

education

Department: Education PROVINCE OF KWAZULU-NATAL

CURRICULUM GRADE 10 -12 DIRECTORATE

NCS (CAPS)

LEARNER SUPPORT DOCUMENT

GRADE 10

MATHEMATICS STEP AHEAD PROGRAMME

2021

This support document serves to assist Mathematics learners on how to deal with curriculum gaps and learning losses as a result of the impact of COVID-19 in 2020. It also captures the challenging topics in the Grade 10 -12 work. Activities should serve as a guide on how various topics are assessed at different cognitive levels and also preparing learners for informal and formal tasks in Mathematics. It will cover the following topics:

Table of contents

1.	PYTHAGORAS	2-9
2.	FUNCTIONS	9 – 29
3.	STATISTICS	30 - 44
4.	PROBABILITY	45 - 58

Downloaded from Stanmorephysics.com 1. PYTHAGORAS

TOPIC: PYTHAGORAS THEOREM(LESSON 1)	Weighting		Grade: 9
Sub-topics	Determining the n	nissing sides of right	angled triangle
DECOUDCES			

RESOURCES

Platinum grade 9 and Oxford successful

NOTES

Pythagorean theorem, the well-known geometric theorem that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle) or, in familiar algebraic notation $a^2 + b^2 = c^2$.

Examples:

There are three possible unknowns, each case is outlined below:

1.1.5 Given the side of a square to be 4cm.Determine the length of the diagonal.

4cm **TOPIC: PYTHAGORAS** Weighting Grade: **THEOREM(LESSON 2)** Calculating the missing sides in two triangles **Sub-topics RESOURCES** Platinum grade 9; Oxford successful; ANA question papers NOTES Master all the geometric shapes involving more than one Right Angled triangle • Move from one right angled triangle to another • Example 1 Example 2 Calculate x and yCalculate *a* and b B **B9** Α D 12 a 4cm x cm 8cm Α 9 С B С $a^2 = 9^2 + 12^2$ 5 cm 4 cm D $a^2 = 225$ $a = \sqrt{225}$ a = 15 $39^2 = a^2 + b^2$ $8^2 = 5^2 + x^2$ $39^2 = 15^2 + b^2$ $8^2 - 5^2 = x^2$ $39^2 - 15^2 = b^2$ $39 = x^2$ $1296 = b^2$ $x = \sqrt{39}cm$ $b = \sqrt{1296}$ $v^2 = 4^2 + x^2$ $y^2 = 4^2 + (\sqrt{39})^2$ b = 36 $y^2 = 55$ $y = \sqrt{55}$ cm

TOPIC: PYTHAGORAS THEOREM(LESSON 3)		Weighting		Grade: 10
Sub-topics	Measur	ements		
RESOURCES				
Platinum grade 9.				
Oxford successful				
Ana question papers				
NOTES				
 Application of theorem of Identify the geometric shape	• •		f the figure.	

1.2 State the length of PQ and QR. 1.3 Prove the; ST = TQ Answers: 1.1 $x^2 = 10^2 + 4^2$ $y^2 = 4^2 + 5^2$ $x^2 = 116$ $y^2 = 41$ $x = \sqrt{116}$ $y = \sqrt{41}$ 1.2 $PQ = x = \sqrt{116}$ $QR = y = \sqrt{41}$ 1.3 $QR^2 = 5^2 + QT^2$ $(\sqrt{41})^2 - 5^2 = QT^2$ $QT^2 = 16$ QT = 4 = TQ

ACTIVITIES/ASSESSMENT

1.3.2 Study the figure and answer below

1.1 Solve for *x* and *y*.

(a) Determine the values of *a*, *b* and *c*.

(b) Prove that ABD a straight line

(c) Calculate the area of ABCDEF

Sub-topics	Area and perimeter	
RESOURCES		
• Platinum grade 9.		
• Oxford successful		
• ANA question papers		
NOTES		
• Application of theorem	of Pythagoras	
	shapes and apply the properties of the figure.	
11	shapes and apply the properties of the figure.	
11		

MNST is a parallelogram. NR = 9 mm, RS = 30 mm and MR = 12 mm.

- 1.4.3.1 Calculate the length of BC.
- 1.4.3.2 Calculate the length marked x.
- 1.4.4 Given the diagram below, answer the following questions:

- 1.4.4.1 Identify the figure represented above.
- 1.4.4.2 Calculate the surface area of the above figure.

1.4.5

1.4.5.1 Identify the object represented in the above net.

- 1.4.5.2 Calculate the length of PQ. Leave your answer in surd form.
- 1.4.5.3 Calculate the volume of the above figure if PQ = 10,4 cm.
- 1.4.5.4 Calculate the perimeter of ΔMSQ

Sub-topics	Practical problems
RESOURCES	
• Platinum grade 9	
Oxford successful	1
• Ana question pap	ers
NOTES	
• Analyse the staten	nent and come up with the equation
• Identify the correct	t sides, substitutes and solve the unknown

1. Calculate the area of a rectangular carpet if the width is 8m and the diagonal measures 10m. $A = (10m)^{2} - (8m)^{2} \qquad Pythagoras$ $= 100m^{2} - 64m^{2}$ $= \sqrt{36}m^{2}$ = 6 m A = l x b = 6 x 8 $= 48 m^{2}$

ACTIVITIES/ASSESSMENT

- 1.5.1 The bottom of a ladder must be placed 3 units from a wall. The ladder is 12 units long. How far above the ground does the ladder touch the wall?
- 1.5.2 A soccer field is a rectangle 90 meters wide and 120 meters long. The coach asks players to run from one corner to the corner diagonally across the field. How far do the players run?
- 1.5.3 How far from the base of the house do you need to place a 15m ladder so that it exactly reaches the top of a 12m wall?
- 1.5.4 What is the length of the diagonal of a 10 cm by 15 cm rectangle?
- 1.5.5 The diagonal of a rectangle is 25m. The width is 15m in. What is the area of the rectangle?

1.5.6 Two sides of a right triangle are 8" and 12".

1.5.6.1 Determine the area of the triangle if 8 and 12 are legs.

1.5.6.2 Determine the area of the triangle if 8 and 12 are a leg and hypotenuse

2. FUNCTIONS

TOPIC:	Function	s and gra	phs (Lesso	on 1)					
Sub-topic	s:	Linear	function						
RESOUR	CES								
Gr. 10 Tex	xtbooks :								
(Platinum	Mathema	atics, Class	room Matl	nematics)					
NOTES									
• Use th	e given p	oints to pl	ot on the C	artesian pla	ane				
• Comp	lete the g	iven the ta	ble using s	ubstitution					
Ĩ	C		U						
x	-4	-3	-2	-1	0	1	2	3	7
y = x									
1. Co	mplete th	ne table	•	•	1	•		·	_
2. Plo	ot the poi	nts on the	Cartesian r	lane (gran	h sheet pro	vided)			

Defining a function.

• A function can be expressed in many ways e.g. mapping, table method or listing the set of ordered pairs (coordinates) where every value in the **domain** have **one and only one** value in **range**.

Notations (How to write the equation and co-ordinates)

- Since x is an independent variable and y is a dependent variable, the equation or function can be written as $f(x) = \dots$ instead of $y = \dots$
- For co-ordinates: (x; y) = (x; f(x)) or (a; b) = (a; f(a)) for function f.
- The point (0,0) is called **origin**, where x axis cuts or meets or intersect the y axis.
- The *y* axis is defined by the equation x=0, the coordinates of any point on the *y* axis have zero as that the value of *x*
- The x axis is defined by the equation line y=0, so if you want to calculate the value of x or a coordinate that lie on the x axis just put a zero where there is y or f(x) and solve for x.
- For the point of intersection, the two graphs are sharing the same values or coordinate at that point. It means those graphs are equal at that point. To get those values or coordinates you have to equate the

functions or equations and solve for unknowns.
--

ACTVITES/SSESSMENT

- 2.1.1. Draw the following graphs, on the same set of axis
 - a) y = x
 - b) y = -x
 - c) y = 3x
 - d) y = -3x

2.1.2. Draw the following graphs on the same set of axis and comment on the effect of a on the first graph.

- a) y = x and y = -x
- b) y = x and y = 3x
- c) y = 3x and y = -3x

2.1.3 Draw the following pairs of linear graphs on the same set of axis.

- (a) y = x and y = x + 5
- (b) y = 2x and y = 2x 4
- (c) y = -x and y = -x 1
- (d) y = x + 1 and y = x + 4

TOPIC: Functions and graphs (Lesson 2	3)
--	----

Sub-topics:	The effect of a in $f(x) = ax + q$
in the fraction of the fractio	

RESOURCES

Gr. 10 Textbooks (Platinum Mathematics and Classroom Mathematics)

Revision Documents (Previous Question Papers)

NOTES

- Use the given equation of a line and draw a table to sketch to graph.
- From the previous lesson you have learnt about the intercepts. (x intercept and the y intercept)
- The range is *y* which an element of all real numbers is.
- The domain is *x* which an element of all real numbers is.

EXAMPLES

- Draw following the graphs on the same set of **axis** equation using table method
 - $\circ y = x$
 - \circ y = 2x

$$\circ \quad y = \frac{1}{2}x$$

Comment on the difference between the three graphs.

• If the equation of a straight line is represented in the form y = ax + q. Write down the value of a and q in the above equations

y = x a = 1 and q = 0y = 2x a = 2 and q = 0

$y = \frac{1}{2}x$ $a = \frac{1}{2}$ and $q = 0$
Comment on how the change on the value of <i>a</i> affect the graph.
ACTIVITY/ ASSESSMENT
2.2.1. Given the following equations, write down the values of <i>a</i> and <i>q</i> in each
(a) $y = x + 1$
(b) $y = 2x + 1$
(c) $y = 3x - 2$
(d) $y = \frac{1}{2}x + 1$
(e) $y = -x + 1$
2.2.2. Sketch the following graphs on the same set of axes. Use the table method to determine the coordinates
(a) $y = x$ and $y = -x$ (b) $y = 2x$ and $y = -2x$ (c) $y = \frac{1}{2}x$ and $y = -\frac{1}{2}x$

TOPIC: Functions and graphs (Lesson 3)		
Sub-topics	The effect of q in the standard form $y = ax + q$)	
RESOURCES		
Gr. 10 Textbooks (Platinum Mathematics and Classroom Mathematics)		
NOTES		
EXAMPLE 1		

Use the given two equations of to draw the graphs on the same set of axes using a table method.

$$f(x) = x$$
$$g(x) = x+1$$
$$h(x) = x-1$$

(a) Comment on the change you see on the graphs.

