

education

Department: Education PROVINCE OF KWAZULU-NATAL

CURRICULUM GRADE 10 -12 DIRECTORATE

NCS (CAPS)

LEARNER ACTIVITY DOCUMENT

GRADE 12

PHYSICAL SCIENCES STEP AHEAD PROGRAMME

SOLUTIONS 2021

PREFACE

This support document serves to assist Physical Sciences learners on how to deal with curriculum gaps and learning losses as a result of the impact of COVID-19 in 2020. It also captures the challenging topics in the Grade 10 -12 work. Activities should serve as a guide on how various topics are assessed at different cognitive levels and also preparing learners for informal and formal tasks in Physical Sciences. It will cover the following topics:

	ΤΟΡΙϹ	PAGE NUMBER
1.	Work, Energy and Power	3 – 8
2.	Reaction Rates	8-10
3.	Chemical Equilibrium	11 – 22
4.	Acids and Bases	23 - 35
5.	Chemical Systems	35 - 39
	(Fertilizer Industry)	

 \mathbf{F}_{A}


```
W=FΔxcosθ
2.1.1 W_A = F_{net} \Delta x \cos^\circ
                =15Cos30°. 8m. Cos0°
                =106.92J
        Wf
               = F_f \Delta x \cos \theta
mg = N + F_v
F_N = mg- Fsin \theta
  = 3 × 9.8 – 15 sin30°
  = 21.9N
F_N = \mu k N
=0.2 × 21.9N
=4.38N
W_{f} = F_{f} \Delta x \cos \theta
= 4.38N × 8m cos180°
= -35.04J
```

 $W_{net} = W_A + W_f$

```
=106.92J + (-35.04J)
```

```
= 71.88J
```

ACTIVITY 1

1. The net/total work done on an object is equal to the change in the object's kinetic energy. OR The work done on an object by a net force is equal to the change in the object's kinetic energy.

2.

3.
$$W_g = F_g \Delta x \cos \theta$$

= $mg \Delta x \cos \theta^\circ$
= (6)(9,8)(1,6) $\cos 0^\circ$
= 94,08 J

$$\begin{split} & W_{f} + W_{g} + W_{N} = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2}) \\ & (0,4)(4)(9,8)(1,6)\cos 180^{\circ} + 94,08 + 0 = \frac{1}{2}(4)(v_{f}^{2} - 0) + \frac{1}{2}(6)(v_{f}^{2} - 0) \\ & v_{f} = 3,71 \text{ m} \cdot \text{s}^{-1} \end{split}$$

ACTIVITY 2

- 1. The net/total work done on an object is equal to the change in the object's kinetic energy. OR The work done on an object by a net force is equal to the change in the object's kinetic energy.
- 2.

3. Gravitational force or weight of the soldier.

```
4. Wnet = \Delta E_k
```

```
\begin{split} W_{Fg} + W_T + W_f &= \Delta E_k \\ F_g \Delta y cos \theta + F_T \Delta y cos \theta + F_f \Delta y cos \theta &= \Delta E_k \\ (960)(20) cos 0^\circ + (80)(9,8) cos 180^\circ + W_f = 0 \\ 19200 - 15680 + W_f &= 0 \\ W_f &= 3520 \text{ J} \end{split}
```

5. 6. Air friction and Force of gravity

ACTIVITY 3

1.

The net (total) work done on an object is equal to the change in kinetic energy of the object. OR The work done on an object by a net (resultant) force is equal to the change in kinetic energy of the object.

2.

3. Wnet = ΔE_k Ww + Wf + WF = $\frac{1}{2}$ mvf² - $\frac{1}{2}$ mvi²

$$\begin{split} mg \Delta x \cos \theta \, + \, W_{f} \, + \, W_{F} &= \frac{1}{2} \, \, mv f^{2} \, - \, \frac{1}{2} \, \, mv i^{2} \\ (1500)(9,8) 200 \cos 180^{\circ} + \, Wf \, + \, 4,8 \, x \, 10^{6} &= \frac{1}{2} \, (1 \, \, 500)(25^{2} - \, 0) \\ -2 \, 940 \, \, 000 \, + \, Wf \, + \, 4,8 \, x \, 10^{6} \, = \, 468 \, \, 750 \\ Wf \, = \, -1,39 \, x \, 10^{6} \, J \end{split}$$

ACTIVITY 4

1.

```
<sup>t</sup> N
```

- 2. The net/total work done on an object is equal to the change in the object's kinetic energy. OR The work done on an object by a net force is equal to the change in the object's kinetic energy.
- 3. Wnet = ΔE_k

$$\begin{split} W_{g/\prime} + W_f &= \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \\ mgsin\theta \Delta x cos\theta + F_f \Delta x cos\theta &= \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \\ (60)(9,8)sin20^{\circ}(25) cos0^{\circ} + (50)(25) cos180^{\circ} &= \frac{1}{2} (60)(15)^2 - \frac{1}{2} (60)v_i^2 \\ -1250 + 5027,696 &= 6750 - 30v_i^2 \\ V_i &= 9.95 m \cdot s^{-1} \end{split}$$

SOLUTIONS:

ACTIVITY 1

1.1 $E_p = mgh.$ $E_p = (100)(9.8)(5).$ $E_p = 4900J.$

1.2

$$\begin{split} E_{mech(top)} &= E_{mech(bottom)}.\\ E_k + E_p &= E_k + E_p.\\ 0 + 4900 &= E_k + 0.\\ E_k &= 4900 J. \end{split}$$

1.3

 $E_{k} = \frac{1}{2}mv^{2}.$ $4900 = \frac{1}{2}(100)v^{2}.$ $v = 9.9m \cdot s^{-1}.$

Question 2: 1.

$$\begin{split} E_{mech(top)} &= E_{mech(bottom)}.\\ E_{k(top)} + E_{p(top)} &= E_{k(bottom)} + E_{p(bottom)}.\\ 0 + 0.5(9.8)(10) &= \frac{1}{2}(0.5)v^2 + 0.\\ v &= 14m/s. \end{split}$$

2.

