

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS

COMMON TEST

APRIL 2021

MARKS:

75

TIME:

1½ hours

This question paper consists of 6 pages and 2 DIAGRAM SHEETS.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. TWO DIAGRAM SHEETS for QUESTION 4.1, QUESTION 4.2, QUESTION 4.3 AND QUESTION 5 are attached at the end of this question paper. Detach the DIAGRAM SHEETS and hand in together with your ANSWER BOOK.
- 10. Write neatly and legibly.

Downloaded from Stanmore Stanm

QUESTION 1

1.1 Solve for x:

$$1.1.1 (2x+3)(6-x)=0 (2)$$

1.1.2
$$5x^2 + x - 7 = 0$$
 (correct to two decimals) (3)

$$1.1.3 x^2 + 8x + 15 > 0 (3)$$

1.2 Solve for x and y:

$$4x - y = 3$$
 and $y^2 - 2xy + 1 = 0$ (6)

1.3 Given: $kx^2 - 5x - 1 = 0$, with $k \neq 0$.

1.3.1 For which value(s) of k will
$$kx^2 - 5x - 1 = 0$$
 have real roots? (3)

1.3.2 Determine two integral values of k for which the roots of $kx^2 - 5x - 1 = 0$ will be rational. (2) [19]

QUESTION 2

2.1 Without using a calculator, rationalise the denominator and simplify:

$$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

(3)

2.2 Solve for x:

$$x - 2\sqrt{x} - 8 = 0\tag{5}$$

2.3 Simplify:

$$\left(\frac{3^{x+1} + 12.3^{x-1}}{7.9^x}\right)^{\frac{1}{x}}$$

(4)

[12]

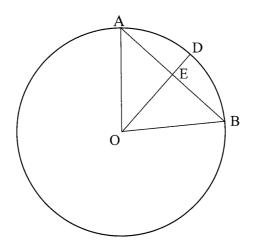
QUESTION 3

3.1 Simplify, without the use of a calculator:

$$\frac{\sin(-20^\circ)}{\cos 430^\circ} \tag{4}$$

3.2 Without using a calculator, simplify to a single trigonometric ratio:

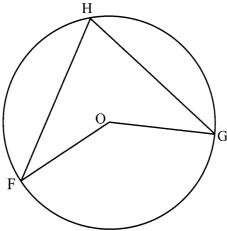
$$1 + \sin x \cdot \tan(180^\circ - x) \cdot \cos(-x) \tag{5}$$


3.3 If $3\tan\theta + 1 = 0$ and $\cos\theta > 0$, calculate without the use of a calculator, and with the aid of a diagram, the value of:

$$30\sin^2\theta + \sqrt{40}\cos\theta \ . \tag{6}$$

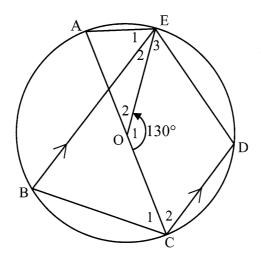
GIVE REASONS FOR YOUR STATEMENTS AND CALCULATIONS IN QUESTIONS 4 and 5.

QUESTION 4


4.1 In the diagram, O is the centre of the circle. A, B and D are points on the circle. OA, OB, OD and AB are drawn. AB and OD intersect at E. AE = EB = 6 cm. DE = 2 cm.
If the radius of the circle is x cm, calculate the numerical value of x.

(7)

Copyright Reserved Please turn over


In the diagram, O is the centre of the circle. F, G and H are points on the circle. FH, FO and GO are drawn.

Prove the theorem which states that $\hat{FOG} = 2\hat{FHG}$.

(5)

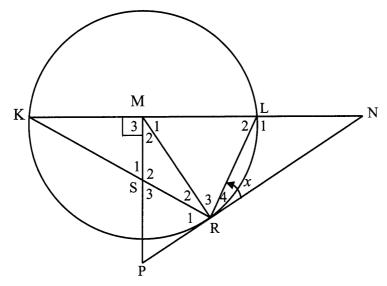
4.3 O is the centre of circle ABCDE. BE \parallel CD and $\,\hat{O}_1=130^\circ$.