(b) Observe the graphs shifting up and down depending on the value of q

(c) Try to make your own conclusions in relation to the value of q in relation to how the graph changes

EXAMPLE 2

Sketch the following graphs on the same set of axes

- a) y= -x+3
- b) y= -x-3

TRANSFORMATION

Transformation in simple terms means change.

From there, it is where we need to tell them about the Transformation that is divided into four.

Translation – a change brought about by a vertical (y) shift or horizontal (y) shift or both

• In grade 10 we only deal with vertical shift.

• If q is **positive** the graph is shifted **upwards** and if q is **negative** the graph is shifted **downward**.

Reflection – about x- axis and y- axis.

- Learners needs to observe two rules.
 - Rule 1: If the graph is reflected about the x axis (line y=0) the value of y changes the sign. (x; f(x)) becomes (x;-f(x))
 - Rule 2: If the graph is reflected about the **y** axis (line x=0) the value of x changes the sign. (x; f(x)) becomes (-x; f(x))
- Enlargement and reduction expanding or reducing with the scale factor.
 if we multiply function f with value m, all y values (coordinates) of function f will be multiplied by that value which is m...i.e.
 y = m.f(x) → (x; m.f(x))

ACTIVITY/ASSESSMENT

2.3.1 Draw the following graphs, on the same set of axis

(a) y = x and y = -x

(b) y = x and y = 3x

- (c) y = 3x and y = -3x
- 2.3.2. comment on the effect of a on the graphs

(a) y = x and y = -x

- (b) y = x and y = 3x
- (c) y = 3x and y = -3x
- 2.3.3. Draw the following pairs of linear graphs on the same set of axis.

(a) y = x and y = x + 5

(b) y = 2x and y = 2x - 4

- (c) y = -x and y = -x 1
- (d) y = x + 1 and y = x + 4

HOMEWORK

TOPIC: Functions and graphs (Lesson 4)				
Sub-topics Restricted Linear and Finding the equation of a line				
RESOURCES				
Gr. 10 Textbooks (Pla	tinum Mathematics and Classroom Mathematics)			
Revision Documents ((Previous Question Papers)			
Casio calculators				
NOTES				
For Restricted Linear.				
Note the following:				
• The difference bet	ween the normal linear function and the restricted one is the range and domain.			
• For the normal line real numbers.	ear function, the range is the set of all real number and the range also is the set of all			
• But for the restrict	ed straight line, the range and domain will be restricted too			

• But for the restricted straight line, the range and domain will be restricted too

For equation of a line

Two points. A(-1;2) and B(3;1) and use them to find the gradient and the equation of a linear.

- Then if you want to find the equation of a line, you need at least two have two points.
- Use the above activities to find the equation of the line.
- Use Analytical Geometry knowledge to find the equation of a line.
- Know that the standard form of a linear function is y = ax + q, but you can also use y-y1=m(x-x1) to find the equation. From the first equation, **a** represents the gradient and **q** represents the y intercept.
- You must know how to find the equation of a line. To find the equation of a line we need two things, a **point** and a **gradient**.
- To find a gradient.
- Average gradient we need two points. (Gradient = $m = \frac{\Delta y}{\Delta x}$ = change in y divided by change in x)

ACTIVITIES./ASSESSMENT

2.4.1 What is the range of the linear functions f(x) = -1 for the domain [-10; 10]?

- 2.4.2 What is the domain of the linear function y = 2x 5 where the range is (-9; 7]?
- 2.4.3 Study the sketch graphs and for each line segment:
 - i) Write down the domain of the graph.
 - ii) Write down the range of the graph.
 - iii) Calculate the equation of the line segment sketched.

Sub-topics	5	QUAI Effect		NCTIONS (S	KETCHING	PARABOL	A)
RESOUR	CES						
Gr. 10	Platinum Te	xtbook, calcu	lators and wo	orksheets.			
NOTES							
Investigati	ng the effect	c a					
EXAMPL	E 1: What h	appened whe	n the coefficie	ent of x^2 is po	ositive or nega	ative?	
1. y =	= x ² , a>0						
Í	-3	-2	-1	0	1	2	3
x		4		0	4	4	9

Conclusion:

- If a is positive the graph faces upward (concave up), and if a is negative the curve face downward (concave down)
- If a increases, the graph becomes narrower or stretches. As a decreases the graph becomes wider or flatter.
- As a decreases the graph becomes narrower or stretches. As a increases the graph becomes wider or flatter.

1. ACTIVITIES/ASSESSMENT

Plot the following functions

2.5.1 $y = x^2$ and $y = 3x^2$

2.5.2
$$y = -x^2$$
 and $y = -\frac{1}{2}x^2$

RESOURCES Gr. 10 Platinum Textbook, calo A Revision exercise on Gr. 10 NOTES			hematics C	r. 10 page	139–153.	
A Revision exercise on Gr. 10			hematics C	ir. 10 page	139–153.	
	Functions, e.g. Clas	ssroom Mat	hematics C	r. 10 page	139–153.	
NOTES						
Draw the graphs of $y = x^2$, $y = x^2$				-	1	
$y = x^2$ -4 -3	-2 -1	0	1	2	3	4
$y = x^2 + 1$ -4 -3	-2 -1	0	1	2	3	4
$y = x^2 - 4$ -4 -3	-2 -1	0	1	2	3	4

b) For these graphs, determine algebraically the coordinates of intercepts with the axis.

TOPIC: Functions and graphs (Lesson 7) Sub-topics Parabolic or Quadratic function (further characteristics) RESOURCES Gr. 10 Platinum Textbook, calculators and worksheets. NOTES NOTES

Note the following concepts, namely:

- Intercepts
- Domain and Range
- Turning point
- Maximum and minimum values
- Increasing and decreasing
- For further practice (assessment), give learners similar sums to do. Intercepts, turning point, axis of symmetry.
- Investigating the domain and range, minimum and maximum values, increasing and decreasing values.
- For the graph of a given function, if the y values increase as x values increase, then the graph is said to be increasing.
- If the y values decrease as the x values increase, then the graph is said to be decreasing.

• In conclusion, the graph is increasing if it moves upwards when moving from the left to right and decreasing if it moves downwards when moving from left to right.

ACTIVITIES/ASSESSMENT

2.7 Sketch the graphs and find the domain, Range, Minimum or Maximum values and the value of *x* where the graph increases and decreases.

2.7.1 $y = -x^2 + 9$

- 2.7.2 $y = 3x^2 12$
- 2.7.3 $y = -2x^2 + 8$

TOPI	C: Functions and gra	aphs (Lesson 8)
Sub-t	opics	Parabolic or Quadratic function
RESC	DURCES	
Gı	r. 10 Platinum Textboo	ok, calculators and worksheets.
Α	Revision exercise on (Gr. 10 Functions, e.g. Classroom Mathematics Gr. 10 page 139–153.
ACTI	VITIES/ASSESSME	
2.8.1	Find the equation of (0;3)	the parabola in a form of : $y = ax^2 + q$ if it passes through points (2; 7) and
2.8.2		the parabola in a form of $y = ax^2 + q$ if it passes through points (2; 5) and
2.8.3	Find the equation of	the parabola in a form of : $y = x^2 + q$ if it passes through points (2; 0) and
	(-2;0)	
2.8.4	Use the sketch below	v to determine the values of a and q for the parabola of the form $y = ax^2 + q$
		(-1;0) $(0;1)$ $(0;1)$ x

TOPIC: Functions and graphs (Lesson 9)								
Sub-topics Parabolic or Quadratic function								
RESOURCES								
Gr. 10 Platinum Textbook, calculators and worksheets.								
A Revision exerci	se on Gr. 10 Functions, e.g. Classroom Mathematics Gr. 10 page 139–153.							

 TOPIC
 : Functions and graphs (Lesson 10)

SUB-TOPIC

• The Hyperbola (The effect of *a*)

RESOURCES

- Grade 10 Platinum Mathematics Textbook (name the page)
- Calculators

EXAMPLE

Redraw the table below and complete it using the calculator:

x	-3	-2	-1	0	1	2	3
$f(x) = \frac{1}{x}$	$\frac{-1}{3}$	$\frac{-1}{2}$	$\frac{-1}{1}$	$\frac{1}{0}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$

Division by zero as a concept will be highlighted

Sketch the graph of f, on the grid provided and use free hand to draw. Answer the questions that follow


```
7. Determine the equation of the line of symmetry

Line passing through the origin (0,0) and (1,1)

m = \frac{y_B - y_A}{x_B - x_A}
= \frac{1 - 0}{1 - 0}
= 1
y = mx + c
0 = 1(0) + c
c = 0
Equation: y = x
Points (0,0) and (-1,-1) should be used for another line
```

CONCLUSION

- The basic graph of the hyperbola should not touch the axis, which result in both axis being the asymptotes of the graph.
- Then learners should know that if a line is an asymptote, the graph can approach that line but it won't tough that line.
- If the value of *a* is positive, the graph will be in the first and third quadrants.

ACTIVITIES/ASSESSMENT

2.10.1 Redraw the table below and complete it using the calculator:

x	-2	-1	0	1	2
$f(x)=\frac{1}{x}$					

Sketch the graph of f, on the grid provided and use free hand to draw.

2.10.2 Given : $h(x) = -\frac{1}{x}$

(a) Redraw and complete the table below

x	-2	-1	0	1	2
$h(x)=-\frac{1}{x}$					

(b) Sketch the graph of h on the same set of axis.

2.10.3 Redraw the table below and complete it using the calculator:

				1		0	
x	-3	-2	-1	0	1	2	3
$y = \frac{2}{x}$							
$y = \frac{3}{x}$							
$y = \frac{4}{r}$							

- 1. Sketch the graphs of *y*, on the same set of *axis*.
- 2. What changes do you observe as the value of *a* keeps on increasing?

