CURRICULUM GRADE 10-12 DIRECTORATE

NCS (CAPS)

LEARNER SUPPORT DOCUMENT

GRADE 11

PHYSICAL SCIENCES
 STEP AHEAD PROGRAMME

2021

This support document serves to assist Physical Sciences learners on how to deal with curriculum gaps and learning losses as a result of the impact of COVID-19 in 2020. It also captures the challenging topics in the Grade 10-12 work. Activities should serve as a guide on how various topics are assessed at different cognitive levels and also preparing learners for informal and formal tasks in Physical Sciences. It will cover the following topics:

	Topic	Page No.
1.	Vectors and Scalars	$3-27$
2.	Intermolecular Forces	$28-42$
3.	Quantitative Aspects	$43-56$
4.	Electrostatics	$57-73$

- A frame of reference has an origin and a set of directions e.g. East and West or up and down.
- Defined one dimensional motion.
- Defined position relative to a reference point and understood that position can be positive or negative.
- Defined displacement as a
change in position.
- Displacement is a vector quantity that points from initial to final position
graphically using the tailto head method as well as by calculation (by component method) for a maximum of four force vectors in both 1-dimension and 2-dimensions.
- Understand what is a closed
vector diagram.
- Determine the direction of the resultant using simple trigonometric ratios.
- Resolve a 2-dimensional vector into its perpendicular components.

Vectors in One Dimension - Revision

- Vector - physical quantity having magnitude and direction.
- \quad Scalar - physical quantity having magnitude only.

Examples:

Dounloaded from stanmorephysics.com
Determine the resultant(net) force when 8 N force acts to the right, a 10 N force acts to the right, a 25 N force acts to the left and a 12 N force acts to the left Let to the right be positive

By Calculation: Fnet $=$ F1 + F2 + F3 + F4

$$
=8+10+(-25)+(-12)
$$

$$
=-19 \mathrm{~N}
$$

$F_{\text {net }}=19 \mathrm{~N}$ left
$F_{\text {net }}=19 \mathrm{~N}$ left

$$
\mathrm{F}_{1}=8 \mathrm{~N} \text { right } \quad \mathrm{F}_{2}=10 \mathrm{~N} \text { right }
$$

$\mathrm{F}_{4}=12 \mathrm{~N}$ left
$\mathrm{F}_{3}=25 \mathrm{~N}$ left

Vectors in Two Dimension`
Resultant of perpendicular vectors

- Perpendicular vectors are at right angles to each other
- A horizontal force of 30 N and a vertical force of 40 N that act on an object are an example of two forces that are perpendicular to each other.

Diagram

Adding co-linear vectors

- Co-linear vectors are simply vectors that lie in the same straight line.
- The net x-component $(R x)$ is the sum of the vectors parallel with the x direction: $R_{x}=R_{x 1}+R_{x 2}$
- The net y-component (Ry) is the sum of the vectors perpendicular to the x direction: $R_{y}=R_{y 1}+R_{y 2}$

Worked Example

Two forces of 3 N and 2 N apply an upward force to an object. At the same time, two forces each of 2 N act horizontally to the right. Find the resultant force acting on the object.

| Step 1: Draw a diagram and calculate the net vertical and net horizontal forces |
| :--- | :--- | :--- | :--- |
| $R_{y}=R_{y 1}+R_{y 2}$ |
| $R_{y}=2+3$ |
| $R_{y}=5 \mathrm{~N}$ upwards |

- Pythagoras theorem is used to calculate the magnitude of the resultant.
- Considering the vector diagram above we can use Pythagoras theorem as follows:
$R^{2}=R_{x}^{2}+R_{y}^{2}$
$R^{2}=4^{2}+5^{2}$
$R=\sqrt{4^{2}+5^{2}}$
$R=6.40 \mathrm{~N}$
- Use trigonometry to find the direction of the resultant as follows:
$\tan \theta=\frac{R_{y}}{R_{x}}=\frac{5}{4}$
$\theta=51.240^{0}$
$\theta=51.24^{\circ}$

	Worked Example:
	A force of F1 $=5 \mathrm{~N}$ is applied to a block in a horizontal direction. A second force F2 $=$ 4 N is applied to the object at an angle of 30° above the horizontal. Determine the resultant of the two forces, by accurate scale drawing.
Note: Forces are NOT perpendicular	

Step 2: Choose the suitable scale. e.g. $1 \mathrm{~cm}: 1 \mathrm{~N}$
Step 3: Draw the first vector (F1) on the horizontal, according to the scale.

Step 4: Draw the second scaled vector (F2) 30° above the horizontal.
Step 5: Complete the parallelogram and draw the diagonal (which is the resultant)
Step 6: Use the protractor to measure the angle between the horizontal and the resultant

Step 7: Apply scale and convert the measured length to the actual magnitude.

| | The resultant is 8,7N, 13,30 above the horizontal. |
| :--- | :--- | :--- |
| | Tail-to-head method is used to find the resultant of two or more consecutive vectors |
| (vectors that are successive) | |
| Steps to be followed: | |

- Accurately draw the first vector as an arrow according to chosen scale and in the correct direction
- Draw the second vector by placing the tail of the second vector at the tip of the first vector \{tail - to - head method\}
- Complete the diagram by drawing the resultant from the tail of the first vector to the head of the last vector.
- Make sure that you measure the angles correctly with a protractor.
- Always add arrow heads to vectors to indicate the direction.
- Measure the length and direction of the resultant vector.

	Use the scale to determine the real magnitude of the resultant.
	Worked Example 1:
	A ship leaves a harbour H and sails 6 km north to port A. From here the ship travels 12 km east to port B, before sailing $5,5 \mathrm{~km}$ at 450 south-west to port C.
	Determine the ship's restaurant displacement using the tail-to-head technique.

Using a scale 1 cm : 2 km , the accurate drawing of vectors is:
Measure the angle between the North line and the resultant with a protractor to find that the direction of the resultant displacement:
Resultant displacement of the ship is $9,2 \mathrm{~km}$ on a bearing of $72,3^{\circ}$.
Example 2:
A man walks 40 m East, then 30 m North. Use a scale of 1 cm : 10 m and answer the following questions:
1. What was the total distance he walked?
2. Determine by construction his resultant displacement?
3. Calculate determine the direction of the resultant.
4. Calculate the magnitude of resultant displacement
Solutions:
1. Rough sketch

CONCEPT
We have now simplified the given force diagram to just two perpendicular force vectors.
The resultant force can be found by drawing a neat vector diagram using the tail-to-tail
method or the tail-to-head method.
Tail-to-tail method
Place the tails of the two vectors together (tail to-tail) in the Cartesian plane and complete the parallelogram by drawing in the opposite sides. The opposite sides are PARALLEL and EQUAL IN LENGTH to each other.
Tail to Tail Tail to Head
The resultant force (R) is the diagonal of the parallelogram. Draw in the diagonal of the
parallelogram. The diagonal MUST start from the TWO TAILS of the given forces.
We now have two right-angled triangles to work with.
Use Pythagoras to calculate the magnitude of the resultant force (R).
$\mathrm{R}^{\mathbf{2}}=\mathbf{9 0}{ }^{\mathbf{2}}+\mathbf{2 1 5}{ }^{\mathbf{2}}$
$\mathrm{R}^{2}=54325$
$\mathrm{R}=\sqrt{54325}=233.07 \mathrm{~N}$
This is the magnitude of the resultant force.
We now need to find the direction of the resultant force. Place a θ into your vector diagram to represent the angle between the resultant force and the horizontal plane.

Downloaded from Stanmorephysics. com

	Use a trig. ratio to find the angle $\theta: \tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\mathbf{9 0}}{\mathbf{2 1 5}}=\mathbf{2 2 . 7 1 N}$
	Tail to Head Method
	Draw the horizontal vector $R x$ on your page, then draw the vertical vector $R y$ so that its TAIL is touching the HEAD of $R x$. The resultant force (R) MUST be drawn from the TAIL of the first vector to the HEAD of the second vector. As shown in the previous method, use Pythagoras to calculate the magnitude of the resultant force (R) and a trig. ratio to find the direction of the resultant force.
	$\boldsymbol{R}=\mathbf{2 3 3 , 0 8} \mathbf{N}$ at $\mathbf{2 2 , 7 1}{ }^{\circ}$ above the horizontal axis (positive x-axis)
	STEPS TO FOLLOW
	A. Draw a neat-labelled vector diagram.
	B. Simplify the problem by first finding the resultant of vectors in the same and opposite
	directions (co-linear vectors).
	C. When left with perpendicular vectors, decide on the method to use (tail-to-tail method,
	etc.)
	D. Draw a neat vector diagram of the perpendicular vectors.
	E. Use the theorem of Pythagoras and trig. ratios to find the magnitude and direction of resultant.
	ACTIVITY 2
1.	Two forces of 120N each are exerted on a crate simultaneously as shown in the figure
1. 1	Plot a sketch of force vectors on a Cartesian plane
1.2	Use a scale of 10 mm : 20 N and the tail-to-tail method to determine magnitude and direction of the resultant.

NB : The angle α is between the Horizontal axes and the Force.
Step 2: Hence, the new situation is:

| Step 2: Hence, the new situation is: |
| :--- | :--- | :--- | :--- | :--- |

	Exam MCQ questions	
	QUESTION 1: MULTIPLE-CHOICE QUESTIONS	
	Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 D.	
1.1	Consider the following vector diagrams. Which ONE of these vector diagrams represents a zero resultant	(2)
1.2	Two forces of magnitudes 3 N and 4 N respectively act on a body. The maximum magnitude of the resultant of	

these forces is ...
A 12 N .
B 7N
C 5 N
1.3 Three forces of magnitude 20 N each act on object \mathbf{P} as shown below.