4.3.1 Determine, with reasons, the size of the following angles:

$$(a) \quad \hat{B} \tag{2}$$

(b)
$$\hat{A}$$

(c)
$$\hat{D}$$


4.3.2 Prove that
$$\hat{E}_1 = \hat{E}_3$$
. (4)

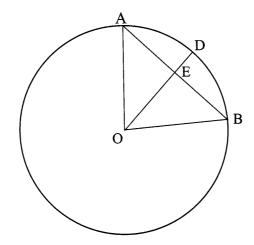
[22]

QUESTION 5

In the diagram, M is the centre of the circle and diameter KL is produced to N. MP is drawn perpendicular to KN such that PRN is a tangent to the circle at R.

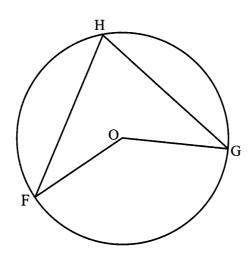
MP and chord KR intersect at S. MR and LR are drawn. Let $\hat{R}_4 = x$.

- 5.1 Write down with reasons two other angles each equal to x. (3)
- 5.2 Prove that KM is a tangent at M to the circle passing through M, P and R. (4)
 [7]

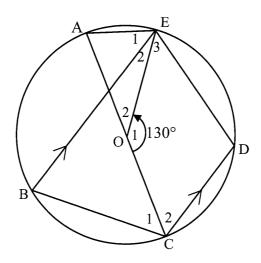

TOTAL: 75

Downloaded from Stanmore of St

NAME & SURNAME:


DIAGRAM SHEET 1

QUESTION 4.1


QUESTION 4.2

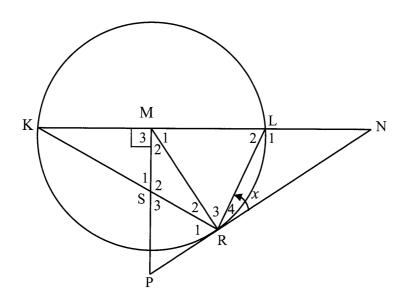

NAME & SURNAME:

DIAGRAM SHEET 2

QUESTION 4.3

QUESTION 5

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS
COMMON TEST
APRIL 2021
MARKING GUIDELINE

MARKS: 75

This marking guideline consists of 9 pages.

Copyright Reserved

Please turn over

Mathematics

Grade 11-Marking Guideline

Common Test April 2021

	GEOMETRY • MEETKUNDE		
s	A mark for a correct statement (A statement mark is independent of a reason)		
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)		
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)		
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)		
S/R	Award a mark if statement AND reason are both correct		
	Ken 'n punt toe as die bewering EN rede beide korrek is		

QUESTION 1

1.1.1	$x = -\frac{3}{2}$ or $x = 6$	✓ answer ✓ answer (2)
1.1.2	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-1 \pm \sqrt{1^2 - 4(5)(-7)}}{2(5)}$ $= \frac{-1 \pm \sqrt{141}}{10}$ = 1,09 or -1.29	✓ substitution ✓ answer ✓ answer (3)
1.1.3	$x^{2} + 8x + 15 > 0$ $(x + 5)(x + 3) > 0$	
	$\begin{array}{c c} -5 & -3 \\ x < -5 \text{ or } x > -3 \end{array}$	✓ critical values ✓ ✓ answer (3)

Downloaded from Stanmorephysics.com Mathematics Stanmorephysics.com

Grade 11-Marking Guideline

	Grade 11-marking Guide	
1.2	$y = 4x - 3$ Substitute in $y^2 - 2xy + 1 = 0$:	making y the subject of the formula
	$(4x-3)^2 - 2x(4x-3) + 1 = 0$ $16x^2 - 24x + 9 - 8x^2 + 6x + 1 = 0$	✓ substitution
	$\begin{cases} 8x^2 - 18x + 10 = 0 \\ 4x^2 - 9x + 5 = 0 \\ (4x - 5)(x - 1) = 0 \end{cases}$	✓ standard form ✓ factorisation
	$x = \frac{5}{4} \text{ or } x = 1$	\checkmark values of x
	y=2 or y=1	✓values of y (6)
1.3.1	$b^{2} - 4ac \ge 0$ $(-5)^{2} - 4k(-1) \ge 0$ $25 + 4k \ge 0$ $k \ge -\frac{25}{2}$	✓ condition for real roots ✓ substitution
	$k \ge -\frac{25}{4}$ $k \ge -6\frac{1}{4}$	\checkmark answer: $k \ge -\frac{25}{4}$ or $k \ge -6\frac{1}{4}$
1.3.2	E.g.: $k = -4$: -6 : 6:14 Any two values of k that will result in $b^2 - 4ac$	✓ any correct value of k ✓ another correct value of k