TOPIC	:	Fun	ctio	ns ar	nd gr	aph	s (Les	son 1	11)		
SUB-TOPI	C										
• The Hyp	perbola (The effect	of q)								
RESOURC	-										
• Grac	de 10 Platinum Mat	hema	atics	Text	book	c (na	me the	e pag	e)		
• Calc	culators										
ACTIVITI	ES/ASSESSMENT	Γ									
2.11.1 Red	raw the table below	and	com	plete	it us	sing	the ca	lculat	tor:		
		2	x			-2	-1	0	1	2	
		g (x	:) =	$\frac{1}{x}$ +	1						
(a)	Write the horizo	ontal	asyr	nptot	e of	<i>g</i> .			•	•	
(b)	Sketch the graph	ns of	g . C	learly	y sho	w al	l the i	nterc	epts w	ith the	e axis and the horizontal
	asymptote.										
(c)		do y	ou o	bserv	ve co	mpa	red to	the f	irst gra	aph yo	ou drew which is
	$y = \frac{1}{x}$?										
(d)	Write the equati	on of	f <i>h</i> , i	f <i>h</i> (x) = -	-g(x	c).				
(e)	By comparing the equation of h and g , what type of a reflection that resulted to the										
	equation of h?										
(f)	Write down the	equa	tion	of <i>k</i> ,	if k	is th	e refle	ectior	n of <i>g</i> :	about	the y-axis.
(g)	If the graph of g	is sl	hifte	d 3 u	nits ı	upwa	ards, v	vrite	the nev	w hori	zontal asymptote.
	3										
2.11.2 Give	en: $f(x) = \frac{3}{x} + 2$										
(a)	Redraw and con	nplet	e the	e tabl	e bel	OW					
	<i>x</i>	-2	-1	0	1	2					
	$f(x) = \frac{3}{x} + 2$										
(b)	Write down the	equa	tion	of th	e hoi	rizor	ntal as	ympt	ote of <i>j</i>	ſ.	
(c)	Sketch the graph	n of <i>f</i>	, cle	arly s	show	the	interc	epts v	with th	e axis	and the horizontal
	asymptote.										
(d)	Write down the	1		,					,		
(e)	If g is the result	of <i>f</i>	shif	fted 2	unit	s up	, there	fore	write d	lown t	he equation of <i>g</i> .
2.11.3 Give	en: $h(x) = \frac{1}{x} - 1$										
(a)	Redraw and con	nplet	e the	e tabl	e bel	ow					
			x		-2	-1	0	1	2		
		h(x)	=	$\frac{1}{x}-1$	L						
(b)	Write down the	equa	tion	of th	e hoi	rizor	ntal as	ympt	ote of	ι.	

	1.5
(c)	Sketch the graph of <i>h</i> , clearly show all the intercepts with the axis and the horizontal
	asymptote.
(d)	Compare the graph of h and the graph of y in the diagram sheet provided.
(e)	Write down the equation of g, if $g(x) = h(-x)$.
(f)	What type of the reflection is g from h ?
2.11.4 Give	$\operatorname{en}: f(x) = \frac{4}{x} - 3$
(a)	Draw a table and complete the table, where $x \in [-2, 2]$.
(b)	Sketch the graph of f in your exercise book, clearly show all the intercepts with the axis
	and the horizontal asymptote.
(c)	The equation of g is obtained by reflecting f about the x-axis, then write down the
	equation of g.

: Functions and graphs (Lesson plan 12)

SUB-TOPIC

TOPIC

• Exponential Functions ($f(x) = b^x$, where b > 1 and 0 < b < 1)

RESOURCES

- Grade 10 Mind Action Series Mathematics Textbook
- Calculators

ACTIVITIES/ASSESSMENT

Redraw the table below and complete it using the calculator:

x	-3	-2	-1	0	1	2	3
$f(x) = 3^x$							
$g(x)=2^x$							
$h(x) = \left(\frac{1}{3}\right)^X$							
$k(x) = \left(\frac{1}{2}\right)^{X}$							

- (a) Sketch the graphs of *f* and *h*, on the same set of *axis* and the graphs of *g* and *k* on another set of axis.
- (b) What do you observe if the value of b > 1 and when 0 < b < 1?
- (c) Which two graphs are increasing and which two are decreasing?
- (d) What are the values of the *y*-intercept in each graph?
- (e) Is there a graph that cuts the *x*-axis? If so, where does it cut?
- (f) Write down the domain and range of each graph.
- (g) Is there a graph that cuts the *x*-axis? If so, where does it cut?
- (h) Write down the domain and range of each graph.

TOPIC

: Functions and graphs (Lesson 13)

SUB-TOPIC

• Exponential Functions the effect of q if $y = b^x + q$

RESOURCES

- Grade 10 Mind Action Series Mathematics Textbook (name the page)
- Calculators

ACTIVITIES/ASSESSMENT

1. Redraw the table below and complete it using the calculator:

x	-3	-2	-1	0	1	2	3
$f(x) = 3^x + 1$							
$g(x) = 2^x + 2$							
$h(x)=3^x-1$							
$k(x)=2^x-2$							

- 2. Sketch the graphs of f and h, on the same set of axis and g and k on another set of axis
- 3. What do you observe if the value of q is no more zero?
- 4. What are the values of the y-intercept in each graph?
- 5. Is there a graph that cuts the x-axis? If so, where does it cut?
- 6. Describe in words, a change (transformation) that has happened in each graph compared to the mother graph that you drew on the previous lesson.
- 7. Write down the equation of m, if m(x)=f(x)+2

CONCLUSION

The effect of q is that it shifts the graph up or down. A positive value of q shifts the graph upward and a negative value shifts the graph downward.

TOPIC

: Functions and graphs (Lesson 14)

SUB-TOPIC

```
• Exponential Functions: The effects a if y = a \cdot b^x
```

RESOURCES

- Grade 10 Mind Action Series Mathematics Textbook
- Calculators

ACTIVITY

1. Redraw the table below and complete it using the calculator:

x	-3	-2	-1	0	1	2	3
$f(x)=3^x$							
$g(x)=2^x$							
$h(x) = 2.3^x$							
$k(x) = 3.2^x$							

- 2. Sketch the graphs of *f*, *g*, *h*, and *k*, on the same set of *axis*.
- 3. What do you observe as the value of *a* changes?
- 4. What are the values of the y-intercept in each graph?
- 5. Is there a graph that cuts the x-axis? If so, where does it cut?
- 6. Describe in words, a change (transformation) that has happened in each graph compared to the mother graphs.

TOPIC

: Functions and graphs (Lesson 15)

SUB-TOPIC

• Investigate the effect of *a* on the graphs of y = asinx and y = acosx

RESOURCES

- Grade 10 Platinum Mathematics Textbook (page 102 to103)
- Calculators

NOTES

• Given the basic graphs (mother graphs) y = sinx and y = cosx

x	0 °	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
y													

• Fill in the table for each of the functions and sketch the graphs.

ACTIVITIES/ASSESSMENT

Sketch the graphs of the following functions on the separate system of axes, for interval $x\varepsilon[0^\circ; 360^\circ]$. Compare their amplitudes, maximum and minimum with that of the basic graphs (mother graphs).

1.1 f(x) = 2cosx

1.2 h(x) = 3sinx

1.3
$$g(x) = \frac{1}{2}sinx$$

1.4
$$t(x) = \frac{1}{4} \cos x$$

• What changes do you observe as the value of *a* increase?

• What changes do you observe as the value of *a* decreases?

: Functions and graphs (Lesson 16)

SUB-TOPIC

TOPIC

• Investigate the effect of q on the graphs of y = sinx + q and y = cosx + q

RESOURCES

- Grade 10 Platinum Mathematics Textbook (name the page)
- Calculators

ACTIVITIES/ASSESSMENT

Draw the graphs of the following functions and compare their maximum values, minimum values as well as their intercepts with axes with that of the mother graphs drawn above. The interval is $0^{\circ} \le x \le 360^{\circ}$

- 2.16.1 h(x) = sinx + 1
- 2.16.2 t(x) = sinx 2
- 2.16.3 p(x) = cosx + 1
- 2.16.4 q(x) = cosx 3

: Functions and graphs (Lesson 17)

SUB-TOPIC

TOPIC

• Trigonometric functions(reflection and translation)

RESOURCES

- Grade 10 Platinum Mathematics Textbook (page 139 to 143)
- Calculators

NOTES

Recall a reflection about the x-axis and y-axis.

- Reflection about the *x*-axis (y = 0), A(x; y) to $A^{(x; -y)}$
- Or y = f(x) to y = -f(x)
- Reflection about y-axis (x = 0) B(x; y) to B(-x; y)
- Or y = f(x) to y = f(-x)

ACTIVITY/ASSESSMENT

2.19.1 Given f(x) = sinx and g(x) = cosx

Fully describe the transformation that took place in the following functions

(a)
$$p(x) = -sinx$$

(b)
$$q(x) = -2g(x)$$

(c)
$$h(x) = -\frac{1}{3}f(x)$$

2.19.2 What will happen if you reflect f(x) = cosx about the y-axis

(a) reflect g(x) about y-axis or x-axis

- (b) reflect g(x) about the y-axis then vertically stretch the result by a factor of 2
- (c) reflect f(x) about the x-axis, then vertically shrink the result by a factor of $\frac{1}{3}$

Sub-topics		Trig. Function $(\tan \theta)$	
RESOURCES			
Gr. 10 Textl	books (P	latinum Mathematics and Classroom Mathematics)	
Revision Do	ocuments	s (Previous Question Papers)	
Calculators			
ACTIVITY			
QUEST	ION 5		
5.1	Consider	the function $f(x) = -3 \tan x$.	
	5.1.1	Sketch, on the grid provided in the ANSWER BOOK, the graph of f for	
		$0^{\circ} \le x \le 360^{\circ}$. Clearly show ALL the intercepts and asympotes.	(3)
	5.1.2	Hence, or otherwise, write down the:	
		(a) Period of f	(1)
		(b) Equation of h if h is the reflection of f about the x-axis	(1)
DRAW THE F	OLLOV	WING FUNCTIONS.	
$y = \tan \theta$			
$y = \tan \theta + 1$			
$y = \tan \theta - 2$			

QUESTION 12

12.3

12.1	Draw a sketch graph of $y = \frac{4}{x} + 2$. Clearly indicate the asymptote(s) and the	
	intercept(s) with the axes.	(3)

12.2 Given the two functions $f(x) = -x^2 + 9$ and g(x) = -x + 3:

	12.2.1 Sketch the graph of f and g on the same axes , showing the Co-ordinates of all the intercepts with the axes.	(6)
	12.2.2 Calculate the co-ordinates of the points at which $f(x) = g(x)$	(4)
	12.2.3 Use your graph to write down the values of x for which $f(x) > 0$	
	12.2.4 Draw a dotted line on your graph, showing the graph of $y=\frac{1}{2}f(x)$. The intercepts on the axes must be shown.	(3)
3	Determine the equation of a linear function $f(x) = mx + c$, if $f(0) = -7$ and $f(2) = 0$.	(3)