The resultant force on object P is ...
A zero.
B $\quad 20 \mathrm{~N}$ to the left.
C $\quad 20 \mathrm{~N}$ upwards.
D $\quad 20 \mathrm{~N}$ downwards.
1.4 Two forces of magnitudes 15 N and 20 N act at a point on an object. Which one of the following magnitudes CANNOT be the resultant of these forces?
A. $\quad 35 \mathrm{~N}$
B. 10 N
C. 4 N
D. $\quad 18 \mathrm{~N}$
1.5 Three forces, each of magnitude 7 N , act on object \mathbf{P} as shown.

The resultant force on object P is ...
A zero
B $\quad 7 \mathrm{~N}$ to the left.
C $\quad 7 \mathrm{~N}$ upwards.
D $\quad 7 \mathrm{~N}$ downwards.
1.6 Two forces of magnitude 50 N and 70 N respectively act on a body. The maximum magnitude of the resultant force on the body is ...

A $\quad 20 \mathrm{~N}$.
B $\quad 60 \mathrm{~N}$.
C $\quad 120 \mathrm{~N}$.
D $\quad 140 \mathrm{~N}$.
1.7 Two forces of magnitudes 8 N and 6 N are added to each other. Which of the following values CANNOT be a resultant of these two forces?
A 2 N
B $\quad 3 \mathrm{~N}$
C 14 N
D 16 N
1.8 You can replace two forces, P and Q, with a single force of 7 N . If the magnitude of force P is 3 N , which one of the following can be the magnitude of force Q ?

A 2 N
B 3 N
C 8 N
D 13N
1.9 Consider the following vector diagram:

The vector which represents the resultant of the other two, is ...
A AB.
B AC.
C CB.
D BA.

QUESTION 1 (Grade11 KZN MARCH 2015)

The diagram below shows TWO forces P and Q of magnitude 250 N and 150 N respectively acting at a point R.

1.1 \quad Calculate the horizontal and vertical components of vector P. (4)
1.2 Calculate the vector sum of horizontal components of P and Q.
1.3 The vector sum of the vertical components of these forces is $129,45 \mathrm{~N}$. Using the vector sums of the horizontal and vertical components of P and Q, draw a labelled force vector diagram to show the resultant force acting on the point R .
1.4 Calculate the magnitude of the resultant of forces P and Q.
1.5 Calculate the direction (measured clockwise from the positive Y axis) of the resultant of vectors P and Q .
1.6 If vector P was fixed but the direction of vector Q could be changed, for which value of Θ will the resultant force have a maximum value?

QUESTION 3 (Fs CONTROL TEST TERM 1 - 2015)
Three forces, F1, F2 and w, act on point \mathbf{O} as shown in the diagram below.

3.1	Define the term resultant of forces.	(2)
3.2	By means of an accurate scale drawing, determine the vertical component of F1. Use a scale where 10 N is represented by 10 mm.	(5)
3.3	The horizontal and vertical components of F2 are equal to 40 N and 42 N respectively.	
	3.3 .1	Prove with calculations that the horizontal components of the forces are in equilibrium.
	3.3 .2	Calculate the magnitude and direction of force w.
		(3)

ADDITIONAL ACTIVITIES

JUNE 2014 LIMPOPO

	QUESTION 1
	Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1-1.10) in the ANSWER BOOK.
1.1	Which of the following pairs can be classified as vectors?
	A. Friction and mass
C. Mass and inertia	
1.2	D. Weight and Friction

A

B

C

D

QUESTION 2

The diagram below shows three forces of $5 \mathrm{~N}, 4 \mathrm{~N}$ and 3 N acting on an object in the same Cartesian plane.

Calculate the:	(10)			
2.1	Magnitude of the resultant force acting on the object.	(3)		
2.2	Direction of the resultant force.			

November 2015 National
Vector \mathbf{P} and vector $\mathbf{- P}$ are acting on a common point \mathbf{O}. The angle between the two vectors is ...

1.1	A. 0°	
	B. 90°	
	C. 180°	
	D. 270°	
QUESTION 2		
Three forces, \mathbf{P}, \mathbf{Q} and \mathbf{R}, of magnitudes $500 \mathrm{~N}, 200 \mathrm{~N}$ and 300 N respectively, act on a point \mathbf{O} in the directions shown in the diagram below.		
The forces are NOT drawn to scale.		
2.1	Refer to the information in the diagram above and give a reason why	(2)

	forces	
\mathbf{P}, \mathbf{Q} and \mathbf{R} are classified as vectors.		
2.2	Determine the magnitude and direction of the resultant force, either by CALCULATION or by ACCURATE CONSTRUCTION AND MEASUREMENT. (Use scale $10 \mathrm{~mm}=50 \mathrm{~N})$.	(8)
		$[10]$

November 2017 National

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1. Which ONE of the following pairs of physical quantities is vector

1 quantities?
A. Force and distance
B. Velocity and speed
C. Charge and electric field
D. Electric field and force

1. Which ONE of the following vector diagrams represents three forces

2 acting on an object simultaneously while the object moves at CONSTANT VELOCITY?

A

B

c

MARCH 2018
QUESTION 2
Three forces F_{1}, F_{2} and F_{3} act at a point, as shown on the Cartesian plane in the diagram below.

| Downloaded fromstanmorepfysics.com |
| :--- | :--- | :--- | :--- |

MATTER AND MATERIALS

Intermolecular forces

The covalent bond occurs when atoms of non-metal elements share unpaired valence electrons to achieve noble gas electron configuration.

Example:

The covalent bond is an interatomic force and the result product is a molecule.
The covalent bonds are very strong and one requires a large amount of energy to break them i.e. to separate the atoms of the molecule.

The intermolecular forces are the forces of attraction that exist between molecules of a chemical substance in a solid or liquid form..
The intermolecular forces are weaker than interatomic forces.

Examples

1.

2.

The strength of intermolecular forces determines the physical properties (boiling points, melting point, evaporation, etc.) of a molecular substance.

Molecules can be polar or non-polar.

The polarity of a molecule is determined by two factors :
\checkmark The difference in electronegativity between the bonding atoms.

Non-polar molecules have no dipoles (positive and negative ends) e.g. CO_{2}

Difference in electronegativity $(\triangle E N)=3,5-2,5=1,0 \rightarrow$ bond between C and O is polar but both ends of CO_{2} are $\partial+$ and the molecule is linear. The molecule is therefore non-polar.

Polar molecule

In polar molecule there are $\partial+$ and ∂ - ends e.g. $\mathrm{H}_{2} \mathrm{O}$ and the geometry of the molecule is angular (bent)

$\Delta \mathrm{EN}=3,5-2,1=1,4$. The two bonds (between H and O atoms) are polar.
$\mathrm{H}_{2} \mathrm{O}$ molecule has H -end being $\partial+$ and O -end being ∂-, they are called dipoles. The molecule is polar

Non-polar bonds:

- H_{2} is non-polar because the two atoms are identical, there is even or symmetrical distribution of charge, this makes H_{2} a non-polar molecule.
- The electro-negativity between the two atoms is zero, this explains why the interatomic bond in Hydrogen molecule is non-polar

TYPES OF INTERMOLECULAR FORCES

1. Van der Waals forces:
van der Waals force is a weak attraction between molecules The force of attraction is between polar and non-polar molecules
(a) Dipole-dipole force is an attraction between polar molecules.

Examples: 1: between molecules of HCl

Example: 2. When HCl dissolves in water

Dipole-dipole forces are the strongest intermolecular forces
(b) Dipole-induced dipole force is a weak force of attraction that exist when a polar causing a distortion in arrangement of electrons in a non-polar molecule. Temporary dipoles are induced in a non-polar molecule e.g. mixture of HCl and argon.
(c) Induced dipole forces (London forces) occurs between atoms or molecules of non-polar substances e.g.
Between atoms of noble gases, molecules of diatomic molecules $\left(\mathrm{H}_{2} ; \mathrm{N}_{2} ; \mathrm{O}_{2} ; \mathrm{F}_{2} ; \mathrm{Cl}_{2}\right)$, nonpolar compounds $\left(\mathrm{CH}_{4} ; \mathrm{CCl}_{4} ; \mathrm{BF}_{3}\right)$, between molecules of $\mathrm{CO}_{2}(\mathrm{~s})$ - dry ice Induced dipole forces are the weakest van der Waals forces
2. Hydrogen bond is a special type of dipole-dipole force. Hydrogen bond is a force attraction between a hydrogen atom bonded to oxygen, nitrogen or fluorine in a molecule to a lone pair of an adjacent molecules e.g. between $\mathrm{H}_{2} \mathrm{O}$ molecules, between HF molecules.

Hydrogen bonds are the strongest intermolecular forces.
3. Ion-dipole force is the attraction of an ion with a positive or negative charge and the oppositely charged end of the dipole of polar molecule e.g. NaCl dissolved in water
4. Ion-induced dipole force is an attraction between an ion and a non-polar molecule. As an ion approaches a non-polar molecule, it causes a distortion in the arrangement of the arrangement of the electrons of non-polar molecules. Momentary dipoles are induced in non-polar molecules e.g. dissolving NaCl in hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$

PHYSICAL STATE AND DENSITY EXPLAINED IN TERMS OF THESE INTERMOLECULAR FORCES

Boiling Point

The hydrogen bonds between highly polar water molecules are stronger than normal dipole-dipole forces and more energy is needed to break these bonds. Energy needed for molecules to evaporate, is called than expected boiling point.