(2)

[19]

Mathematics

Grade 11-Marking Guideline

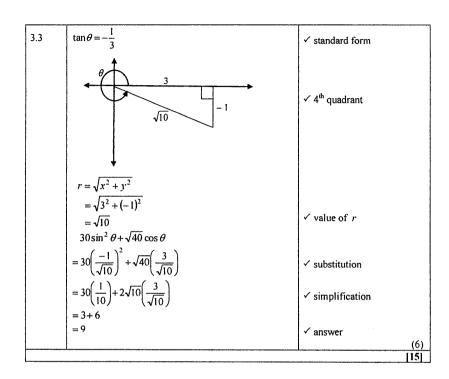
Common Test April 2021

QUESTION 2

2.1	$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ $= \frac{\left(\sqrt{3} - \sqrt{2}\right)}{\left(\sqrt{3} + \sqrt{2}\right)} \times \frac{\left(\sqrt{3} - \sqrt{2}\right)}{\left(\sqrt{3} - \sqrt{2}\right)}$ $= \frac{3 - 2\sqrt{2}\sqrt{3} + 2}{3 - 2}$ $= 5 - 2\sqrt{6}$	$\checkmark \times \frac{\left(\sqrt{3} - \sqrt{2}\right)}{\left(\sqrt{3} - \sqrt{2}\right)}$ $\checkmark \text{ multiplying out denominator correctly}$ $\checkmark \text{ answer}$ (3)
2.2	$x - 2\sqrt{x} - 8 = 0$	
	$x-2x^{\frac{1}{2}}-8=0$	✓ exponential form
	$\left(\left(x^{\frac{1}{2}} - 4 \right) \left(x^{\frac{1}{2}} + 2 \right) = 0$	✓ factorisation
	$x^{\frac{1}{2}} = 4$ or $x^{\frac{1}{2}} = -2$	$\sqrt{x^{\frac{1}{2}}} = 4$ or $x^{\frac{1}{2}} = -2$
	x = 16 no solution	✓ x=16
	,	✓ no solution (5)
	OR	OR
	$x - 2\sqrt{x} - 8 = 0$	✓ isolate surd
	$2\sqrt{x} = x - 8$	✓ squaring both sides
	$4x = x^2 - 16x + 64$	✓ standard form
	$x^2 - 20x + 64 = 0$	
	(x-16)(x-4)=0	$\sqrt{x} = 16$ or $x = 4$
	x=16 or $x=4$	\checkmark rejecting $x=4$ (5)
1	N/A	rejecting x - 7 (3)

being a perfect square.