Downloaded from Stanmorephysics.com 3. DATA HANDLING

S 0 textle matics im (gr Action 10 pre- nductor ng. The ones. 17 34 und co ent the a frequence	books s Toda cade 9) n Serie evious ed in a he foll 17 34 ompleto he data uency the ag	Orga includ ay (grad); page es (grad s exami a shopp lowing 17 34 te the fin a st bar grad	nize ar ling the de 9); $_{1}$ s (273 de 10); ination ping m ; table 18 46 requen tem – a aph for	pages (; 278 ; ; pages n questinall in 2 shows 18 46 ney tabl and – le r this d	(282 - ; 278 ; (219 - ion pa) 2014, j ; ages 25 48 le give eaf plo	groupe 284) 284 ; 2 - 223) pers. people of thir 25 54 en belo	286) of diff ty peo 27 55	ferent a ple be	ages w tween 28 56	ere as			e of phone that were						
0 textl matics im (gr Action 10 pre nductong. Th ones. 17 34 and co ent th a frequ down	s Toda rade 9) n Serie evious ed in a he foll 17 34 omplet ne data uency the ag	includ ay (grad); page es (grad s exami a shopp lowing 17 34 te the fin a st bar grad	ling the de 9); $_{1}$ s (273 de 10); ination ping m table 18 46 requentem – a aph for	ese: pages (; 278 ; pages a questinal in 2 shows 18 46 and – lo r this d	(282 - ; 278 ; (219 - ion paj 2014, j ; ages 25 48 le give eaf plo	284) 284 ; 2 - 223) pers. people of thir 25 54 en belo	286) of diff ty peo 27 55	ferent a ple be 28 56	ages w tween 28 56	ere asi ages o 28	of 15 a	and 60	_						
0 textl matics im (gr Action 10 pre nductong. Th ones. 17 34 and co ent th a frequ down	s Toda rade 9) n Serie evious ed in a he foll 17 34 omplet ne data uency the ag	ay (grad); page es (grad a exami a shopp lowing 17 34 the the find a state bar grad	de 9); j s (273 de 10); ination ping m ; table 18 46 requen tem – a aph for	pages (; 278 ; ; pages n questinall in 2 shows 18 46 ney tabl and – le r this d	; 278 ; (219 - ion paj 2014, j ages 25 48 le give eaf plo	284 ; 2 - 223) pers. people of thir 25 54 en belo	of diff ty peo 27 55	ple be 28 56	tween 28 56	ages (28	of 15 a	and 60	_						
matics im (gr Action 10 pre nducto ng. Th ones. 17 34 ind co ent th a frequ down	s Toda rade 9) n Serie evious ed in a he foll 17 34 omplet ne data uency the ag	ay (grad); page es (grad a exami a shopp lowing 17 34 the the find a state bar grad	de 9); j s (273 de 10); ination ping m ; table 18 46 requen tem – a aph for	pages (; 278 ; ; pages n questinall in 2 shows 18 46 ney tabl and – le r this d	; 278 ; (219 - ion paj 2014, j ages 25 48 le give eaf plo	284 ; 2 - 223) pers. people of thir 25 54 en belo	of diff ty peo 27 55	ple be 28 56	tween 28 56	ages (28	of 15 a	and 60	_						
im (gr Action 10 pre nducted ng. Th ones. 17 34 and co ent th a frequ down	rade 9) n Serie evious ed in a he foll 17 34 omplet ne data uency the ag); page es (grac a exami a shop lowing 17 34 the the find in a station of the	s (273 de 10); ination ping m table 18 46 requen tem – a aph for	; 278 ; ; pages n question nall in 2 shows 18 46 ney table and – le r this d	; 278 ; (219 - ion paj 2014, j ages 25 48 le give eaf plo	284 ; 2 - 223) pers. people of thir 25 54 en belo	of diff ty peo 27 55	ple be 28 56	tween 28 56	ages (28	of 15 a	and 60	_						
Action 10 pre nducto ng. Th ones. 17 34 und co ent th a frequ down	ed in a ed in a he foll 17 34 omplet he data uency the ag	a shopp lowing 17 34 e the find in a station of the state	table table 18 46 requenter – a aph for	pages n questinall in 2 shows 18 46 ncy tabl and – le r this d	(219 - ion paj 2014, j ages 25 48 le give eaf plo	 people of thir 25 54 cn belo 	of diff ty peo 27 55	ple be 28 56	tween 28 56	ages (28	of 15 a	and 60	_						
10 pre- nductoring. The ones. 17 34 and co- ent the a freque down	ed in a he foll 17 34 ompleto he data uency the ag	a shopp lowing 17 34 the the fit in a st bar gra	ping m table 18 46 requen tem – a aph for	and – le r this d	ion paj 2014, j ages 25 48 le give eaf plo	people of thir 25 54 en belo	27 55	ple be 28 56	tween 28 56	ages (28	of 15 a	and 60	_						
nductong. The ones. 17 34 and conduct on the one of the one one of the	ed in a he foll 17 34 omplete he data uency the ag	a shop lowing 17 34 the the find the structure bar gradient of the structure the structure of the structure	ping m table 18 46 requen tem – a aph for	all in 2 shows 18 46 and -16 r this d	2014, j 3 ages 25 48 le give eaf plo	people of thir 25 54 en belo	27 55	ple be 28 56	tween 28 56	ages (28	of 15 a	and 60	_						
ng. Thones. 17 34 and co ent though the second sec	17 34 ompletone data uency the ag	17 34 in a st bar gra	table 18 46 requen tem – a aph for	shows 18 46 r this d	ages 25 48 le give eaf plo	of thir 25 54 en belo	27 55	ple be 28 56	28 56	ages (28	of 15 a	and 60	_						
ng. Thones. 17 34 and co ent though the second sec	17 34 ompletone data uency the ag	17 34 in a st bar gra	table 18 46 requen tem – a aph for	shows 18 46 r this d	ages 25 48 le give eaf plo	of thir 25 54 en belo	27 55	ple be 28 56	28 56	ages (28	of 15 a	and 60	_						
ones. 17 34 and co ent th a frequent down	17 34 ompletone data uency the ag	17 34 The the find in a state bar grad	18 46 requen tem – a aph for	18 46 and - le r this d	25 48 le give eaf plo	25 54 en belo	27 55	28 56	28 56	28	28	28	that were						
17 34 and co ent th a frequ down	34 ompletone data uency the ag	34 The the find in a state bar grad	46 requen tem – a aph for	$\frac{46}{1000000000000000000000000000000000000$	48 le give eaf plo	54 en belo	55	56	56										
34 and co ent th a frequ down	34 ompletone data uency the ag	34 The the find in a state bar grad	46 requen tem – a aph for	$\frac{46}{1000000000000000000000000000000000000$	48 le give eaf plo	54 en belo	55	56	56										
und co ent th a frequ	omplet ne data uency the ag	e the fi in a st bar gra	requen tem – a aph for	l lcy tab and – le r this d	le give eaf plo	en belo				56	56	56							
ent th 1 frequ down	ne data uency the ag	in a st bar gra	tem – a aph for	and – le r this d	eaf plo		w for t	his dat	ta.										
ent th 1 frequ down	ne data uency the ag	in a st bar gra	tem – a aph for	and – le r this d	eaf plo														
a frequ down	uency the ag	bar gra	aph for	r this d	-	<i>.</i>			(a) Copy and complete the frequency table given below for this data.(b) Represent the data in a stem – and – leaf plot.										
down	the ag	U	•		ala.														
	-	ge with	the hi		(c) Draw a frequency bar graph for this data.														
1100 41			(d) Write down the age with the highest frequency?																
me tr	ne pero	centage	e repre	esented	l by the	e age n	nentior	ned in	d) abo	ve.									
the da	ata inte	o four	class in	nterval	ls.														
ı histo	ogram.																		
nine th	ne moo	dal cla	ss of tł	he abov	ve data	a.													
	Tally			I	Freque	ency													
				1															

Solutions to example 1

(f)

(a)												
	A	ge			Tally	,				Free	uenc	v
		6								1109	1	,
		7			1111						4	
		8			11						2	
	2	.5			11						2	
	2	.7									1	
	2	.8			++++						6	
		2									1	
		4									3	
		6									2	
		8									1	
		4			<u> </u>						1	
		5			<u> </u>						1	
		6									5	
										n	=30	
(c) The indi dependen		ges ar		depend								quency on
7 ——			Frq	uency	/ bar {	graph						
6 5 4 3 2 1 0												
16 (d) Age – 2	17 28	18	25 2	7 28	32 Ages	34	46	48	54	55	56	
(e) Percent	age = $\frac{1}{3}$	$\frac{6}{80} \times 10$	$0 = 20^{\circ}$	V_0								

Class intervals	Frequency
$16 \le x \le 26$	9
$26 < x \le 36$	11
$36 < x \le 46$	2
$46 < x \le 56$	7

(g)

(h) (26, 36] or $26 < x \le 36$

ACTIVITIES/ASSESSMENT

3.1.1 The number of air conditioners sold by fifty sales representatives in the year 2015 are

recorded below.

25	22	19	27	27	19	23	21	14	12
13	13	9	4	21	18	30	31	28	21
20	3	7	14	14	9	7	27	21	39
18	22	27	30	23	14	14	14	8	1
3	14	4	18	5	24	20	8	10	8

- a) Draw a stem and leaf plot for this data.
- b) Draw a frequency bar graph for this data.
- c) How many agents sold twenty or more air conditioners?
- d) What percentage of the agents sold less than 20 air conditioners?
- e) Draw a histogram for this data.

- Number of days to germinate
- a) How many seeds were sown?
- b) After how many days did the first seed germinate?
- c) What percentage of seeds germinated within the first 8 days?

3.1.3

The following back-to-back stem-and-leaf diagram shows the average number of hours spent per week on social networking websites by learners from two different classes.

- (a) How many learners are there in Class A?
- (b) How many learners are there in Class B?
- (c) How many learners in Class A spend exactly one hour per week on a social networking website?
- (d) How many learners in Class B spend more than five hours per week on a social networking website?
- (e) Which class spends more time, in total, on a social networking website?

. -

	loaded from Stanmorephysics.com
	Handling/Statistics (Lesson 2)Weighting \pm 15%Grade10
Sub-topics	Measures of central tendency (Values that tell you where the middle (center) of the data set lies).
RESOURCES	8
Grade 10 textb	books including these:
	nd Action Series; (pages: 223 – 228)
	tinum; (pages: 224 – 226)
	ade 10 previous examination question papers
Example 1	
1.1 Determi	
	a) mean(average),
	b) median and,
	c) mode of the following sets of data:
1.1.1	4;13;5;7;9;6;5
1.1.2	9;1;4;4;2;8;6;2;6;6
Solutions to e	xample 1:
1.1.1	Remember! Arrange the data in ascending order.
	4;5;5;6;7;9;13
	a) Mean $(\bar{x}) = \frac{4+5+5+6+7+9+13}{7} = 7$
	b) There is an odd number of values and therefore the median will be part
	of the data set.
	The position of the median $=\frac{1}{2}(7+1)=4$ th position.
	The median is 6 , dividing the data into two equal halves.
	4;5;5;6;7;9;13
	c) Mode is 5. This data item appears twice.
	(which is more than any other data item).
1.1.2	Remember! Arrange the data in ascending order.
	1; 2; 2; 4; 4; 6; 6; 6; 8; 9
	a) Mean $(\bar{x}) = \frac{1+2+2+4+4+6+6+6+8+9}{10} = 4,8$
	There is an even number of data items.
	The position of the median $=\frac{1}{2}(10+1)=5,5$ th position. This means the
	median is the average between the 5^{th} and 6^{th} data items.