Surface tension

- The surface of a liquid may be considered as an elastic film or of this surface phenomenon, it is possible for insects to walk on liquid.

skin. As a result the surface of a
- The curved surfaces (menisci) of liquids, most noticeable in narrow tubes, and the fact that a water drop is always spherical, are properties which are linked to surface tension.
- Surface tension can be defined as the resistance that a liquid offers to a force which tries to increase its surface area.

Density

- The common statements that mercury is "heavier" than water or that iron is "heavier" than aluminium are actually not correct. It is not the mass of the substances that is compared, but the mass per unit volume, which is known as the density.
- The density of a substance is independent of the amount and size of the sample and can therefore be used as an aid to distinguish one pure substance from another. Stronger intermolecular forces will result in substances having greater densities.
- According to the kinetic molecular theory, particles in a gas are far apart with no regular motion. Particles in a liquid are close together with no regular arrangement. Particles in a solid are close together, usually in a regular pattern.
- It implies that the number of particles per unit volume will decrease from the solid to the liquid state. (Refer to diagram).
- The density of a substance increases as it changes the liquid and solid state, because the intermolecular increase as substances changes from the gas to the
- Note: The density of most substances known,

from the gas to forces
solid state.
decreases as the temperature rises. However, the density of water increases as the temperature is raised from $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$. (Refer to the lesson: Macroscopic properties of the three phases of water related to their microscopic structure)

KINETIC ENERGY AND TEMPERATURE

- Temperature is directly proportional to average kinetic energy of the particles. An increase in T increases K. K = $1 / 2 m v^{3}$
- The mass of the particles remains constant - motion increases.
- T (Temperature is directly proportional to average kinetic energy of the particles).
- The molar masses of the particles increase in the following order: F2 Cl2 Br2. The London forces between the non-polar molecule increase with an increase in molar mass. At the same temperature, the forces between F2 molecules are weaker than between $\mathrm{C} \ell_{2}$ molecules etc.
- An increase in temperature decreases the bond strength between the molecules. The particles are further apart and the substance becomes less dense.
- Thermometers work by using thermal expansion of a liquid to measure temperature; construction (bridges); it can also be used in loosening nuts and bolts; a hot-air balloon uses the thermal expansion of air to generate lift.
- Thermal expansion is the expansion of a liquid on heating.
- Thermal conductivity is a measure of how much a material conducts heat.

Kinetic energy of particles and temperature change

- Heat is a form of energy. During the heating process, the particles of the substance absorb energy that allows them to vibrate in all directions and collide with each other. Energy that causes motion is called kinetic energy. All the particles do not gain the same amount of energy and they also transfer energy to other particles when they collide with each other.
- An increase in the temperature of gas particles increases the average kinetic energy of the particles and they will move faster ($\mathrm{K}=1 / 2 \mathrm{mv} 2$). The average kinetic energy is directly proportional to the temperature of the particles.

Thermal expansion

- The most easily observed examples of thermal expansion are size changes of materials as they are heated or cooled. Almost all materials (solids, liquids, and gases) expand when they are heated, and contract when they are cooled. Increased temperature increases the frequency and magnitude of the molecular motion of the material and produces more energetic collisions. Increasing the energy of the collisions forces the molecules further apart and causes the material to expand.
- Different materials expand or contract at different rates. In general, gases expand more than liquids, and liquids expand more than solids.

Example:

- Because the liquid expands at a faster rate than the tube, it rises as the temperature increases and drops as the temperature decreases.
- The first step in producing a thermometer scale is to record the height of the liquid at two known temperatures (i.e. the boiling point and freezing point of water). The difference in fluid height between these points is divided into equal increments to indicate the temperature at heights between these extremes.

CHEMISTRY OF WATER

- The atoms in a water molecule are held together strongly by covalent bonds to for angular molecule. The electrons are not evenly around the molecule. Oxygen has a higher electronegativity than hydrogen and the oxygen side of the water molecule is partially negative, while the hydrogen is partially positive. So water molecules are polar and the form dipoles.
- The water molecules are strongly attracted to one another through hydrogen bonds. At the Temperature below $0^{\circ} \mathrm{C}$ at the atmospheric pressure, water is a solid (ICE), at that stage water molecules are arranged in a regular pattern to form ice crystals.
- When you heat the ice, the water molecules start to vibrate faster and the kinetic energy of water molecules increases. At $0^{\circ} \mathrm{C}$, the particles are moving vigorously to break the lattice pattern.
(More notes on Study and master)
- At solid state - water molecules are closely parked together where hydrogen bond is very strong where they do not move (no kinetic energy)
- Liquid state - water molecules can now vibrate and move (there is kinetic energy)
- Gaseous state - water molecules are scattered free to move (more kinetic energy) resulting in a very week hydrogen bonds (others they even say at this stage there no hydrogen bonds
- So water has a very high specific heat capacity of $4200 \mathrm{kJ.kg}^{-1} . \mathrm{K}^{-1}$.to rise the temperature of water we need first to break many intermolecular forces (Hydrogen bonds). Therefore water molecules absorb lots of heat while its temperature rises slightly. The opposite also true water molecule can give off much heat with only slight decrease in its temperature.
- The polar water molecules vibrate, which enable them to absorb heat from the sun. The water in lakes and oceans can absorb large amount heat in summer and give off heat in winter, with only small changes in the temperature of the water. This effect moderates the climate of

Water vapour $\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)$ and carbon dioxide $\left(\mathrm{CO}_{2}(\mathrm{~g})\right)$ in the atmosphere provide a temperature buffer (greenhouse effect) which helps maintain a relatively steady surface temperature.

The polarity of the covalent bonds in $\mathrm{H}_{2} \mathrm{O}$-molecules and the strong hydrogen bond between the

1. INVESTIGATE SPECIFIC HEAT CAPACITY

Specific heat capacity is the amount of energy needed to temperature of 1 kg of a substance by $1^{\circ} \mathrm{C}$.

raise the

Water has high specific heat capacity of 4200 $\mathrm{J}^{\mathrm{kg}}{ }^{-1} .{ }^{\circ} \mathrm{C}^{-1}$
A high specific heat capacity requires more energy for the temperature to change. This means water absorbs a lot of heat energy to increase the temperature of 1 kg by $1^{\circ} \mathrm{C}$.

Water has higher specific heat capacity than oil because te rate at which temperature of water increases is less than that of oil with the same amount of heat added.

Melting point and boiling point of water

Melting point is the temperature at which the solid and liquid phases of a substance are in equilibrium.
The stronger the intermolecular forces, the higher the melting point.
The boiling point is the temperature at which the vapour pressure of a substance equal atmospheric pressure.

Melting point of water is $0^{\circ} \mathrm{C}$ and its boiling point is $100^{\circ} \mathrm{C}$
When the boiling point of water is measured at sea level(e.g. towns like Cape town and Durban), it is often very close to $100^{\circ} \mathrm{C}$ since atmospheric pressure is almost the same as standard pressure.

If you measure boiling point of water in a town at a higher altitudes (e.g. Johannesburg or Polokwane) it will have a slightly lower boiling point.

2 .WATER AS A SOLVENT

A solvent is the substance that dissolves a solute to produce a homogeneous mixture.

A solute is a substance that dissolves in a solvent to produce a homogeneous mixture.
A solution is a homogeneous mixture of two or more substances.

What makes water a good solvent?

The polarity and the ability to form hydrogen bonds makes water a good solvent.

- The polarity of water allows it to dissolve both ionic bonds and other polar molecules.
- A water molecule is polar because the electric charge is distributed unevenly because the oxygen atom is on one end ,causing it to have slight negative charge and hydrogen atom is on one end causing it to have slight positive charge.

Water molecules are held together by hydrogen bonds. Hydrogen bonds are a much stronger type of intermolecular force than those found in many other substances and affects the properties of water.

3. Investigating Surface tension

- Intermolecular forces are forces between neighbouring molecules.

Surface tension is the energy required to increase the surface area of a liquid.

- Water has strong hydrogen bonds between the molecules. These intermolecular forces hold the particles more strongly together increasing surface tension.
- The molecules of water attract each other strongly.
- The drop of water does not spread out easily on the paper and keeps its shape on the wax paper,
- This shows that there are strong intermolecular forces on between water molecules. The oil particles spread out easily as a result of weak London forces.

4. Density of water

Density is the the mass per unit volume.
Density $=\frac{\text { mass }}{\text { volume }}$
Another unusual property of water is that its solid phase (ice) is less dense than its liquid phase. This can observed by put ice into the a glass of water . The ice does not sink to the bottom of the glass but floats on top of the liquid. This phenomenon is related to hydrogen bonds between particles of water .While other material contract when they solidify, water expands. The ability of the ice to float is very important

Downloaded from Stammorepfusics.com
in the environment. When a deep body of water cools, floating ice insulates the liquid water below, preventing it from freezing and allowing life under the frozen surface to exist.

LEARNERS WORKSHEET

1.