$ \begin{bmatrix} \frac{3^{x+1}+12.3^{x-1}}{7.9^x} \end{bmatrix}^{\frac{1}{x}} $ $ = \left[\frac{3^x \left(3+12.3^{-1}\right)}{7.3^{2x}}\right]^{\frac{1}{x}} $ $ = \left[\frac{7.3^x}{7.3^{2x}}\right]^{\frac{1}{x}} $ $ = \left[3^{-x}\right]^{\frac{1}{x}} $ $ = 3^{-1} $ $ = \frac{1}{3} $ OR OR $ \begin{pmatrix} \frac{3^{x+1}+12.3^{x-1}}{7.9^x} \end{pmatrix}^{\frac{1}{x}} $ $ = \left[\frac{3.3^x \left(1+\frac{4}{3}\right)}{7.3^x.3^3}\right]^{\frac{1}{x}} $ $ = \left[\frac{3.7}{7.3^x}\right]^{\frac{1}{x}} $ $ = \left[\frac{3.7}{7.3^x}\right]^{\frac{1}{x}} $ $ = \left[\frac{3.7}{3}\right]^{\frac{1}{x}} $ $ = \left[\frac{3.7}{3}\right]^{\frac{1}{$	Mathematics		5	Common Test April 202
$= \left[\frac{7.3^{x}}{7.3^{2x}}\right]^{\frac{1}{x}}$ $= \left[3^{-x}\right]^{\frac{1}{x}}$ $= 3^{-1}$ $= \frac{1}{3}$ OR OR $\left(\frac{3^{x+1} + 12.3^{x-1}}{7.9^{x}}\right)^{\frac{1}{x}}$ $= \left[\frac{3.3^{x}\left(1 + \frac{4}{3}\right)}{7.3^{x}.3^{3}}\right]^{\frac{1}{x}}$ $= \left[\frac{3 \cdot \frac{7}{3}}{7.3^{x}}\right]^{\frac{1}{x}}$ $= \left(3^{-x}\right)^{\frac{1}{x}}$ $= \left(3^{-x}\right)^{\frac{1}{x}}$ $= 3^{-1}$ $= \frac{1}{2}$ $\checkmark \text{ simplification}$ $\checkmark \text{ simplification}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$		$\left(\frac{3^{x+1} + 12.3^{x-1}}{7.9^x}\right)^{\frac{1}{x}}$ $= \left[\frac{3^x \left(3 + 12.3^{-1}\right)}{7.9^x}\right]^{\frac{1}{x}}$	Grade 11-Marking Guideline	✓ factorising numerator
OR $ \frac{1}{3} = \frac{1}{3} $ OR $ \frac{3^{x+1} + 12 \cdot 3^{x-1}}{7 \cdot 9^{x}} = \frac{3 \cdot 3^{x} \left(1 + \frac{4}{3}\right)^{\frac{1}{x}}}{7 \cdot 3^{x} \cdot 3^{3}} $ $ = \left[\frac{3 \cdot \frac{7}{3}}{7 \cdot 3^{x}}\right]^{\frac{1}{x}} $ $ = \left(3^{-x}\right)^{\frac{1}{x}} $ $ = \left(3^{-x}\right)^{\frac{1}{x}} $ $ = 3^{-1} $ $ = \frac{1}{2} $ Answer		$= \left[\frac{7.3^{x}}{7.3^{2x}} \right]^{\frac{1}{x}}$ $= \left[3^{-x} \right]^{\frac{1}{x}}$		
$\left(\frac{3^{x+1} + 12.3^{x-1}}{7.9^x}\right)^{\frac{1}{x}}$ $= \left[\frac{3.3^x \left(1 + \frac{4}{3}\right)}{7.3^x.3^3}\right]^{\frac{1}{x}}$ $= \left[\frac{3.\frac{7}{3}}{7.3^x}\right]^{\frac{1}{x}}$ $= (3^{-x})^{\frac{1}{x}}$ $= 3^{-1}$ $= \frac{1}{2}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$		$=\frac{1}{3}$	OP	✓ answer (4)
$= \left[\frac{3.3^x \left(1 + \frac{4}{3}\right)^{\frac{1}{x}}}{7.3^x \cdot 3^3}\right]^{\frac{1}{x}}$ $= \left[\frac{3.\frac{7}{3}}{7.3^x}\right]^{\frac{1}{x}}$ $= \left(3^{-x}\right)^{\frac{1}{x}}$ $= 3^{-1}$ $= \frac{1}{2}$ $\checkmark \text{ simplification}$ $\checkmark \text{ answer}$			OK	OR
$= (3^{-x})^{\frac{1}{x}}$ $= 3^{-1}$ $= \frac{1}{2}$ \checkmark simplification \checkmark answer	1 1	$= \left[\frac{3.3^x \left(1 + \frac{4}{3} \right)}{7.3^x . 3^3} \right]^{\frac{1}{x}}$		
$=\frac{1}{2}$ \checkmark answer		$= \left[\frac{3 \cdot \frac{7}{3}}{7 \cdot 3^x} \right]^{\frac{1}{x}}$ $= \left(3^{-x} \right)^{\frac{1}{x}}$		✓ simplification
į t		$=3^{-1}$ $=\frac{1}{3}$		✓ answer (4)


Mathematics 6 Common Test April 2021
Grade 11-Marking Guideline
QUESTION 3

3.1	$\frac{\sin(-20^\circ)}{\cos 430^\circ}$	
	$=\frac{-\sin 20^{\circ}}{}$	✓ -sin 20°
	=	✓ cos 70°
	$= \frac{-\sin 20^{\circ}}{\sin 20^{\circ}}$ $= -1$	✓ co-function ✓ answer (4)
	OR	OR (4)
	$\frac{\sin(-20^\circ)}{\cos 430^\circ}$ $= \frac{-\sin 20^\circ}{\cos 70^\circ}$ $= \frac{-\cos 70^\circ}{\cos 70^\circ}$ $= -1$	✓ -sin 20° ✓ cos 70° ✓ co-function ✓ answer (4)
	$1 + \sin x \cdot \tan(180^\circ - x) \cdot \cos(-x)$	
3.2	$= 1 + \sin x \cdot \tan(100 - x) \cdot \cos(-x)$ $= 1 + \sin x \cdot - \tan x \cdot \cos x$	$\sqrt{-\tan x}$ $\sqrt{\cos x}$
	$= 1 - \sin x \cdot \frac{\sin x}{\cos x} \cdot \cos x$	$\sqrt{\frac{\sin x}{\cos x}}$
	$=1-\sin^2 x$	$\sqrt{1-\sin^2 x}$
	$=\cos^2 x$	✓ answer
		(5)

