theorem

(4) Then conclude:

Statement	Reason
$\hat{A}=\hat{P}$	vertically opposite
$\hat{B}=\hat{P}$	tan-chord theorem
$\hat{A}=\hat{B}$	transitivity of equality

2. For any PROOF type questions, there is always 3 steps to follow.

Step 1: Ask a question of WHEN
Step 2: Give possible answers to the question above.
Step 3: Prove one of the answers in Step 2 above.

Downloaded from Stanmorepfysics.com

EXAMPLES

Examples 1

In the diagram below, tangent KT to the circle at K is parallel to the chord NM. NT cuts the circle at L . $\Delta \mathrm{KML}$ is drawn. $\mathrm{M}_{2}=40^{\circ}$ and $\mathrm{MK} \mathrm{T}=84^{\circ}$

Determine, giving reasons, the size of:
$1.1 \quad \hat{\mathrm{~K}}_{2}$
$1.2 \hat{\mathrm{~N}}_{1}$
$1.3 \hat{\mathrm{~T}}$
$1.4 \quad \hat{\mathrm{~L}}_{2}$
$1.5 \quad \hat{\mathrm{~L}}_{1}$

Solutions:

From the given information, key words are tangent parallel lines and chords. Therefore statements and reasons will be based on theorems which have these words. Use those theorems to determine the sizes of angles which their sizes are not given. When you put the size of an angle, write a short hand reason.
i.e. $\mathrm{M}_{1}=84^{0}$ Alternate angles, $\mathrm{NM} / / \mathrm{KT}, \mathrm{M}_{1}=\mathrm{L}_{2}$ subtended by the same arc $\mathrm{KN}, \mathrm{K}_{2}=40^{\circ}$ tan chord theorem, $\mathrm{K}_{1}=\mathrm{N}_{1}=44^{\circ}$ subtended by ML, $\mathrm{L}_{1}=180^{\circ}-\left(124+40^{\circ}\right)=16^{\circ}$ sum of angles of a triangle etc.
$1.1 \quad \hat{\mathbf{K}}_{2}=\hat{\mathbf{M}}_{2}=40^{\circ}$ tan chord theorem

Downloaded from Stanmorepfysics.com

$1.2 \quad \hat{\mathrm{~N}}_{1}=\hat{\mathrm{K}}_{1}=84^{\circ}-40^{\circ}=44^{\circ}$ subtended by chord ML
$1.3 \hat{\mathrm{~T}}=\mathrm{N}_{1}=44^{0}$ Alternate angles $\mathrm{NM} / / \mathrm{KT}$
$1.4 \quad \hat{\mathrm{M}}_{1}=84^{0}$ Alternate angles, $\mathrm{NM} / / \mathrm{KT}$
$\mathrm{L}_{2}=\mathrm{M}_{1}=84^{0}$ subtended by the same arc KN
$1.5 \quad \hat{\mathrm{~L}}_{1}=180^{\circ}-\left(\hat{\mathrm{M}}+\hat{\mathrm{N}}_{1}\right)=180^{\circ}-\left(124+40^{\circ}\right)=16^{\circ}$ sum of angles of a triangle

Example 2

In the diagram below, AB and DC are chords of a circle. E is a point on AB such that BCDE is a parallelogram. $\mathrm{DE} B=108^{\circ}$ and $\mathrm{DABE}=2 x+40^{\circ}$.

Calculate, giving reasons, the value of x.

Solution:

Properties of parallel gram and cyclic quadrilateral.
$\hat{C}=108^{\circ}$ Opposite angles of a parallelogram are equal
$\hat{C}+D \hat{A} E=180^{\circ} ; 108^{\circ}+2 x+40^{\circ}=180^{\circ} \quad$ Opposite angles of cyclic quadrilateral ABCD
$\therefore 2 x=180^{\circ}-148^{0} \Rightarrow 2 x=32^{0}$
$x=16^{0}$

Example 3

3.1 Give reasons for the following statements
3.1.1 $\quad \hat{\mathrm{B}}_{1}=x$
3.1.2 $\quad \mathrm{BC} \hat{\mathrm{C}}=\hat{\mathrm{B}}_{1}$
3.2 Prove that BCDE is a cyclic quadrilateral.
3.3 Which TWO other angles are each equal to x ?
3.4 Prove that $\hat{\mathrm{B}}_{2}=\hat{\mathrm{C}}_{1}$.

Solutions

3.1.1 tangent chord theorem
3.1.2 corresponding; FB || DC
$3.2 \hat{E}_{1}=B \hat{C} D$
$\therefore \mathrm{BCDE}=$ cyclic quad [converse ext $\angle \mathrm{cyc}$ quad]
3.3
$\hat{D}_{2}=\hat{E}_{2}$ [$\angle s$ in the same segment/ $\angle e$ in dies segment]
$\hat{D}_{2}=\mathrm{FB} D$
[alt $\angle s, \mathrm{BF} \| \mathrm{CD} /$ verwiss $\angle e, B F \| C D]$
$3.4 \quad \hat{\mathrm{~B}}_{3}=y$ OR $\quad \hat{\mathrm{B}}_{3}=\hat{\mathrm{C}}_{2}[\angle \mathrm{~s}$ in the same segment $]$
$\hat{\mathrm{B}}_{2}=x-y$ OR $\hat{\mathrm{B}}_{3}+\hat{\mathrm{B}}_{2}=x$
$\hat{\mathrm{C}}_{1}=x-y$
$\therefore \hat{\mathrm{B}}_{2}=\hat{\mathrm{C}}_{1}$