1.1 hydrogen fluoride (HF)
1.2 methane $\left(\mathrm{CH}_{4}\right)$
1.3 potassium chloride in ammonia $\left(\mathrm{KCl}\right.$ in $\left.\mathrm{NH}_{3}\right)$
1.4 krypton (Kr)

Which intermolecular forces are found in:
\qquad

Given the following diagram:
$\mathrm{H}-\mathrm{Cl}--\mathrm{H}-\mathrm{Cl}$
2.1 Name the molecule and circle it on the diagram
2.2 Label the interatomic forces (covalent bonds)
2.3 Label the intermolecular forces

Given the following molecules and solutions:
$\mathrm{HCl}, \mathrm{CO}_{2}, \mathrm{I}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{KI}(\mathrm{aq}), \mathrm{NH}_{3}, \mathrm{NaCl}(\mathrm{aq}), \mathrm{HF}, \mathrm{MgCl}_{2}$ in $\mathrm{CCl}_{4}, \mathrm{NO}, \mathrm{Ar}$, SiO_{2}
3.1 Complete the table below by placing each molecule next to the correct type of intermolecular force.

Type of force Molecules	Type of force Molecules
lon-dipole	
lon-induced-dipole	
Dipole-dipole (no hydrogen bonding)	
Dipole-dipole (hydrogen bonding)	
Induced dipole	
Dipole-induced-dipole	

3.2 In which one of the substances listed above are the intermolecular forces:

3.2.1 strongest

4.2 Water evaporates slower than carbon tetrachloride (CCl_{4}).
\qquad
\qquad
\qquad
\qquad
4.3 Sodium chloride is likely to dissolve in methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
\qquad
\qquad
\qquad

Calvin and Jason are helping their dad tile the bathroom floor. Their dad tells them to leave small gaps between the tiles. Why do they need to leave these small gaps?
\qquad
\qquad
\qquad

Hope returns home from school on a hot day and pours herself a glass of water. She adds ice cubes to the water and notices that they float on the water.
\qquad
\qquad
\qquad
\qquad
6.1 What property of ice cubes allows them to float in the water?
\qquad
\qquad
\qquad
6.2 Briefly describe how this property affects the survival of aquatic life
during winter.
\qquad
\qquad
\qquad
\qquad

Which properties of water allow it to remain in its liquid phase over a large temperature range?

Explain why this is important for life on earth.
\qquad
\qquad

Give one word or term for each of the following descriptions:
8.1 The attractive force that exists between molecules.
8.2 A molecule that has an unequal distribution of charge.

8.3 The amount of heat energy that is needed to increase the temperature of a unit mass of a substance by one degree.
\qquad

Refer to the list of substances below:
$\mathrm{HCl}, \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3} \mathrm{~N}_{2}, \mathrm{HF}$

Select the true statement from the list below:
a) NH 3 is a non-polar molecule
b) The melting point of NH 3 will be higher than for Cl 2
d) At room temperature N 2 is usually a liquid

The following table gives the melting points of various hydrides:

Hydride	Melting point $\left({ }^{\circ} \mathrm{C}\right)$
HI	-34
NH_{3}	-33
$\mathrm{H}_{2} \mathrm{~S}$	-60
CH_{4}	-164

10.1 In which of these hydrides does hydrogen bonding occur?
A. HI only
B. NH_{3} only
C. HI and NH_{3} only
D. $\mathrm{HI}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}$
10.2 Draw a graph to show the melting points of the hydrides.

10.3 Explain the shape of the graph
\qquad
\qquad
10.4 The respective boiling points for four chemical substances are given below:

Hydrogen sulphide	$-60^{\circ} \mathrm{C}$
Ammonia	$-33^{\circ} \mathrm{C}$
Hydrogen fluoride	$20^{\circ} \mathrm{C}$
Water	$100^{\circ} \mathrm{C}$

10.4.1 Which one of the substances exhibits the strongest forces of attraction between its molecules in the liquid state?
\qquad
\qquad
10.4.2 Give the name of the force responsible for the relatively high boiling points of hydrogen fluoride and water and explain how this force originates.
\qquad
\qquad
10.4.3 The shapes of the molecules of hydrogen sulfide and water are similar, yet their boiling points differ. Explain
\qquad
\qquad
\qquad
\qquad
10.4.4 Susan states that van der Waals forces include ion-dipole forces, dipole-dipole forces and induced dipole forces.

Simphiwe states that van der Waals forces include ion-dipole forces, ion-induced dipole forces and induced dipole forces.

Thembile states that van der Waals forces include dipole-induced dipole forces, dipole-dipole forces and induced dipole forces.

Who is correct and why?
\qquad
\qquad
\qquad

Jason and Bongani are arguing about which molecules have which intermolecular forces. They have drawn up the following table:

Compound	Compound
Potassium iodide in water (KI(aq))	Potassium iodide in water (KI(aq))
Hydrogen sulfide (H2S)	Hydrogen sulfide (H2S)
Helium (He)	Helium (He)
Methane (CH4)	Methane $\left(\mathrm{CH}_{4}\right)$

\qquad
\qquad
\qquad
\qquad
11.2 Bongani says that helium (He) is an ion and so has ion-induced dipole forces. Jason says helium is non-polar and has induced dipole forces. Who is correct and why?
\qquad
\qquad
\qquad
\qquad
11.3 They both agree on the rest of the table. However, they have not got the correct force for potassium iodide in water ($\mathrm{KI}(\mathrm{aq})$). What type of force actually exists in this compound?
\qquad
\qquad
\qquad
\qquad
11.4 Khetang is looking at power lines around him for a school project. He notices that they sag slightly between the pylons. Why do power lines need to sag slightly?
\qquad
\qquad
\qquad
\qquad
11.5 Briefly describe how the properties of water make it a good liquid for life on Earth.
\qquad
\qquad
\qquad
\qquad

QUANTITATIVE ASPECT OF CHEMICAL CHANGE

$>$ The mole is the SI unit for the amount of substance
$>$ The Mole is a name for a specific number. The Mole is the SI unit for quantity of substance
Abbreviation of units - the official SI abbreviation of the unit mole is mol.
The mole - mass relationship is summarised if the formula:

$$
n=\frac{m}{M}
$$

Where -: $\quad n$ - number of moles of substance in mol.
m - mass of sample of substance in g.
M - molar mass of substance in g. mol^{-1}.
Example 1

1. Calculate the number of moles of water in 100 g of wate

$$
n=\frac{m}{M}=\frac{100}{16+(2 \times 1)}=5,56 \mathrm{~mol}
$$

Example 2

2. What is the molar mass of a substance if 5 moles of the substance have a mass of $295,5 \mathrm{~g}$ $n=\frac{m}{M}$
$\therefore 5=\frac{295,5}{M} \quad$ (Cross multiply and let M be the subject of the formula)
$M=\frac{295}{5}$
$\mathrm{M}=58,5 \mathrm{~g} . \mathrm{mol}^{-1}$
> The mole and Avogadro constant

* The mole is defined as the number of particles or atoms in 12,0 g of Carbon -12
* A mole of particle is an amount of $6,02 \times 10^{23}$ particle.
* $6,02 \times 10^{23}$ is known as Avogadro's number N_{A}.

WORKED EXAMPLES

Calculate the molar mass for each of the following:
(i) Ca
(ii) MgCl_{2}

Solutions

(i) $40 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(ii)

$$
\begin{aligned}
& =24+(35,5 \times 2) \\
& =24+71 \\
& =95 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Calculate the number of moles of:

1. 213 g of Cl_{2}
2. 39.5 g of KMnO_{4}

Solutions

1. $n=\frac{m}{M}=\frac{213}{71}=3 \mathrm{~mol}$
2. $n=\frac{m}{M}=\frac{39.5}{158}=0.25 \mathrm{~mol}$

> The Mole and the Gases

* Avogadro also determine that:

1 mole of ANY gas at STP is occupies a volume of $22,4 \mathrm{dm}^{3}$

* The Molar volume of ANY gas at STP is given the symbol V_{m}
($\mathrm{V}_{\mathrm{m}}=22,4 \mathrm{dm}^{-3} \cdot \mathrm{~mol}^{-1}$)
NOTE: STP stands for standard Temperature ($0^{\circ} \mathrm{C}$) and pressure (100 kPa).
* For any gas at STP $\mathbf{n}=\frac{\mathbf{v}}{\mathbf{v}_{\boldsymbol{m}}}$
* Where: n - number of moles of gas

V - Volume of gas sample
V_{m} - molar Volume of gas (22, $4 \mathrm{dm}^{-1} . \mathrm{mol}^{-1}$)

* The Volume of the gas sample (V) must always be measured in $\mathrm{dm}^{3}\left(1 \mathrm{dm}^{3}=0,001 \mathrm{~m}^{3}=1000 \mathrm{~cm}^{3}=\mathrm{dm}^{3} 100 \mathrm{ml}=1\right.$ litre)

WORKED EXAMPLES

1. Determine the volume of 2 moles of H_{2} at STP.
2. Determine the mass of $60 \mathrm{~cm}^{3}$ of NH_{3} at STP.

Solutions

1. $n=\frac{V}{V m}$
$V=2 X 22.4=44.8 \mathrm{dm}^{3}$
2. [convert units first]
$\mathrm{V}=60 / 1000=0.06 \mathrm{dm}^{3}$
$n=\frac{V}{V m}=\frac{0.06}{22.4}=0.0027 \mathrm{~mol}$
$n=\frac{m}{M}$
$m=0.0027 X 17.03=0.046 \mathrm{~g}$
> The mole and Concentrations of solution.