1; 2; 2; 4; 4; 6; 6; 6; 8; 9

b) Median = $\frac{4+6}{2}$ = 5. It is not part of the original data set but it divides the data

set into two equal halves.

c) Mode is **6**. Most frequently appearing data item.

ACTIVITY 3.2

3.2.1 A dairy farmer has 32 cows for sale. The weights of these cows in kilograms are recorded below. The total weight of the cows is 5 060 kg.

80	82	83	83	84	85	85	86	
86	87	87	88	88	89	90	92	
92	93	94	95	97	153	153	154	
155	321	371	376	377	381	382	391	

- a) Calculate the mean and the median.
- b) The farmer describes the cows to a buyer and states that the average weight is over 158 kg. Which measure of central tendency did the farmer use to describe the cows, and does this measure describe the cows fairly?
- 3.2.2 The following stem-and-leaf diagram represents the ages of forty people who donated blood. Refer to exercise 1 number c). The total of all the ages is 1 544.

1	7	7	8	8	9	9				
2	0	2	4	4	6	7	7			
3	4	5	5	5	5	5	5	5	9	9
4	1	2	2	3	7	8				
5	0	3	3	4	5	7				
6	7 0 4 1 0 3	4	5	6	6					

a) Calculate the mean, median and mode for this data.

- b) Comment on the usefulness of these measures of central tendency.
- 3.2.3 a) The mean of 3; 4; 8; 9; x, is 7. Determine x.
 - b) The median of five consecutive natural numbers is 12. What is the mean?
 - c) The numbers 4; 6; 8; 9; *x* are arranged from smallest to largest. If the mean and the median are equal, determine *x*.
 - d) The mean of five numbers is 27. The numbers are in the ratio 1: 2 : 3 : 4 : 5. Determine the five numbers.
 - e) Write down three possible sets of five numbers such that the median is 4, the mean

is 5 and the mode is 3.

f) The mean of six numbers is 44 and the mean of five of these numbers is 46. What is the sixth number?

ASSESSMENT 3.2 (DBE Nov 2019, Question 1.2)

3.2.1 Learners in a certain class wrote a Mathematics test that had a maximum mark of 10.The teacher represented the marks obtained by the learners of this class in the bar graph below.

Bar graph showing distribution of marks scored in Mathematics test

- a) How many learners scored 8 marks out of ten for the test?
- b) How many learners are in this class?
- c) Calculate the range of the marks scored in the test.
- d) If the pass mark for the test was fifty percent, what percentage of learners failed the test?
- e) Calculate the mean mark scored in the test.

TOPIC: Data Handling/Statistics (lesson 3)			1	Weighting	±15%	6 Grade	10
Sub-topic(s)	• (Quartiles					
	•]	Percentiles					
RESOURCES							
Grade 10 textbooks includir	ng these:						
Mind Action Ser	ies: (page	-23 = 228 - 23	33)				
 Platinum; (pages 	10		,0)				
		33)					
 Previous questio 	n papers.						
Examples:							
1. Determine the quart	iles for th	e following	sets of d	ata:			
a) 1 4 6 7 11		0	·				
b) 6 7 9 9 10			27 28	30 32			
Solutions:							

a) The position of the median $=\frac{1}{2}(9+1)=5$

The median is 11.

The lower half of the data set is: 1;4;6;7

The lower quartile is the median of the lower half. The position of the lower quartile

 $=\frac{1}{2}(4+1)=2,5$. The lower quartile is the average between the 2nd and 3rd values. $Q_1 = \frac{4+6}{2} = 5$

The upper half of the data set is: 13; 15; 15; 20

The upper quartile is the median of the upper half. The position of the upper quartile

 $=\frac{1}{2}(4+1)=2.5$. The upper quartile is the average between the 2nd and 3rd values. $Q_3 = \frac{15+15}{2} = 15$

a) The position of the median $=\frac{1}{2}(14+1)=7,5$

The median is the average between the 7^{th} and 8^{th} values.

$$Q_2 = \frac{16+21}{2} = 18,5$$

The lower half of the data set is: 6;7;9;9;10;12;16

The lower quartile is the median of the lower half. The position of the lower quartile

$$=\frac{1}{2}(7+1)=4$$

 $Q_1=9$

The upper half of the data set is: 21 ; 23 ; 26 ; 27 ; 28 ; 30 ; 32

The upper quartile is the median of the upper half. The position of the upper quartile

$$=\frac{1}{2}(7+1)=4$$

 $Q_3 = 27$

2.

A Maths professor at a university posted a list of marks, without names, on the notice board outside his office. The students were informed as to the percentile they were in. There are 45 students in his class and the marks are as follows:

66	86	65	78	32	52	69	85	87	28	90	98	73	64	56
58	78	65	50	36	67	55	72	57	64	70	92	95	33	32
24	42	54	55	54	68	65	88	80	84	68	61	75	76	82

(a) Jaco scored in the 70th percentile. What is his mark?

(b) Michael scored in the 20th percentile. What is his mark?

(c) Dimpho scored in the 50th percentile. What is her mark?

Solutio	ons:					<u> </u>						
	24 28 58 61	the marks 32 32 64 64 78 78	33 36 65 65	42 5 65 6	i0 52 i6 67		69	70	56 72 95	73		
	$i = \frac{70}{100} \times ($	(45) = 31,	5									
					-			-		is the 32nd % of all stu		
(b)	$i = \frac{20}{100} \times ($	(45) = 9										
	The 20th	percentil	e is the a	verage b	etween t	he 9th a	nd 10t	h ma	rk: 52+ 2	$\frac{54}{5} = 53$		
	There is a		of 53 in th	he data a	nd there:	fore Mi			-	otained 54%	6 and	
(c)	$i = \frac{50}{100} \times 0$	(45) = 22,	5									
	100	percentil		3rd mark	which i	s 66.						
		obtained					of all st	uder	its.			
	-											
ACTIV	/ITY 3.3	:										
1.0	1 .		1 .1 . 0		1. 4			, .		100		
1.3	98	63 79 41 19	76 58 88 41	71 80	5 78	or an ex 91 87 78 90	amina	tion	out of	100:		
	2 Fivea) Deter	rmine the data valu rmine the ulate the	es are rep value of	presented x if the	as follo				+2; x	x-3; 2x-2	2	
1.3.	tobac level A na	cco is rapi s of cotin	idly meta ine in the s one – bi	bolized i body ar	n the liv e measu	er to a s red in n	ubstan anogra	ce ca ms p	alled co er mill	otine found otinine. Th liliter (ng/n cotinine lev	e nl).	
	5	6	6	8	22	40	43	3	44	48	86	
	88	103	113	122	123	130	13		149	165	168	
	174	174	198	208	210	223	22		227	233	245	
	249	250	253	265	267	277	28		284	286	289	
	290	313	313	314	350	360	40		460		490	
	b) Calcoc) Calco	ulate the 2 ulate the 2 ulate the 9 ulate the 9	30 th perce 55 th perce	entile. entile.	percenti	les.						

96 100

80 84

- a) Describe the features in the scores that are the same for both classes.
- b) The head of department considers the median of each class and reports that there is

no significant difference in the performance between them. Is this conclusion valid?

Support your answer with reasons.

TOPIC: Data Handling/S	tatistics (lesson 5)	Weighting	±15%	Grade	10
Sub-topic(s)	grouped the d • Outliers (a va	lispersion (values lata are). lue or measureme e rest of the data).	ent that is si	-	
RESOURCES					
	bries; (pages:237 – 238) nematics; (pages:307 – s:231 – 235)				
Example(s):					
 Determine the range set. 10 8 8 2 1 10 Solutions: 		nd semi – interquar	tile range fo	r the follow	ving data
1 2 6 8 8 8 8 Range = max – min	=10-1=9				
Lower quartile: Q_1	-				
Upper quartile: Q_3	2				
$IQR = Q_3 - Q_1 = 9 -$	-7 = 2				
Semi – interquartile	range $=\frac{1}{2}(Q_3 - Q_1) = \frac{1}{2}$	$\frac{1}{2}(2) = 1$			
3.5.2. Consider the twoa) Compare the cla	6 6 8 8 10 10 10	0 le previous activity nge and interquartil	no b). e range.	e for the fo	ollowing

- 3.5.3 Six data values are represented as follows: 3x; x + 4; 2x + 2; 5x; 4x + 1; 6x + 2
 - a) Calculate the value of *x* if the mean is 12.
 - b) Determine the interquartile range.
- 3.5.4 The table below contains the mean, median and range of the Mathematics final exam for a large group of students.

		Μ	lean		Med	lian			Range				
		56	6		51				86				
The M	athematics	s teacher	r added	3 mar	rks t	o eac	h of t	the st	udents' m	arks. V	Vrite do	own the	e mean, median
and the	e range of	the new	set of I	Mathe	mati	cs.							
ASSE	SSMENT	3.5: DB	BE Nov	2015									
	0	-		-		-	zle as	s quic	kly as po	ssible.	Their ti	imes (ir	n seconds) were
record	ed and are	shown i	in the ta	able be	elow	′ .							-
	14	15 1	6 16	17	17	18	18	19	19				
	19	20 2	1 21	22	23	24	24	29					
3.5.1	Identify th	ne media	an time	taken	by t	he gi	rls to	com	plete the p	ouzzle.			1
3.5.2	Determine	e the low	ver and	upper	r qua	rtiles	for t	he da	ita.				
3.5.3	Draw a bo	$\mathbf{x} - \mathbf{and}$	– whis	ker di	agra	m to	repre	sent	the data.				
3.5.4	The five-r same puz			•			in sec	conds) taken by	/ 19 bo	ys to co	omplete	e the
a)	Calculate	the Inte	erquarti	le rang	ge fo	or the	time	take	n by the b	oys.			
b)	If only or	ne boy to	ook 19	secon	ds to	o com	plete	the j	ouzzle, wl	nat perc	centage	of the	boys
	took at le	ast 19 se	econds	to con	nple	te the	e puzz	zle?	- ·	1	U		•
3.5.5	In which	group, t	he girls	or the	e boj	ys, di	d a la	arger	number o	f learne	ers com	plete th	he puzzle
	in less that		-					-				-	-

TOPIC: Data Han	dling/Statistics (Lesson 6)	Weighting	<u>+</u> 15%	Grade	10
Sub-topics	Grouped data				
RESOURCES					
Mind action Series;	(pages: 239 – 241); Platinum; (pa	ages: 226 – 230); Class	room Math	ematics; (pages:
303 - 306)					
Example 1:					
Medical science has	always recognized human grow	th and height as an imp	ortant mea	sure of the	e health
and wellness of ind	ividuals. Research into the avera	age height of people ir	n different	counties r	evealed
that the tallest race of	of humans is the Nilotic peoples of	of Sudan having an ave	rage height	of 1,83 m	1.
The tellect men ou	monthy living is Sulton Voson f	from Turkey who mee		m Tha	

The tallest man currently living is Sultan Kosen from Turkey who measures 2,51 m. The average heights (ranging from 150 - 185 cm) of people in 135 countries have been grouped into class interval

Class intervals (average heights in cm)	Frequency (number of countries)
$150 \le x < 155$	12
$155 \le x < 160$	15
$160 \le x < 165$	19
$165 \le x < 170$	25
$170 \le x < 175$	33
$175 \le x < 180$	22
$180 \le x < 185$	9

- (a) Calculate an estimated value for the mean.
- (b) What is the modal class?
- (c) In which class interval does the median lie?