OR/OF

In $\triangle \mathrm{BFE}$ and $\Delta \mathrm{BEC}$

$\hat{\mathrm{E}}_{1}=\hat{\mathrm{E}}_{2}$	$[=x]$
$\hat{\mathrm{F}}=\hat{\mathrm{B}}_{3}+\hat{\mathrm{B}}_{4}$	$[\tan -$ chord theorem $]$
$\therefore \Delta \mathrm{BFE} / / / \Delta \mathrm{CBE}$	$[\angle, \angle, \angle]$
$\therefore \hat{\mathrm{B}}_{2}=\hat{\mathrm{C}}_{1}$	

EXERCISE

QUESTION 1

In the diagram, the vertices of Δ PNR lie on the circle with centre O. Diameter SR and chord NP intersect at T. Point W lies on NR. OT \perp NP. $\hat{R}_{2}=30^{\circ}$.

$1.1 \hat{S}$
$1.2 \quad \hat{R}_{1}$
$1.3 \hat{N}_{1}$
1.4 If it is further given that $\mathrm{NW}=\mathrm{WR}$, prove that TNWO is a cyclic quadrilateral.

QUESTION 2

VN and VY are tangents to the circle at N and Y . A is a point on the circle, and AN, AY and NY are chords so that $\widehat{A}=65^{\circ}$. S is a point on AY so that AN II SV. S and N are joined

2.1 Write down, with reasons, THREE other angles each equal to 65°
2.2 Prove that VYSN is a cyclic quadrilateral.
2.3 Prove that $\triangle \mathrm{ASN}$ is isosceles.

QUESTION 3

3.1 Complete the following so that the Euclidean Geometry statement is true:

A line drawn from the centre of a circle to the midpoint of the chord is \qquad to the chord
3.2 In the circle with centre O , chord $\mathrm{AB}=18 \mathrm{~cm}$ and $\mathrm{AD}=\mathrm{DB}$. Chord CB $=24 \mathrm{~cm}$.

3.2.1 Calculate the length of CD. Leave the answer in simplest surd form.

Downloaded from Stanmorepfysics.com
3.2.2 If $\frac{C D}{D E}=3$, calculate the length of $D E$.

QUESTION 4

In the diagram, O is the centre of the circle. Chords $\mathrm{AB}=\mathrm{AC} . \mathrm{C} \hat{E} \mathrm{D}=28^{\circ}$ and $\mathrm{A} \hat{\mathrm{D} B}=30^{\circ}$

Calculate, with reasons, the sizes of the following angles:
$4.1 \quad \hat{E}_{1}$
$4.2 \quad \hat{\mathrm{~A}}_{2}$
$4.3 \quad \hat{F}_{2}$

Downloaded from Stanmorepfysics.com

QUESTION 5

Refer to the figure below:

The circle, centred at O , has points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E on the circumference of the circle. Reflex angle $\mathrm{BOD}=250^{\circ}$ and $\mathrm{BE} \mathrm{C}=50^{\circ}$. Chord $\mathrm{BE}=\mathrm{EC}$. Determine the following, stating all necessary reasons:

$5.1 \hat{\mathrm{~A}}$

$5.2 \quad$ BĈD
$5.3 \quad \hat{\mathrm{C}}_{2}$

QUESTION 6

1.1 In the diagram below, BAED is a cyclic quadrilateral with $\mathrm{BA} \| \mathrm{DE} . \mathrm{BE}=\mathrm{DE}$ and $\hat{E} \hat{E} D=70^{\circ}$. The tangent to the circle at D meets AB produced at C .

Downloaded from Stanmorepfysics.com

Calculate, with reasons the sizes of the following.
6.1.1
\hat{A}
6.1.2
\widehat{B}_{1}
6.1.3
\widehat{D}_{2}
6.1.4
\widehat{B}_{2}
6.1.5 \widehat{D}_{1}

QUESTION 7

7.1 Use the diagram to prove the theorem that states that $\hat{A_{1}}=\hat{C}$

7.2 In the diagram, AB is a diameter of circle, centre $\mathrm{O} . \mathrm{AB}$ is produced to $\mathrm{P} . \mathrm{PC}$ is a tangent to the circle at $\mathrm{C} . \mathrm{OE} \perp \mathrm{BC}$ at D .

Downloaded from Stanmorepfysics.com

7.2.1 Prove, with reasons, that EO \| CA.
7.2.2 If $\hat{\mathrm{C}}_{2}=x$, name with reasons, two other angles each equal to x.
7.2.3 Calculate the size of $\hat{\mathrm{P}}$ in terms of x.

QUESTION 8

In the diagram O is the centre of the circle passing through C, A and B .
TA and TB are two tangents to the circle at A and $\mathrm{B} . \mathrm{TQP}$ cuts the circle at Q and P .
$\mathrm{CA} \| \mathrm{PT}$. QP cuts AB and BC at H and K respectively.

Prove that:
8.3.1 AOBT is a cyclic quadrilateral.
8.3.2 $H \hat{K} B=\hat{\mathrm{A}}_{1}$.
8.3.3 TA is a tangent to the circle through A, H and K .

QUESTION 9
In the diagram below, two circles have a common tangent TAB. PT is a tangent to the smaller circle. PAQ, QRT and NAR are straight lines.

Let $\angle Q_{1}=x$.
9.1.1 Name with reasons THREE other angles equal to x.
9.1.2 Prove that APTR is a cyclic quadrilateral.