* Solutions are homogeneous (uniform) mixture of solute and Solvent
* Solute and Solvent can be a Gas, liquid or solid.
* The most common solvent is liquid water, this is called aqueous solution.
* Concentration - the concentration of solution is the number of mole per unit volume of solution.
* $\mathbf{c}=\frac{n}{v} \quad$ concentration can also be calculated with $\quad \mathbf{c}=\frac{m}{M V}$

Where: $\quad \mathbf{C}$ - concentration (mol.dm ${ }^{-3}$)
n - number of moles (mol)
V - Volume (dm^{3})
m - mass in (g)
M - Molar mass (g. $_{\mathrm{mol}}{ }^{-1}$)
WORKED EXAMPLES

1. Calculate the of a solution of calcium chloride made by dissolving 5.55 g of dry CaCl_{2} crystals in enough water to make $750 \mathrm{~cm}^{3}$ of solution.
2. What mass of copper (II) sulphate must be dissolved in 200 ml water to yield a $0.4 \mathrm{~mol}^{\mathrm{l}} . \mathrm{dm}^{-3}$ solution?

Solutions

1. $c=\frac{m}{M V}=\frac{5.55}{(111)(0.75)}=0.067 \mathrm{~mol} . \mathrm{dm}^{-3}$
2. $c=\frac{m}{M V}$
$0.4=\frac{m}{(159.5)(0.2)}$
$m=12.76 \mathrm{~g}$
> The mole and Percentage Composition of Substances

* The subscripts in a chemical formula give the mole ratio in which the elements combine.
* The mole ratio enables one to calculate the percentage composition, of the elements in the compound.
> The Mole and Empirical formula of compounds.
* The empirical formula of a compound gives the simplest mole ratio in which the element of the compound combine.
* Empirical formula simply tells us the ratio of the different elements in a compound, not number of atoms of each element in molecule.
E.g In a combustion reaction 0.48 g of Mg ribbons is burnt. The amount of MgO produced is 0.8 g . Calculate the empirical formula for MgO

Steps	Magnesium	Oxygen
Step 1 Mass of element	0.48 g	$0.80-0.48=0.32 \mathrm{~g}$
Step 2 Mol $\left(n=\frac{m}{M}\right)$	$n=\frac{m}{M}=\frac{0.48}{24}=0.02 \mathrm{~mol}$	$n=\frac{m}{M}=\frac{0.32}{16}=0.02 \mathrm{~mol}$
Step 3 Atom ratio (divide by smallest number in ratio)	$\frac{0.02}{0.02}=1$	$\frac{0.02}{0.02}=1$

Therefore the empirical formula is MgO

Worked example 2

The action of bacteria on meat and fish produces a stinking compound called CADAVERINE. The compound has a composition of $58,77 \% \mathrm{C} ; 13,81 \% \mathrm{H}$ and $27,42 \% \mathrm{~N}$ by mass.

Determine the empirical formula of CADAVERINE.
In 100 g of compound we have $58,77 \mathrm{~g} \mathrm{C} ; 13,81 \mathrm{~g} \mathrm{H}$; and $27,40 \mathrm{~g} \mathrm{~N}$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$
$n(C)=\frac{58,77}{12} \checkmark=4,8975 \mathrm{~mol} \mathrm{C}$
$n(H)=\frac{13,81}{1} \checkmark=13,81 \mathrm{~mol} \mathrm{H}$
$\mathbf{n}(\mathbf{N})=\frac{27,40}{14} \checkmark=1,9571 \mathrm{~mol} \mathrm{~N}$

$$
\begin{aligned}
\text { Mole ratios } & =\mathrm{C}: \mathrm{H}: \mathrm{N} \\
& =2,50: 7,06: 1,00 \checkmark \quad \times 2
\end{aligned}
$$

Nearest whole number ratios $=5: 14: 2 \checkmark$
\therefore empirical formula is $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2} \checkmark$

> Empirical formula to Molecular formula

* Molecular formula is the actual ratio of an atom in a molecular mass.
* The molecular formula can be calculated from the empirical formula and the relative molecular mass.

STEPS TO DETERMINE MOLECULAR FORMULAR
\checkmark Determine the empirical formula (if not given).
\checkmark Determine the molar mass of the empirical formula.
\checkmark Determine the ratio between molecular formula and empirical formula

WORKED EXAMPLE

Butene has the empirical formula CH_{2}. The molecular mass of butene is $56 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Determine the molecular formula of butene.
Step 1 Empirical formula given CH_{2}.
Step $2 \mathrm{M}\left(\mathrm{CH}_{2}\right)=12+2(1)=14 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Step 3 ratio number $=\frac{\text { molecular formula mass }}{\text { empirical formula mass }}=\frac{56}{14}=4$

Step $4 \mathrm{CH}_{2} \times 4=\mathrm{C}_{4} \mathrm{H}_{8}$
> Limiting Reaction

* In a reaction between two substances, one reaction is likely to be used up completely before the other and this limit the amount of product formed.
* The amount of limiting reactant will determine :
\checkmark The amount of product formed.
\checkmark The amount of other (excess) reactant used.

Determining limiting reactants

\checkmark Calculate the number of moles of each element.
\checkmark Determine the ratio between reactants.
\checkmark Determine limiting reactant using the ratio.
NOTE: If one reactant is in excess, it means that there is more enough of it.
If there are only two reactants and one is in excess, it means that the other is the limiting reactant.
WORKED EXAMPLES.

1. A $8,4 \mathrm{~g}$ sample of nitrogen reacts with $1,5 \mathrm{~g}$ of hydrogen. The reaction is represented with the unbalanced equation below.

$$
\mathrm{N}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{NH}_{3}(g)
$$

1.1. Balance the equation.
1.2. Determine:
1.2.1. Which reactant is a limiting reactant?
1.2.2. The mass of ammonia that can be produced.

SOLUTIONS

1.1. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
1.2.1. $\mathrm{n}\left(N_{2}\right)=\frac{m}{M}=\frac{8,4}{28}=0,3 \mathrm{~mol}$
$\mathrm{n}\left(H_{2}\right)=\frac{m}{M}=\frac{1,5}{2}=0,75 \mathrm{~mol}$

```
Downloaded from Stanmorepfysics.com
    1 : 3
0,3 : x (cross multiply)
\thereforex=0,9 mol
```

If all nitrogen is used, $0,9 \mathrm{~mol}$ of hydrogen is needed, however, only $0,75 \mathrm{~mol}$ of hydrogen is available. The hydrogen will run out first therefore hydrogen is the limiting reactant.
1.2.2. Because the hydrogen is the limiting reactant, it will determine the mass of ammonia produced:

$$
\begin{array}{lll}
\mathrm{H}_{2} & : & \mathrm{NH}_{3} \\
3 & : & 2 \\
0.75 & : & \mathrm{x} \quad \text { (cross multiply) } \\
\therefore \mathrm{x}=0,5 \mathrm{~mol} \\
\mathrm{n}\left(\mathrm{NH}_{3}\right)= & \frac{m}{M} \\
\mathrm{~m}=(0,5)(17)=8,5 \mathrm{~g}
\end{array}
$$

> Percentage purity

* Sometimes chemicals are not pure and one needs to calculate the percentage purity.
* Only the pure component of the substance will react.
* For impure sample of a substance :

Percentage purity $=\frac{\text { Mass of pure substance }}{\text { Mass of impure substance }} \times 100 \%$
Steps to determine the percentage purity
\checkmark Determine moles of a product.
\checkmark Balance the equation.
\checkmark Determine the ratio between reactants and products.
\checkmark Using the ratio, determine the number of moles of reactants.
\checkmark Determine the mass of pure substance.
\checkmark Calculate the percentage purity of the sample.

> Percentage Yield

* The percentage yield shows how much product is obtained compare to the maximum possible mass.
* Some of the product may be lost due to evaporation into the surrounding air, or to a little being left in solution. This results in the amount of produced being less than maximum theoretical amount you would expect.
* We can express this by the percentage yield :

Percentage yield $=\frac{\text { Actual yield }}{\text { Theoritical yield }} \times 100 \%$

* Percentage yield is usually determined using mass, but can also be determined with mol and volume.

Downloaded from Stanmorephusics.com

STEPS TO DETERMINE THE PERCENTÁGE YIELD

\checkmark Determine the moles of reactant
\checkmark Balance the equation.
\checkmark Using the ratio from the balance equation, determine the numbers of moles of product.
\checkmark Determine the theoretical mass of product.
\checkmark Calculate the percentage yield.

WORKED EXAMPLE

Emphases that for percentage yield the focus on actual yield and theoretical yield
An excess of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with 0.75 g of KI according to the reaction:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)+\mathrm{KI} \rightarrow \mathrm{Pbl}_{2}+\mathrm{KNO}_{3}$
After titration and drying, a mass of 0.583 g of Pbl_{2} is measured.