Solution to example 1:

(a)

Class intervals	Frequency	Midpoint	Freq ×Midpt
$150 \le x < 155$	12	$\frac{150+155}{2} = 152,5$	12×152,5=1830
$155 \le x < 160$	15	$\frac{155+160}{2} = 157,5$	15×157,5=2 362,5
$160 \le x < 165$	19	$\frac{160+165}{2} = 162, 5$	19×162,5=3 087,5
$165 \le x < 170$	25	$\frac{165+170}{2} = 167,5$	25×167,5=4 187,5
$170 \le x < 175$	33	$\frac{170+175}{2} = 172,5$	33×172,5=5 692,5
175≤ <i>x</i> <180	22	$\frac{175+180}{2} = 177,5$	22×177,5=3 905
$180 \le x < 185$	9	$\frac{180+185}{2} = 182,5$	9×182,5=1642,5
Totals	135		22 707,5

Estimated mean = $\frac{22\ 707,5}{135}$ = 168, 2037037 cm

- Note: The upper boundary of the class interval $150 \le x < 155$ can have a value that is extremely close to 155. There may be a height of 154,999999... It therefore makes sense that the average of the class interval is the average of the lower and upper boundaries.
- (b) Since 170 ≤ x <175 contains the highest frequency of heights, this class interval will be the modal class.
- (c) It is not possible to determine the actual median. There are 135 values and therefore the position of the median is $\frac{1}{2}(135+1) = 68$. The 68th value lies in the class interval

 $165 \le x < 170$ (there are 46 values below 165 and 71 below 170). This class interval is called the **median class**.

ACTIVITY 3.6

3.6.1

In a research survey, a gym measured the weights (in kg) of a number of members.

Class intervals (weights in kg)	Frequency (number of member		
$30 \le x < 35$	11		
$35 \le x < 40$	13		
$40 \le x < 45$	15		
$45 \le x < 50$	17		
$50 \le x < 55$	19		
$55 \le x < 60$	26		
$60 \le x \le 65$	36		

- a) Calculate the estimated mean.
- b) What is the modal class?
- c) In which class interval does the median lie?

3.6.2

a)

The ra	aw data	below	shows a	n athlet	e's diff	erent tir	nes in s	econds in	the 4
43,0	43,1	45,3	44,8	44,9	46,3	44,8	46,3	46,1	
45,4	44,7	43,1	44,9	45,3	45,2	45,5	45,6	45,0	
45,1	46,2	45,9	43,2	43,3	43,8	43,9	43,7	45,3	
45,7	44,7	46,2	45,7	44,9	45,0	45,5	46,0	46,9	

- i) Draw a stem-and-leaf diagram for this data.
- ii) Complete the following table.

Class interval	Frequency
$43,0 \le x < 44,0$	
44,0≤x<45,0	
45,0≤x<46,0	
46,0≤x<47,0	

400 m.

- iii) Calculate the actual mean, median and mode for this data.
- iv) Calculate the range and the inter-quartile range.
- v) Draw a box-and-whisker plot for the data.

ASSESSMENT 3.6

3.6.1 DBE EXAMPLAR 2012, QUESTION 2

The traffic authorities are concerned that heavy vehicles (trucks) are often overloaded. In order to deal with this problem, a number of weigh bridges have been set-up along the major routes in South Africa. The gross (total)vehicle mass is measured at these weigh bridges. The histogram below shows the data collected at a weigh bridge over a month.

a) Write down the modal class of the data.

b) Estimate the mean gross vehicle for the month.

c) Which measures of central tendency, the modal class or the estimated mean, will be most appropriate to describe the data set? Explain your choice.

3.6.2 **DBE Nov 2012, QUESTION 2**

The intelligence quotient score (IQ) of a grade 10 class is summarized in a table below.

IQ INTERVAL	FREQUENCY
$90 \le x \le 100$	4
$100 \le x \le 110$	8
$110 \le x \le 120$	7
$120 \le x \le 130$	5
$130 \le x \le 140$	4
$140 \le x \le 150$	2

- a) Write down the modal class of the data.
- b) Determine the interval in which the median lies.
- c) Estimate the mean IQ score of this class of learners.

Downloaded from Stanmorephysics.com 4. PROBABILITY

TOPIC					
	C: Probability 1	Weighting	Grade		9
Sub-top	pics	Introductory Prob	ability		
	URCES				
		n Collaboration Trus	t (NECT)		
NOTES	Normhan of	favourable outcomes			
Probab	MIIV =	f possible outcomes			
FACTS	S ABOUT PROBA	BILITY			
	• The probab	oility of an event that	t cannot occur is 0		
	• The probab	oility of an event that	t is certain to occur is	l	
	• Every prob	ability is a number b	between 0 and 1 inclus	ive. the probabi	lity assigned
	probability	can never be negat	tive.		
	• The sum of	the probabilities of	all possible outcomes	in experiment i	s always 1
	• A probabili	ity of 0.5 or 50%, m	eans the event is just l	kely to happen	as not to happen
THE P	ROBABILITY SO	CALE			
					_
	17.1	17.1	17.1	11	
	very unlikely	unlikely	likely	very like	iy 📕
C)	<u>1</u> 4	0,5	<u>3</u> 4	1
Imp	ossible	even	chance		certain
-	ossible will NOT occur		chance 0 chances to occur		
-				event wil	l definitely
Event v	will NOT occur	event has 50-5	0 chances to occur	event wil ta	l definitely ke place
Event v	will NOT occur	event has 50-5		event wil ta	l definitely ke place
Event v	will NOT occur um of probabilities	event has 50-5 s of all possible outc	0 chances to occur	event wil ta	l definitely ke place
Event v	will NOT occur	event has 50-5 s of all possible outc	0 chances to occur	event wil ta	l definitely ke place
Event v The st	will NOT occur um of probabilities <u>TO DESCRIBE I</u>	event has 50-5 s of all possible outc <u>PROBABILITY</u>	50 chances to occur omes of an experimen	event wil ta t is equal to one	l definitely ke place (1)
Event v The st	will NOT occur um of probabilities <u>TO DESCRIBE 1</u> 1. Certain – the e	event has 50-5 s of all possible outc <u>PROBABILITY</u> event is definitely go	0 chances to occur	event wil ta t is equal to one	l definitely ke place (1)
Event v The st	will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i>	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1.	50 chances to occur omes of an experiment oing to happen <i>e.g The</i>	event wil ta t is equal to one <i>probability tha</i>	l definitely ke place (1)
Event v The st	will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definite	event wil ta t is equal to one <i>probability tha</i> y	l definitely ke place (1)
Event v The st	will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev 3. Unlikely – the	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha event will probably	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definite not happen, but it mig	event wil ta t is equal to one <i>probability tha</i> y ht	ll definitely ke place (1) at the day after
Event v The st	 will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev 3. Unlikely – the 4. Impossible – the 	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha event will probably he event is definitely	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definite not happen, but it mig y not going to happen	event wil ta t is equal to one <i>probability tha</i> y ht	ll definitely ke place (1) at the day after
Event v The st	 will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev 3. Unlikely – the 4. Impossible – the 	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha event will probably	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definite not happen, but it mig y not going to happen	event wil ta t is equal to one <i>probability tha</i> y ht	ll definitely ke place (1) at the day after
Event v The st	 will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev 3. Unlikely – the ev 4. Impossible – the when you throw 	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha event will probably he event is definitely ow an ordinary dico	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definite not happen, but it mig y not going to happen of e is 0 .	event wil ta t is equal to one <i>probability tha</i> y ht	ll definitely ke place (1) at the day after
Event v The st	 will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev 3. Unlikely – the ev 4. Impossible – the when you through the expression of the express	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha event will probably he event is definitely ow an ordinary dico COBABILITY (NU)	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definite not happen, but it mig y not going to happen of e is 0 .	event wil ta t is equal to one <i>probability tha</i> y ht	ll definitely ke place (1) at the day after
Event v The su WAYS	 will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev 3. Unlikely – the ev 4. Impossible – the when you through the expension of the expension of	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha event will probably he event is definitely ow an ordinary dico COBABILITY (NU) e.g. $\frac{1}{2}$	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definited not happen, but it mig y not going to happen of e is 0. MERICAL)	event wil ta t is equal to one <i>probability tha</i> y ht	ll definitely ke place (1) at the day after
Event v The su WAYS	 will NOT occur um of probabilities <u>TO DESCRIBE I</u> 1. Certain – the e <i>Monday is Tue</i> 2. Likely – the ev 3. Unlikely – the ev 4. Impossible – the when you through the expression of the express	event has 50-5 s of all possible outco PROBABILITY event is definitely go esday is 1. vent will probably ha event will probably he event is definitely ow an ordinary dico COBABILITY (NU) e.g. $\frac{1}{2}$ number, e.g. 0,5	50 chances to occur omes of an experiment oing to happen <i>e.g The</i> appen, but not definited not happen, but it mig y not going to happen of e is 0.	event wil ta t is equal to one <i>probability tha</i> y ht	l definitely ke place (1) at the day after

TYPES OF PROBABILITIES

Relative Frequency (or Experimental Probability) & Theoretical

- Sometimes we calculate probability and sometimes we estimate probability.
- Probability that is calculated is called **theoretical probability** or just probability.

 $\checkmark 1. Theoretical probability = \frac{Number of favourable outcomes}{Number of possible outcomes}$

• Probability that is estimated is calculated after performing a very large number of trials of an experiment or conducting a survey involving a very large number of items, and is called **relative frequency**.