Please turn over

Downloaded from Stanmorephysics.com Mathematics 7 Common Test April 2021

Grade 11-Marking Guideline

Mathematics

Grade 11-Marking Guideline

Common Test April 2021

OUESTION 4

4.1	OE _ AB [line from centre to midpoint of	✓S ✓R
	chord] $OE = x - 2$	\checkmark OE = $x-2$
	$OA^2 = OE^2 + AE^2$ [Pythagoras]	✓ R
	$x^2 = (x-2)^2 + 6^2$	✓ substitution
	, ,	✓ simplification
	$x^2 = x^2 - 4x + 4 + 36$ $4x = 40$	✓ answer
	4x = 40 $x = 10$	(7)
4.2	Contruction: Draw line HOJ	✓ construction
	$\frac{H}{1}$	
	Let $\hat{\mathbf{H}}_1 = x$.	
	$\hat{\mathbf{F}} = x$ [radii; $\angle s$ opp. = sides]	✓ S/R
	$\hat{O}_1 = 2x$ [ext. \angle of $\triangle HFO$]	✓ S/R
	Let $\hat{H}_2 = y$.	
	$\hat{G} = y$ [radii: $\angle s$ opp. = sides]	
	$\hat{O}_2 = 2y$ [ext. \angle of $\triangle HGO$]	✓S
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$\hat{O}_1 + O_2 = 2x + 2y$	
	$\widehat{FOG} = 2(x+y)$	✓ S
4.3.1	FÔG = 2FĤG	(5)
(a)	$\hat{B} = 65^{\circ}$ [\angle at centre = $2 \times \angle$ at circumference]	✓ S ✓ R (2)
4.3.1	$\hat{A} = 65^{\circ}$ [\angle s in the same segment]	✓S ✓R
(b)	on.	(2)
	OR	OR
	$\hat{A} = 65^{\circ}$ [ext. \angle of $\triangle AOE$; \angle s opp. = radii]	✓S ✓R
	in the second se	(2)
4.3.1	$\hat{D} = 115^{\circ}$ [opp. \angle s of a cyclic quadrilateral]	✓S ✓R
(c)		(2)

Mathematics

Grade 11-Marking Guideline

Common Test April 2021

4.3.2	$\hat{E}_3 + \hat{E}_2 = 180^{\circ} - 115^{\circ}$ [co-interior $\angle s : BE \parallel CD$] = 65°	✓ S ✓ R
	$\hat{E}_1 + \hat{E}_2 = \hat{A} \qquad [\angle s \text{ opp.} = \text{radii}]$ $= 65^\circ$	✓S ✓R
	$= 65^{\circ}$ $\therefore \hat{E}_1 = \hat{E}_3$	(4)
-	L	[22]

QUESTION 5

5.1	$\hat{K} = x$ [tan-chord-theorem]	✓S ✓ R
	$\hat{R}_2 = \hat{K}$ $= x \qquad [radii; \angle s \text{ opp.} = sides]$	✓ S/R (3)
5.2	MRP=90° [radius ⊥ tangent]	✓S ✓R
	$\therefore \hat{M}_3 = M\hat{R}P \qquad [both = 90^\circ]$	✓S
	KM is a tangent at M to the circle through M, P and R [converse: tan-chord-theorem]	✓ R (4)
	OR	OR
		✓ S ✓ R
	$\hat{M}_2 = 180^\circ - (90^\circ + 2x)$ [\angle s on a straight line]	
	$=90^{\circ}-2x$	
	$\hat{P} = 180^{\circ} - (90^{\circ} + 90^{\circ} - 2x)$ [sum of ∠s of ΔMPR] = 2x	✓ S
	$\hat{M}_1 = \hat{P}$	
	∴ KM is a tangent at M to the circle through M. P and R [converse: tan-chord-theorem]	✓ R (4)
		[7]

TOTAL MARKS:

75