Determine the percentage yield of Pbl_{2}

SOLUTIONS

Step 1: (balance chemical equation)
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)+2 \mathrm{KI} \rightarrow \mathrm{Pbl}_{2}+2 \mathrm{KNO}_{3}$
Step 2: (convert all given information to mole)
$n(K I)=\frac{m}{M}=\frac{0.75}{166}=4.52 \times 10^{-3} \mathrm{~mol}$
Step 3: (use stoichiometric ratio)

From the balance equation
(n)KI: (n) Pbl_{2}

2:1
4.52 $\times 10^{-3}$:?
(n) $\mathrm{Pbl}_{2}=\frac{1}{2}\left(4.52 \times 10^{-3}\right)=2.26 \times 10^{-3} \mathrm{~mol}$

Step 4: (convert the number of moles to mass)
$n=\frac{m}{M}$
$2.26 \times 10^{-3}=\frac{m}{461}$
$m=1.04 g$

Step 5: (percentage yield)
Percentage yield $=\frac{\text { actual yield mass }}{\text { theoretical yeild mass }} X 100$
Percentage yield $=\frac{0.583}{1.04} \times 100$

Percentage yield $=56.1 \%$

1.1	Calculate the molar mass for each of the following:		
	1.1.1	Ca	(1)
	1.1 .2	MgCl_{2}	(2)
	1.1 .3	$\mathrm{H}_{2} \mathrm{SO}_{4}$	(2)
	1.1.4	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	(2)
1.2	Determine the percentage composition for each of the following substances:		
	1.2.1	MgCl_{2}	(2)
	1.2 .2	CuSO_{4}	(2)
1.3	Given 80 g of NaOH		
	1.3 .1	Calculate the number of moles of 80 g of NaOH .	(3)
	1.3.2	Calculate the number of NaOH particles in 80 g of NaOH .	(3)
1.4	Given $0,05 \mathrm{~kg}$ of CaCO_{3}.Calculate		
	1.4.1	the number of moles of $0,05 \mathrm{~kg}$ of CaCO_{3}.	(2)
	1.4 .2	the number CaCO_{3} particles in $0,05 \mathrm{~kg}$ of CaCO_{3}.	(2)
1.5	Given $11,2 \mathrm{dm}^{3}$ of nitrogen gas at STP. Calculate		
	1.5.1	The number of moles of $11,2 \mathrm{dm}^{3}$ of nitrogen gas at STP.	(2)
	1.5 .2	The number of $\mathrm{N}_{2}(\mathrm{~g})$ molecules at STP.	(2)
	1.5.3	The number of nitrogen(N$)$ atoms at STP	(2)
LESSON 2-MOLAR VOLUME OF GASES			
2.1. Choose the correct answer			
	2.1.1	.of a gas is the volume of one mole of a substance at STP. A. Molar mass B. Molar volume C. Atomic weight D. Molar weight	(2)

	2.1.2	Equal volumes of all gases at the same temperature and pressure contain the same number of.. A. Protons B. Neutrons C. Electrons D. Molecules	(2)
2.2			
	2.2.1	Calculate the number of moles of water in $12 \mathrm{dm}^{3}$ of water vapour at STP.	(3)
	2.2 .2	Calculate the volume of hydrogen gas that combines with $12 \mathrm{~cm}^{3}$ of chloride.	(3)
LES	N3-C	NCENTRATION	
3.1	3.1.1	Calculate the concentration of a solution of calcium chloride made by dissolving 5.55 g of dry CaCl_{2} crystals in enough water to make $750 \mathrm{~cm}^{3}$ of solution.	(3)
	3.1 .2	What mass of copper (II) sulphate must be dissolved in 200 ml water to yield a $0.4 \mathrm{~mol}^{\mathrm{dm}} \mathrm{dm}^{-3}$ solution?	(3)
3.2			
	3.2.1	How many moles of chloride ions are present in 111 g of calcium chloride? A 0,5 B 2 C 1 D 1,47	(2)
	3.2 .3	What amount of oxygen gas (in moles) contains $1,8 \times 10^{22}$ molecules? A 0,03 B 33,34 C $1,2 \times 10^{24}$ D $1,08 \times 0{ }^{46}$	(2)
3.3	A sol conce	tion of $\mathrm{Mg}(\mathrm{OH})_{2}$ is made up so that it will have a volume of $0,25 \mathrm{dm}^{3}$ and a ntration of $0,5 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$. The solution is made up using distilled water.	(2)
	3.3.1	Define the term concentration.	(1)
	3.3.2	Name the solute used to make this solution.	(5)

LESSON 6- EXPERIMENTAL YIELD

6.1.	An excess of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with 0.75 g of KI according to the reaction: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)+\mathrm{KI} \rightarrow \mathrm{Pbl}_{2}+\mathrm{KNO}_{3}$ After titration and drying, a mass of 0.583 g of Pbl_{2} is measured.		
	6.1.1	Determine the percentage yield of Pbl_{2}	(6)
6.2.	It is found that $40 \mathrm{~cm}^{3}$ of a $0,5 \mathrm{~mol} . \mathrm{dm}^{-3}$ sodium hydroxide solution is needed to neutralise $20 \mathrm{~cm}^{3}$ of the vinegar with a mass of $20,8 \mathrm{~g}$. Vinegar is a solution of ethanoic acid in water. The balanced chemical equation for this reaction is:$\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$		
	6.2 .1	Calculate the number of moles of sodium hydroxide that reacted.	(3)
	6.2 .2	Calculate the mass of ethanoic acid present in the vinegar.	(4)
	6.2 .3	Calculate the percentage (by mass) of ethanoic acid present in the	(2)
6.3	37 g C react with an excess of oxygen and produce 65 dm 3 CO 2 gas at STP. The balanced equation for the reaction is as follows:$\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$		
	6.3 .1	Calculate the percentage purity of the carbon	(5)
6.4	$22,5 \mathrm{dm}^{3} \mathrm{H}_{2}$ and $30 \mathrm{dm}^{3} \mathrm{~N}_{2}$ is placed in a container and produces $12 \mathrm{dm}^{3} \mathrm{NH}_{3}$. The balanced equation for the reaction is$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$		
	6.4.1	Calculate the percentage yield for this reaction.	(5)
LESSON 7- REACTING SOLUTIONS- STANDARD SOLUTION			
7.1		$25 \mathrm{~cm}^{3}$ of HCl of concentration 0.12 mol. dm^{-3} reacts with $28.4 \mathrm{~cm}^{3} \mathrm{NaOH}$ to form water and NaCl . Calculate the concentration of sodium hydroxide.	(3)
7.2		$30 \mathrm{~cm}^{3}$ of HCl of concentration $0.5 \mathrm{~mol} . \mathrm{dm}^{-3}$ is diluted with 100 ml of water. Calculate the concentration of the diluted solution.	(3)
7.3	$25 \mathrm{~cm}^{3}$ of BaCl_{2} reacts with $20 \mathrm{~cm}^{3}$ of a standard solution of $0.05 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$ sulfuric acid to form barium sulphate and hydrochloric acid.		
	7.3.1	Define the term standard solution.	(2)
	7.3.2	Write down the balanced equation	(3)

	7.3.3	Calculate the concentration of barium chloride solution.	(3)
	7.3.4	Calculate the mass of the precipitate $\left(\mathrm{BaSO}_{4}\right)$ that is formed.	(3)
7.4		30 ml of an NaOH solution with concentration of $0,2 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ is mixed thoroughly with 50 ml of an NaOH solution with a concentration of $0,3 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$. Calculate the concentration of the final solution.	(5)
7.5		25 g NaCl is added to 100 cm of a NaCl solution with a concentration of $0,5 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ and thoroughly mixed. Assume that the volume of the solution does not change. Calculate the concentration of the final solution.	(7)
LESSON 8-LIMITING REAGENTS			
8.1 .	50 g of magnesium carbonate is added to $500 \mathrm{~cm}^{3}$ of hydrochloric acid with a concentration of $0,75 \mathrm{~mol}_{\mathrm{dm}}{ }^{-3}$. The equation for the reaction is given below: $\mathrm{MgCO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \quad \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ The carbon dioxide gas is collected at STP.		
	8.1.1.	What are the standard conditions used when conducting an experiment at STP?	(2)
	8.1.2.	Determine which reactant is the limiting reactant.	(6)
8.2	Consider the following balanced chemical reaction: $2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ $25,0 \mathrm{ml}$ of the nitric acid of concentration of $0,15 \mathrm{~mol}^{2} . \mathrm{dm}^{-3}$ reacts with the calcium hydroxide solution.		
	8.2.1.	How many moles of the acid are used?	(2)
	8.2.2.	What mass of calcium hydroxide reacted with the nitric acid?	(3)
	8.2.3.	$13,6 \mathrm{ml}$ of calcium hydroxide solution was used. What was the concentration of the calcium hydroxide solution?	(4)
LESSON 9-MORE COMPLEX STOICHIOMETRIC CALCULATIONS			
9.1			
	9.1.1	Define the term concentration.	(2)
9.2		Eight (8) grams of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is dissolved in water to prepare $500 \mathrm{~cm}^{3}$ of solution. Calculate the concentration of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution	(3)
9.3	A 10 g sample of a compound contains $2,66 \mathrm{~g}$ of potassium, $3,54 \mathrm{~g}$ of chromium and $3,81 \mathrm{~g}$ of oxygen.		

Downloaded from Stanmorepfysics.com			
9.3 .1	Define the term empirical formula	(2)	
9.3 .2	Determine the empirical formula of this compound.	(7)	

Principle of conservation of charge.

$Q_{\text {new }}=\frac{Q 1+Q 2}{2}$

Principle of charge quantization.

$n=\frac{Q}{q_{e}}$

Prefix	Conversion
centi- (cC)	$\times 10^{-2}$
milli- (mC)	$\times 10^{-3}$
micro $-(\mu \mathrm{C})$	$\times 10^{-6}$
nano $-(\mathrm{nC})$	$\times 10^{-9}$
pico- (pC)	$\times 10^{-12}$

COULOMB'S LAW

The electrostatic force between two point charges is directly proportional to the product of the two charges and inversely proportional to the square distance between them.