2. Relative frequency probability = $\frac{Number \ of \ times \ the \ event \ happens}{The \ total \ number \ of \ trials \ in \ experiment}$

ACTIVITIES / ASSESSMENT

4.1.1 Write down how you can calculate the theoretical probability.

4.1.2 Write down how you can calculate relative frequency probability.

- 4.1.3 Briefly define what term probability is.
- 4.1.4 Define the sample space.

4.1.5 What do we mean by impossible events?

TOPIC : Probability 2	Weighting		Grade	9
Sub-topics	Relative Frequence	cy		
RESOURCES				
Clever Gr 9				
NOTES				
Identify the sample space				
Identify the different eve	nts.			
Example: Seven cards consist of 3 1.1 Find the probability of 1.2 In the 15 trials (picking 1.3 If the trials are 24, how Solutions : 1.1 $P(Y) = \frac{4}{7}$ 1.2 $\frac{4}{7} \times 15$ = 8,57 $\cong 9$ times	of picking a yellow ng of cards), how m	card. nany times will you	expect the yellow	
$1.3 \frac{3}{7} \times 24$ = 10,29 \approx 10 times				
ACTIVITIES / ASSESS	SSMENT			
4.2.1 A coin is flipped 50	0 times. Discuss th	e relative frequency	y on the coin fallin	g on heads.

4.2.2 A die is tossed 240 times. Determine the relative frequency of the die landing on:

4.2.2a) a six

4.2.2b) an even number

4.2.2c) an odd number

4.2.2d) a number smaller than 4

4.2.2e) a number larger than 3.

4.2.3 A bag contains 50 coloured buttons:

15 green, 5 white, 17 brown, 3 red and 10 blue buttons. A button is taken from the bag. The colour of the button is noted down and it is replaced. This is done 300 times.

4.2.3a) How many times do you expect a button taken from the bag to be a red button?

4.2.3b) What do you expect the relative frequency of taking out a brown button to be?

4.2.3c) What is the probability of a button taken from the bag not being a white button?

4.2.3d) How many times do you expect a button taken from the bag will be a green or a white button?

TOPIC : Probability 3	Weighting		Date :	
Sub-topics	Relative Freque	ency versus Theor	etical Probability	1
RESOURCES				
Clever Gr 9				
NOTES				

A bag contains 5 red balls, 6 black balls, 3 yellow balls, and 6 purple balls. A ball is taken out of the bag. The colour is noted down and the ball is replaced. This is done 100 times. The following frequency table is completed.

Outcome	Frequency
Red	24
Black	30
Yellow	12
Purple	34
Total	100

1.1 Calculate the theoretical probability of a purple ball being removed from the bag.

1.2 Calculate the relative frequency (experimental probability) for a ball taken from the bag being purple. 1.3 Explain the relationship between these two numbers.

1.4 Calculate the theoretical probability of drawing a red, black or yellow ball from the bag. What is the answer

when you add together the probabilities of taking out a red, black, yellow and purple ball?

1.5 Calculate the experimental probabilities of the red, black or yellow balls. Add these probabilities together. What is the answer?

Solutions :

1.1
$$P(purple) = \frac{6}{20}$$

 $=\frac{10}{10}$ OR (0,3)

1.2 Relative frequency (purple) = $\frac{34}{100}$

$$=\frac{17}{50}$$
 OR (0,34)

1.3 The two numbers are almost the same even though they are NOT exactly the same. The

experimental answer gives exactly what happened in a number of trials. The theoretical one just gives the chances that are possible to take place BUT not meaning that chances are certain chances.

1.4 $P(red) = \frac{5}{20}$ = $\frac{1}{4}$	$P(black) = \frac{6}{20}$ $= \frac{3}{10}$	$P(yellow) = \frac{3}{20}$
Adding all the answers: $\frac{1}{4}$	$+\frac{3}{10}+\frac{3}{20}+\frac{3}{10}=1$	
1.5 $P(red) = \frac{24}{100}$ = $\frac{6}{25}$	$P(black) = \frac{30}{100}$ $= \frac{3}{10}$	$P(yellow) = \frac{12}{100}$ $= \frac{3}{25}$

Adding all the answers: $\frac{6}{25} + \frac{3}{10} + \frac{3}{25} + \frac{17}{50} = 1$

ACTIVITIES / ASSESSSMENT

4.3.1 A die is cast 60 times. The following frequency table is completed during the experiment.

Outcome	Frequency
1	9
2	10
3	11
4	11
5	8
6	11

4.3.1a) What is the theoretical probability of the die landing a six?

4.3.1b) What is an experimental probability (relative frequency) of the die landing on a six according to the table?

4.3.1c) What is the relationship between these numbers?

4.3.2

4.3.2a) What is the theoretical probability of a new born baby being a boy?

4.3.2b) In a hospital, 500 babies are born, of which 210 were girls. What is the experimental probability of a baby being a boy in this hospital?

TOPIC : Probability 4	Weighting	Grade		
Sub-topics	COMPOUND EVENTS (Tree Diagram)			
RESOURCES				
Maths Handbook	and Study Guid	de Gr 9, by Kevin Smith		

NOTES

• When drawing a tree diagram each branch represents the probability of a certain outcome. Each set of branches represents an event.

<u>Example</u>

A fair coin is tossed twice. Draw a tree diagram to show all the possible outcomes.

Head 0,5 Head, Head $(0.5 \times 0.5) = 0.25$ Head 0,5 0,5 Tail Head, Tail $(0.5 \times 0.5) = 0.25$ Head 0,5 Tail, Head $(0,5 \times 0,5) = 0,25$ 0,5 Tail 0,5 Tail Tail, Tail $(0,5 \times 0,5) = 0,25$

ACTIVITIES/ ASSESSMENT

- 4.4.1 A woman would like to have two children. What is the probability that she will have two boys? (Use a tree diagram to determine your answer).
- 4.4.2 The coin is tossed followed by spinning the spinner. The coin is weighted so that it is more likely to land on heads than tails. The probability of it landing on heads is 0,75. The spinner is equally likely to land on 1 or 2.
- 4.4.2a) What is the probability of obtaining a tail in a single toss?
- 4.4.2b) Draw a tree diagram to show all the possible outcomes.
- 4.4.2c) What is the probability of obtaining a 1 in the above experiment?
- 4.4.2d) What is the probability of obtaining a tail or a 1 in the above experiment?
- 4.4.3 Zama has two bags. One bag contains 5 purple balls, 3 green balls and 2 red balls. The other bag contains 5 balls with the letter A and 3 balls with the letter B on it. A ball is drawn from the bag with coloured balls and then from the bag with lettered balls.

4.4.3a) If a ball is randomly selected from bag 1, determine the probability of obtaining purple ball. 4.4.3b) If a ball is randomly selected from bag 2, determine the probability of obtaining the letter A and also that of obtaining letter B.

4.4.3c) Draw a tree diagram to show all the possible outcomes of the experiment.

4.4.3d) Determine the probability of obtaining a red ball.

4.4.3e) Determine the probability of obtaining the letter A or a green ball.

4.4.4 There is a 25% chance that it will rain on Saturday. If it rains on Saturday there is an 80% chance that it will rain on Sunday. If it does not rain on Saturday there is a 10% chance that it will rain on Sunday.

4.4.4a) What is the probability that it does not rain on Saturday?4.4.4b) Draw a tree diagram to show all the possibilities of rain on Saturday and Sunday.4.4.4c) What is the probability that it does not rain on Sunday?

Downloaded	from Stanmore	physics.com	
TOPIC : Probability 5	Weighting	Grade	
Sub-topics	COMPOUND EVENTS	(Two-way table)	
RESOURCES			
Clever Gr 9			
NOTES			
<u>Example:</u>			
	-		a two-way table and find the
probability that the two c	hildren will be a girl and a	boy in any order.	
0.1.1			
<u>Solution</u>			
	Boy (B)	Girl (\mathbf{C}
Boy (B)	BB	BG	,
Girl (G)	GB	GG	
011(0)	<u> </u>		
$P(G,B) = \frac{2}{4}$			
$P(G,B) = \frac{1}{2}$			
ACTIVITIES/ASSESS	MENT		
4.5.1 A coin is spun twic	e. Use a two-way table to c	determine the followir	ng probabilities:
4.5.1a) Head followed by			
4.5.1b) Head followed by			
4.5.1c) Tail followed by	tail.		
4.5.2 Consider a fair die			
•	to show all the possible o		
(b) Find a probability that	t a die lands on six in two-	way consecutive throw	WS.

TOPIC Probability 6	Weighting		Grade			
Sub-topics	bics Venn Diagram					
RESOURCES						
National Education	n Collaboration Tr	ust (NECT	")			
NOTES						
	• The following diagrams are used to discuss the terms: intersection, union, A only, B only, not A, not B and not A or B.					
Intersection (A and	Intersection (A and B) Union (A or B)					
A	В		A	B		

Notation	What does it mean?	Answer using the above Venn diagram
<i>n</i> (S)	The number of elements in the sample space, S.	4.6.1
<i>n</i> (A)	The number of elements in the set, A.	4.6.2
<i>n</i> (B)	The number of elements in the set, B.	4.6.3
n(A or B)	The number of elements in the set, A or B.	4.6.4
n(A and B)	The number of elements in the set, A and B.	4.6.5
<i>n</i> (A')	The number of elements NOT in the set, A.	4.6.6
<i>n</i> (B')	The number of elements NOT in the set, B.	4.6.7
n (A or B)'	The number of elements NOT in the set, A or B.	4.6.8
n(A and B)'	The number of elements NOT in the set, A and B.	4.6.9
Probability		
$P(\mathbf{S})$	The probability of an element being in the sample space	4.6.10
<i>P</i> (A)	The probability of an element being in set A	4.6.11
<i>P</i> (B)	The probability of an element being in set B	4.6.12
P(A or B)	The probability of an element being in the set, A or B.	4.6.13
P(A and B)	The probability of an element being in the set, A and B.	4.6.14
<i>P</i> (A')	The probability of an element NOT being in set, A.	4.6.15
<i>P</i> (B')	The probability of an element NOT being in set, B.	4.6.16
P(A or B)	The probability of an element NOT being in set, A or B	4.6.17
P(Aand B)'	The probability of an element NOT being in the set, A and B.	4.6.18

TOPIC Probability 7	Weighting		Grade	
Sub-topics	Mutually ex	clusive events		
RESOURCES	RESOURCES			
National Educatio	n Collaborati	ion Trust (NECT)		
NOTES				

• P(A and B) = 0

Consider the set of whole numbers from 1 to 10:

"1 2 3 4 5 6 7 8 9 10"

We will define two sets taken from this group of numbers:

Set A = the odd numbers in the group = $\{1, 3, 5, 7, 9\}$

Set B = the numbers which are 6 or more in the group = $\{6, 7, 8, 9, 10\}$

Represent the information on a Venn diagram

Step 1	Draw a frame to represent the sample	
	space. This is important as it will represent the entire sample space – in this case, the set of whole numbers from 1 to 10. When the diagram is complete, all 10 numbers should have been used.	