Mathematical representation: $F \propto Q_{1} Q_{2}, F \alpha 1 / r^{2}$
Then $F \alpha_{1} Q_{1} Q_{2} / r^{2}$
$F=k \frac{Q_{1} Q_{2}}{r^{2}}$
$\mathrm{F}=$ force of attraction between objects (N)S
$\mathrm{k}=$ Coulomb's constant $\left(9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}\right)$
Q = object charge (C)
$r=$ distance between objects (m)

EXAMPLES:

Two charges experience a force F when held a distance r apart. How would this force be affected if one charge is doubled, the other charge is tripled and the distance is halved?
$F=k \frac{q_{1} q_{2}}{r^{2}}$
$F_{\text {new }}=k \frac{2 q_{1} 3 q_{2}}{\left(\frac{1}{2} r\right)^{2}}$
$F_{\text {new }}=24 \mathrm{k} \frac{q_{1} q_{2}}{r^{2}}$
$F_{\text {new }}=24 \mathrm{~F}$
2. Two charges experience a force F when held a distance r apart. How would this force be affected if BOTH charges are doubled, and the distance is halved?
$F=k \frac{q_{1} q_{2}}{r^{2}}$
$F_{\text {new }}=k \frac{2 q_{1} 2 q_{2}}{\left(\frac{1}{2} r\right)^{2}}$
$F_{\text {new }}=16 \mathrm{k} \frac{q_{1} q_{2}}{r^{2}}$
3. Two charges experience a force F when held a distance r apart. How would this force be affected if one charge is halved, and the distance is doubled?
$\mathrm{F}=\mathrm{k} \frac{q_{1} q_{2}}{r^{2}}$
$F_{\text {new }}=k \frac{1 / 2 q_{1} q_{2}}{(2 r)^{2}}$
$F_{\text {new }}=1 / 4 \mathrm{k} \frac{q_{1} q_{2}}{r^{2}}$
$F_{\text {new }}=1 / 4 F$

Graphical representation of Coulombs law:
Electrostatic force and 1/d2

Downloaded from Stanmorepfysics.com

Electrostatic force vs product of charges

CALCULATIONS- Electrostatic force

Electrostatic force is a vector quantity, therefore all vector rules can be applied:

- Direction specific
- Can be added or subtracted.

The force can be calculated using

$$
\mathbf{F}=\mathrm{k} \frac{q_{1} q_{2}}{r^{2}}
$$

- Substitute charge magnitude only.
- Direction determined by charge (like charges repel, unlike charges attract).

- Both objects experience the EQUAL but opposite forces (Newton's Third Law of Motion).

1-Dimensional

Determine the resultant electrostatic force on $Q_{\text {B. }}$.

2-Dimensional

Determine the resultant electrostatic force on Q .

(A)
$+5 \mu \mathrm{C}$

$$
\begin{aligned}
F_{A B} & =\frac{1 Q_{A} Q_{B}}{r^{2}} \\
& =\frac{9 \times 10^{9}\left(5 \times 11^{-6}\right)\left(10 \times 10^{-6}\right)}{\left(10 \times 10^{-3}\right)^{2}}
\end{aligned}
$$

$=4500 \mathrm{~N}$ down (A attracts B)

$$
\begin{aligned}
F_{C B} & =\frac{16 C\left(Q_{B}\right.}{r^{2}} \\
& =\frac{\left.9 \times 10^{9} 7\left(7 \times 10^{-6}\right)(10) \times 10^{-6}\right)}{(15 \times 10-3) 2} \\
& =2800 \mathrm{~N} \text { righ }(\mathrm{C} \text { atrats } \mathrm{B})
\end{aligned}
$$

PYTHACORAS:

$$
\begin{aligned}
& F_{x \mid}^{2}=F_{2 B}+F_{B C} \\
& F_{\mathrm{na}}=\sqrt{4500^{2}+280^{2}} \\
& F_{x 1}=5300 \mathrm{~N}
\end{aligned}
$$

$\tan \theta=\frac{a}{2}$

$$
\theta=\tan ^{-1} \frac{F_{A B}}{F_{C B}}
$$

$$
\theta=\tan ^{-1} \frac{4 m}{2 m}
$$

$$
\theta=58,11^{*}
$$

$\therefore F_{\text {nat }}=5300 \mathrm{~N}$ at $58,11^{\prime}$ below the positive $\mathrm{x}-\mathrm{uxis}$

ELECTRIC FIELDS

An electric field is a region of space in which an electric charge experiences a force. The direction of the electric field at a point is the direction that a positive test charge $(+1 \mathrm{C})$ would move if placed at that point.

ELECTRIC FIELD LINE PATTERNS

Field lines around the single point charge

Field lines between two unlike charges

Electric Field Lines between the two like charges

ELECTRIC FIELD STRENGTH

Electric field strength at any point in space is the electrostatic force per unit positive charge experienced by a positive test charge at that point.

$$
E=\frac{F}{q}
$$

$\mathrm{E}=$ electric field strength $\left(\mathrm{N} \cdot \mathrm{C}^{-1}\right)$
F = force (N)
$\mathrm{q}=$ charge (C)
q is the charge that experiences the force.

EXAMPLE:

Charge B experiences a force of 2 N due to charge A .
Determine the electric field strength at point B.

DIRECTION:

Direction that point in space (X)would move IF it was positive.

$$
E=k \frac{Q}{r^{2}}
$$

$\mathrm{E}=$ electric field strength ($\mathrm{N} \cdot \mathrm{C}^{-1}$)
$\mathrm{k}=$ Coulomb's constant $\left(9 \times 109 \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}\right)$
$\mathrm{Q}=$ object charge (C)
$r=$ distance between objects (m)
Q is the charge that creates the electric field.

Downloaded from Stanmorepfysics.com

EXAMPLE:

Determine the electric field strength at point P due to charge Q.

$$
\begin{aligned}
& \underset{3 \mu \mathrm{C}}{\mathrm{Q}} \stackrel{5 \mathrm{~mm}}{\stackrel{p}{p}} \\
& E=\frac{k Q}{r^{2}} \\
& =\frac{9 \times 10^{5}\left(9 \times 10^{-6}\right)}{\left(3 \times 10^{-3}\right)^{2}} \\
& =1,08 \times 10^{9} \mathrm{~N} \cdot \mathrm{C}^{-1} \text { to the right }
\end{aligned}
$$

DIRECTION:

Direction that point in space (X) would move IF it was positive.

NOTE:

Electric field strength is a VECTOR. All vector rules and calculations apply. (linear addition, 2D arrangement, resultant vectors, etc.)

ACTIVITIES

SQUESTION 1

The diagram shows two small identical metal spheres, \mathbf{R} and \mathbf{S}, each placed on a wooden stand. Spheres \mathbf{R} and \mathbf{S} carry charges of $+8 \mu \mathrm{C}$ and $-4 \mu \mathrm{C}$ respectively. Ignore the effects of air.

1.1

Explain why the spheres were placed on wooden stands.
Spheres \mathbf{R} and \mathbf{S} are brought into contact for a while and then separated by a small distance.
1.2 Calculate the net charge on each of the spheres.
1.3 Draw the electric field pattern due to the two spheres \mathbf{R} and \mathbf{S}.

After \mathbf{R} and \mathbf{S} have been in contact and separated, a third sphere, \mathbf{T}, of charge $+1 \mu \mathrm{C}$ is now placed between them as shown in the diagram below.

1.4 Draw a free-body diagram showing the electrostatic forces experienced by sphere \mathbf{T} due to spheres \mathbf{R} and \mathbf{S}.
(2)
1.5 Calculate the net electrostatic force experienced by \mathbf{T} due to \mathbf{R} and \mathbf{S}.
(6)
1.6 Define the electric field at a point.
(2)
1.7 Calculate the magnitude of the net electric field at the location of \mathbf{T} due to \mathbf{R} and \mathbf{S}. (Treat the spheres as if they were point charges.)

QUESTION 2

Two identical negatively charged spheres, \mathbf{A} and \mathbf{B}, having charges of the same magnitude, are placed $0,5 \mathrm{~m}$ apart in vacuum. The magnitude of the electrostatic force that one sphere exerts on the other 144 X1

2.1 State Coulomb's law in words.
2.2 Calculate the:
2.2.1 Magnitude of the charge on each sphere
2.2.2 Excess number of electrons on sphere \mathbf{B}
$2.3 \quad \mathbf{P}$ is a point at a distance of 1 m from sphere \mathbf{B}.

2.3.1 What is the direction of the net electric field at point \mathbf{P} ?
2.3.2 Calculate the number of electrons that should be removed from sphere \mathbf{B} so that the net electric field at point \mathbf{P} is $3 \times 10^{4} \mathrm{~N} \cdot \mathrm{C}^{-1}$ to the right.

Downloaded from Stanmorepfysics.com

QUESTION 3

Three point charges, $\mathbf{Q}_{1}, \mathbf{Q}_{\mathbf{2}}$ and \mathbf{Q}_{3}, carrying charges of $+6 \mu \mathrm{C},-3 \mu \mathrm{C}$ and $+5 \mu \mathrm{C}$ respectively, are arranged in space as shown in the diagram below. The distance between \mathbf{Q}_{3} and \mathbf{Q}_{1} is 30 cm and that between \mathbf{Q}_{3} and $\mathbf{Q}_{\mathbf{2}}$ is 10 cm .

3.1 State Coulomb's law in words.
3.2 Calculate the net force acting on charge $\mathbf{Q}_{\mathbf{3}}$ due to the presence of $\mathbf{Q}_{\mathbf{1}}$ and $\mathbf{Q}_{\mathbf{2}}$.

QUESTION 4

Two identical neutral spheres, \mathbf{M} and \mathbf{N}, are placed on insulating stands. They are brought into contact and a charged rod is brought near sphere \mathbf{M}.

When the spheres are separated it is found that 5×10^{6} electrons were transferred from sphere \mathbf{M} to sphere \mathbf{N}.

4.1 What is the net charge on sphere \mathbf{N} after separation?
4.2 Write down the net charge on sphere \mathbf{M} after separation.

The charged spheres, \mathbf{M} and \mathbf{N}, are now arranged along a straight line, in space, such that the distance between their centres is 15 cm . A point \mathbf{P} lies 10 cm to the right of \mathbf{N} as shown in the diagram below.

4.3 Define the electric field at a point.
4.4 Calculate the net electric field at point \mathbf{P} due to \mathbf{M} and \mathbf{N}.

QUESTION 5

A very small graphite-coated sphere \mathbf{P} is rubbed with a cloth. It is found that the sphere acquires a charge of $+0,5 \mu \mathrm{C}$.
5.1 Calculate the number of electrons removed from sphere \mathbf{P} during the charging process.
Now the charged sphere \mathbf{P} is suspended from a light, inextensible string. Another sphere, R, with a charge of $-0,9 \mu \mathrm{C}$, on an insulated stand, is brought close to sphere \mathbf{P}.
As a result sphere \mathbf{P} moves to a position where it is 20 cm from sphere \mathbf{R}, as shown. The system is in equilibrium and the angle between the string and the vertical is 7°.
5.2 Draw a labelled free-body diagram showing ALL the forces acting on sphere \mathbf{P}.
5.3 State Coulomb's law in words.
5.4 Calculate the magnitude of the tension in the string.

QUESTION 6

Two charged particles, \mathbf{Q}_{1} and $\mathbf{Q}_{\mathbf{2}}$, are placed $0,4 \mathrm{~m}$ apart along a straight line. The charge on \mathbf{Q}_{1} is $+2 \times 10^{-5} \mathrm{C}$, and the charge on \mathbf{Q}_{2} is $-8 \times 10^{-6} \mathrm{C}$. Point \mathbf{X} is $0,25 \mathrm{~m}$ east of \mathbf{Q}_{1}, as shown in the diagram below.

Calculate the:

6.1 Net electric field at point \mathbf{X} due to the two charges
6.2 Electrostatic force that a $-2 \times 10^{-9} \mathrm{C}$ charge will experience at point \mathbf{X}

The $-2 \times 10^{-9} \mathrm{C}$ charge is replaced with a charge of $-4 \times 10^{-9} \mathrm{C}$ at point \mathbf{X}.
6.3 Without any further calculation, determine the magnitude of the force that the $-4 \times 10^{-9} \mathrm{C}$ charge will experience at point \mathbf{X}.
QUESTION 7

Two identical spherical balls, \mathbf{P} and \mathbf{Q}, each of mass 100 g , are suspended at the same point from a ceiling by means of identical light, inextensible insulating strings. Each ball carries a charge of +250 nC . The balls come to rest in the positions shown in the diagram.
7.1 In the diagram, the angles between each string and the vertical are the same. Give a reason why the angles are the same.

7.2 State Coulomb's law in words.

7.3 The free-body diagram, not drawn to scale, of the forces acting on ball \mathbf{P} is shown alongside. Calculate the:
7.3.1 Magnitude of the tension (T) in the string
7.3.2 Distance between balls \mathbf{P} and \mathbf{Q}

QUESTION 8

A sphere \mathbf{Q}_{1}, with a charge of $-2,5 \mu \mathbf{C}$, is placed 1 m away from a second sphere \mathbf{Q}_{2}, with a charge $+6 \mu \mathrm{C}$. The spheres lie along a straight line, as shown in the diagram below. Point \mathbf{P} is located a distance of $0,3 \mathrm{~m}$ to the left of sphere \mathbf{Q}_{1}, while point \mathbf{X} is located between \mathbf{Q}_{1} and \mathbf{Q}_{2}. The diagram is not drawn to scale.

8.1 Show, with the aid of a VECTOR DIAGRAM, why the net electric field at point \mathbf{X} cannot be zero.
8.2 Calculate the net electric field at point \mathbf{P}, due to the two charged spheres $\mathbf{Q}_{\mathbf{1}}$ and $\mathbf{Q}_{\mathbf{2}}$.

QUESTION 9

A small sphere, Q_{1}, with a charge of $+32 \times 10^{-9} \mathrm{C}$, is suspended from a light string secured to a support. A second, identical sphere, Q_{2}, with a charge of $-55 \times 10^{-9} \mathrm{C}$, is placed in a narrow, cylindrical glass tube vertically below Q_{1}. Each sphere has a mass of 7 g . Both spheres come to equilibrium when Q_{2} is $2,5 \mathrm{~cm}$ from Q_{1}, as shown in the diagram. Ignore the effects of air friction.

9.1 Calculate the number of electrons that were removed from Q_{1} to give it a charge of $+32 \times 10^{-9} \mathrm{C}$. Assume that the sphere was neutral before being charged.
9.2 Draw a labelled free-body diagram showing all the forces acting on sphere Q_{1}.
9.3 Calculate the magnitude of the tension in the string.

QUESTION 10

10.1 Define electric field at a point in words.
10.2 Draw the electric field pattern for two identical positively charged spheres placed close to each other.
10.3 $A-30 \mu \mathrm{C}$ point charge, Q_{1}, is placed at a distance of $0,15 \mathrm{~m}$ from a $+45 \mu \mathrm{C}$ point charge, Q_{2}, in space, as shown in the diagram below. The net electric field at point \mathbf{P}, which is on the same line as the two charges, is zero.

Calculate \mathbf{x}, the distance of point \mathbf{P} from charge Q_{1}.

WORKSHEET 1 (20 Min)

1.1	Two identical small metal spheres on insulated stands carry equal charges and are a distance d apart. Each sphere experiences an electrostatic force of magnitude F. The spheres are now placed a distance d apart. The magnitude of the electrostatic force each sphere now experiences is: A. $1 / 2 F$ B. F C. 2 F D. 4 F	(2)
1.2	Two charged objects on insulated stands have charges of $\mathbf{3 Q}$ and $\mathbf{5 Q}$ respectively. The Objects are a distance \mathbf{R} apart and exert a force \mathbf{F} on each other. They are moved so that they are now $1 / 3 \mathbf{R}$ apart. What is the new force that they exert on each other? A. F B. $1 / 3 \mathrm{~F}$ C. 3F D. 9F	(2)
2	Calculate the new charge on each of the spheres in the following diagram after they have touched.	(3)

3. Two metal spheres Q1 and Q2 on insulated stands, carry charges of +4 nC and $-12 n C$ respectively.

3.1 Using free body diagrams, show the electrostatic force on each sphere.
3.2 State the Principle of conservation of charge. charge that the object obtains?
4.2 Two metal spheres Q1 and Q2 on insulated stands, carry charges of +8 nC and -10 n respectively. The two spheres are now brought together to touch each other. They are then placed back in their original positions.
4.2.1 Calculate the new charge on each sphere.
4.2.2 What quantity of charge is transferred between the two spheres during contact?

WORKSHEET 2 - COULOMB'S LAW (30min)

4.	4.1 Two small metal spheres have charges of +2 pC and +5 pC respectively. If the force between the two charges is $9 \times 10^{-12} \mathrm{~N}$, calculate the distance between them.	(4)

5. Two charged spheres X and Y are placed 0,04m apart, as shown in the diagram below.

5.1 Calculate the electrostatic force that \mathbf{Y} experiences due to charge \mathbf{X}
5.2 Thus state the force that X experiences due to Y

6 Three point charges are in a straight line. The charges and distances between them are shown.
1.6. What is the resultant electrostatic force on Q2 as a result of the other
two charges?
7. \quad Three point charges are placed in close proximity to one another. The charges and distances between them are shown. What is the resultant electrostatic force on Q_{2} as result of the other two charges?

WORKSHEET 3 - THE ELECTRIC FIELD (25min)

1. Define an electric field at a point.
2. 2.1 Draw the electric field pattern for a single positive point charge.
2.2 draw the resultant electric field pattern of the following charges

3. A charge of 5 nC experiences a force of $4 \times 10^{-6} \mathrm{~N}$ at a point in an electric field. Calculate the strength of the electric field.
4. Two charges, Q_{1} of $+6 n C$ and Q_{2} of $-7,5 n C$ are separated by a distance of 150 mm . What is the electric field strength at point X , which is 70 mm from Q 1 and

$5 \mathbf{A}$ and \mathbf{B} are two small spheres separated by a distance of $0,70 \mathrm{~m}$. Sphere A carries a charge of $+1,5 \times 10-6 \mathrm{C}$ and sphere \mathbf{B} carries a charge of $-2,0 \times 10-6 \mathbf{C}$. \mathbf{P} is a point between spheres \mathbf{A} and \mathbf{B} and is $0,40 \mathrm{~m}$ from sphere \mathbf{A}, as shown in the diagram below.

5.1 Calculate the magnitude of the net electric field at point P.
5.2 A point charge of magnitude $3,0 \times 10-9 \mathrm{C}$ is now placed at point \mathbf{P}. Calculate the magnitude of the electrostatic force experienced by this charge.