Step 2	There are two sets.	
	Draw two overlapping circles inside the	
	sample space frame.	
Step 3	Label the sets (circles) A and B.	
		L

- (a) Draw a Venn diagram to illustrate the information given above.
- (b) What is the probability that a person from the town uses both banks?

- (c) What is the probability that a person from the town does not use Nest Egg Bank?
- (d) What is the probability that a person from the town uses Acorn Savings but not Nest Egg Bank?

TOPIC Probability 8	Weighting		Grade		
Sub-topics	Complementary Events				
RESOURCES					
National Education Collaboration Trust (NECT)					
NOTES					

• Example of throwing a die is used to illustrate further, that when the die is thrown, you would like to get a 5 or a 6.

Draw this diagram on the board:

• The notation used to show complementary events using the following diagram to illustrate:

• The complement of event E is shown as E' – this means the set of all outcomes in the sample space that are not in event E.

P(E) + P(E') = 1

P(E) = 1 - P(E') OR P(E') = 1 - P(E)

The following Venn diagrams to explain further:

- What statement can be made from the identity learned about P (A or B), keeping in mind that there is no intersection?
- P(A or B) = P(A) + P(B)•
- Introduce P(A or B) = P(A) + P(B) (PA and B) using the following as an example: •
- Example: •

1. Complete the following statement: If A and B are two mutually exclusive events, then P (A and B) = . . .

2. Given that A and B are mutually exclusive events. The probability that event A occurs is 0,55. The probability that event B does not occur is 0,7. Calculate P (A or B).

Solution:

1. P(A and B) = 02. P(B) = 1 - P(B')1 - 07 = 03,

P(A or B) = P(A) + P(B)= 0.55 + 0.3,

= 0.85

ACTIVITIES

4.9.1 Complete the following statement: If A and B are two mutually exclusive events, then $P(A \text{ and } B) = \dots$

4.9.2 Given that A and B are mutually exclusive events. The probability that event A occurs is 0,55. The probability that event B does not occur is 0,7. Calculate P (A or B).

- Given the following probabilities: P(A) = 0.45; P(B) = 0.3 and P(A or B) = 0.6154.9.3
 - Determine whether or not events A and B are mutually exclusive. (a)
 - Hence, determine the probability of A and B. (b)
 - (c) Are events A and B complementary?

4.9.4 Sipho is an engineer. He has recently designed a new computer chip. At the moment, two types of fault can occur: from a power surge or from overheating. Sipho has calculated P(power surge) =

0,05 and P(overheating) = 0,12. He has also found that a quarter of the times that overheating happens, it is

- because there has also been a power surge.
 - What is the probability of overheating and a power surge occurring? (a)
 - Determine the probability of a fault occurring. (b)
 - What is the probability of no fault occurring with the chip? (c)
 - What is the probability of a power surge but no overheating occurring? (d)
- 4.9.5 Answer the following questions relating to probability.
 - A and B are events that can both occur together. If you know that P(A or B) = 0.8 and (a) P(A) = P(B) = 0,7, find P(A and B).
- 4.9.6 Two events A and B are mutually exclusive
 - P(B') = 0.3
 - P(A U B) = 0.8
 - Calculate P(A)

TOPIC Probability 10	Weighting		Grade			
Sub-topics	Sub-topics Mixed problem for further practice of the Venn diagrams and rules					
RESOURCES	RESOURCES					
Maths handbook by Kevin Smith						

National Education Collaboration Trust (NECT)

NOTES Example

• There are 40 learners in a class;15 do Mathematics; 20 do Life Sciences and 8 do neither. Determine the number of learners who do both subjects.

Solution

• First represent the given information on the Venn diagram

How many learners are there altogether? (40)

Make an equation of all the learners represented adding up to make 40.

$$20 - x + x + 15 - x + 8 = 40$$

43 - x = 40

$$-x = -3$$

$$x = 3$$

ACTIVITIES

4.10.1 The information is represented in the Venn diagram below:

160 Grade 10 learners are selected at random and asked which fast food they eat.

- (P) pizza
- (H) hamburgers

4.10.1.1 Determine the value of x

- 4.10.1.2 How many learners that:
 - (a) Did not eat any of the above
 - (b) eat pizza
 - (c) eat pizza only

(d) eat pizza and hamburger

(e) eat pizza or hamburger

4.10.1.3 Calculate the probability that:

- (a) A learner selected eats none of the fast foods
- (b) A learner selected eats at least one of the fast foods
- (c) A learner selected eats pizza

4.10.2 For two events A and B are not Mutually exclusive, you are given the following information:

- P(B) =0,45
- P(A) = 0.55
- P (not A or not B) = 0,2

Let the value of P (A and B) be x

(a) Draw a Venn diagram based on the information given above.

Use your diagram to determine the following probabilities:

- (b) P (A and B)
- (c) P (A or not B)
- (d) P (B only)

4.10.3 Leaners in grade 10 were surveyed about their subject choices

- 150 were surveyed
- 125 did life Sciences
- 85 did Science
- 55 did Life science, but not Science
- 10 did neither

Draw a Venn diagram representing the above information. Let A be Life Sciences and B be Science

SOLUTIONS

TOPIC: DATA HANDLING/STATISTICS

ACTIVITY 3.1

NO	Sub -	AN	SW	ERS	S															
	Question																			
3.1.1	a)																			
		0 1	1 0	3 2	3 3	4 3	4 4	5 4	7 4	7 4	8 4	8 4	8 4	9 8	9 8	8	9	9		
		2 3	0 0	0 0	1 1	1 9	1	1	2	2	3	3	4	5	7	7	7	7	8	

ACTIVITY 3.2

NO	Sub –	ANSWERS
	Question	
3.2.1	a)	Mean is 158; Median is 92
	b)	Mean
3.2.2	a)	Mean is 38,6; Median is 35; Mode is 35
	b)	All three measures are useful since most of the ages are in the 30 – year
		group.
3.2.3	a)	<i>x</i> = 11
	b)	Mean is 12
	c)	<i>x</i> = 11
	d)	9;18;27;36;45
	e)	3;3;4;5;10 3;3;4;6;9 3;3;4;7;8
	f)	34

Downloaded from Stanmorephysics.com ACTIVITY 3.3

NO	Sub –	ANSWERS
	Question	
3.3.1		Median is 81; $Q_1 = 67$; $Q_3 = 89,5$
3.3.2	a)	x = 11
	b)	Median is 13; $Q_1 = 10$; $Q_3 = 21$
3.3.3	a)	The 25 th percentile is 113
		The 50 th percentile is 216,5
		The 75 th percentile is 284
	b)	The 30 th percentile is 126,5
	c)	The 65 th percentile is 253
	d)	The 80 th percentile is 289,5

ACTIVITY 3.4

NO	Sub –	ANSWERS
	Question	
3.4.1	a)	Min is 1; Max is 10; Median is 8; $Q_1 = 7$; $Q_3 = 9$
	b)	
	c)	Mean is 7,25
	d)	Negatively skewed
3.4.2	a)	Maximum values and medians are the same.
	b)	Not Valid. Although both classes have the same median which means that half the scores are above 80 and half are below 80, none of the scores for Class B are below 66. For Class A, one quarter of the scores are below 66, therefore Class B performed better than Class A.

ACTIVITY 3.5

NO	Sub –	ANSWERS
	Question	
3.5.1		Range is 8; IQR is 6; Semi – IQR is 3
3.5.2	a)	Class A – Range is 66; IQR is 18
		Class B – Range is 30; IQR is 18
		The range for Class A is greater than the range for Class B. The
		maximum value for Class A is an outlier and has affected its range.
		Both classes have the same interquartile range.
	b)	Semi – IQR for both classes is 9.
3.5.3	a)	<i>x</i> = 3
	b)	IQR is 7
3.5.4		Mean is 59; Median is 54; Range is 86

Downloaded from Stanmorephysics.com ACTIVITY 3.6

NO	Sub –	ANSWERS
	Question	
3.6.1	a)	51,33
	b)	$60 \le x \le 65$
	c)	$50 \le x < 55$
3.6.2	a)	43 0 1 1 2 3 7 8 9
		43 0 1 1 2 3 7 8 9 44 7 7 8 8 9 9 9 45 0 0 1 2 3 3 3 4 5 5 6 7 7 9 46 0 1 2 2 3 3 9 9 9
		45 0 0 1 2 3 3 3 4 5 5 6 7 7 9
		46 0 1 2 2 3 3 9
	b)	
		Class interval Frequency
		$43,0 \le x < 44,0$ 8
		$44,0 \le x < 45,0$ 7
		$45,0 \le x < 46,0$ 14
		$46,0 \le x < 47,0$ 7
		40,0 2 X (41,0)
	c)	Actual mean is 45,01; Median is 45,15; The modes (bimodal) are
		44,9 and 45,3
	d)	Range is 3, 9; IQR is 1
	e)	Min Q ₁ Q ₂ Q ₂ Max
		• • •
		43.0 44.7 45.15 45.7 46.9

ANSWERS TO ASSESSMENT

ASSESSMENT 3.1

NO	ANSWERS
3.1.1	16 learners
3.1.2	16 learners
3.1.3	2 learners
3.1.4	11 learners
3.1.5	Class B

ASSESSMENT 3.2

NO	ANSWERS
3.2.1	5 learners
3.2.2	40 learners
3.2.3	10
3.2.4	47.5%
3.2.5	4.88

ASSESSMENT 3.5

NO	Sub-	ANSWERS
	Question	
3.5.1		19 seconds
3.5.2		Lower quartile is 17; Upper quartile is 22
3.5.3		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3.5.4	a)	IQR is 7
	b)	75 % of the boys took at least 19 seconds to complete the puzzle.
3.5.5		About 50% but not more than 75% of the boys completed the puzzle in less than 23 seconds. More than 75% of the girls completed the puzzle in less than 23 seconds. Therefore more girls completed the puzzle in less than 23 seconds.

ASSESSMENT 3.6

NO	Sub -	ANSWERS
	Question	
3.6.1	a)	$2500 \le x < 4500$
	b)	Estimated mean is 8908,39kg
	c)	Estimated mean, It is more at the centre of the data set. The modal class is found at the
		extreme left – hand side of the data set.
3.6.2	a)	$100 \le x < 110$
	b)	$110 \le x < 120$
	c)	116