 $E_{p(top)} = mgh.$ $E_{p(top)} = 60(9.8)(10).$ $E_p = 5800J.$

$$\begin{split} & E_{p(bottom)} = mgh. \\ & E_{p(bottom)} = 60(9.8)(0). \\ & E_{p(bottom)} = 0J. \\ & \therefore \text{ difference in } E_p = E_{p(top)} - E_{p(bottom)}. \\ & \text{ difference in } E_p = 5800 - 0. \\ & \Delta E_p = 5800J. \end{split}$$

ACTIVITY 2

1. Energy is neither created nor destroyed; it can ONLY be converted from one form to another.

2. The total mechanical energy of an isolated system remains constant

3. Is a force whose work done in moving an object between two points does not depend on the path taken. For example, gravitational force.

4.

a) No, when frictional force acts on the child, some of the mechanical energy of the child is dissipated to the surroundings.

b)
$$W = F \cdot \Delta x Cos \theta$$
.

 $W_g = mg \cdot hCos\theta.$

 $W_g = 38(9.8)(2)Cos0.$

 $W_{g} = 744.8J.$

ACTIVITY 3

Question 1. a).

b).

Conservative Force

- W.Non-conservative force.
- Fκ.
- **F**A.

Question 2

2.1. Emech is not conserved.

The system is not isolate/there is frictional force.

2.2.1. A force for which the work done in moving an object between two points does not depend on the path taken.

2.2.2. Gravitational force.

$$E_{k} = \frac{1}{2} mv^{2}.$$

$$E_{k} = \frac{1}{2} (55)(10)^{2}.$$

$$E_{k} = 2750 J.$$

2.3.2.

$$\begin{split} W_{nc} &= \Delta E_{k} + \Delta E_{p}. \\ W_{f} &= \Delta E_{k} + \Delta E_{p}. \\ f_{k}\Delta x \cdot Cos\theta &= E_{k(B)} - E_{k(A)} + E_{p(B)} - E_{p(A)}. \\ 8(8)Cos180 &= E_{k(B)} - 2750 + (55)(9.8)(1.2) - 0. \\ E_{k(B)} &= 1959.2 J. \end{split}$$

2.3.3.

$$\begin{split} W_{net} &= \Delta E_k. \\ W_N + W_f + W_g &= E_{k(B)} - E_{k(A)}. \\ 0 + 8(8)\text{Cos180} + 55(9.8)(1.2)\text{Cos180} = E_{k(B)} - 2750. \\ E_{k(B)} &= 1959.2\text{J}. \end{split}$$

- 1. Power is the rate at which work is done.
- 2 W.
 - $J \cdot s^{-1}$.

3.1
$$W = F\Delta x \cos\theta.$$
$$W = (120)(3)\cos0.$$
$$W = 360J.$$
$$P = \frac{W}{\Delta t}.$$
$$P = \frac{360}{5}.$$
$$P = 72W.$$
3.2
$$W = F\Delta x \cos\theta.$$
$$W = (20)(3)\cos180.$$
$$W = -60J.$$
$$P = \frac{W}{\Delta t}.$$

 $P = \frac{60}{5}.$ P = 12W.4.1 $W = F\Delta x \cos\theta.$ $W = (750)(10\ 000) \cos 180.$ $W = -7\ 500\ 000J.$ 4.2 $110 \text{Km} \cdot \text{h}^{-1} = 30.56\text{m} \cdot \text{s}^{-1}.$ $P_{av} = F \cdot v_{av}.$ $P_{av} = 750(30.56).$ $P_{av} = 22\ 920W.$

Worksheet: Reaction rate solutions

QU	ESTIC	DN 3	
3.			
	3.1	Change in concentration of reactants or products	(2)
	3.2	HCI has a higher concentration	
		Reaction mixture is heated thus temperature is higher	(6)
		Zinc powder has been used resulting to a larger surface area	(0)
	3.3	Addition of positive catalyst	(2)
1			
4.		Average rate = \underline{AC}	
		-1.45 - 1.90	
		$\frac{1}{15} = 0$	
		$= -0.03 mol \cdot dm^{-3}$	
		$= 0.03 \ mol \cdot dm^{-3}$	
5.		The more water gets hotter the higher the temperature, according to collision theory,	
		The speeds of the particles increase	
		 The average kinetic energy of the particles increases 	
		 More particles have sufficient kinetic energy 	
		Which increases the number of effective collisions taking place per unit	
		time	
		Thus, rate of reaction increases	
6.			
	6.1	The higher the amount of the metal, the higher the volume of the hydrogen gas produced	(2)
	6.2	Concentration of HCI	(2)
		Volume of HCI	`
		Temperature	
	6.3	The reaction has reached completion/ reaction has stopped/ reactants has been	(2)
		used up	
	6.4	125 cm ³	(2)

CLASS ACTIVITY SOLUTIONS

1) Consider the following reaction that has reached equilibrium at 200 °C.

 $N_2(g) + 2CO_2(g) \rightleftharpoons 2NO(g) + 2CO(g)$

After equilibrium was reached, certain changes were made to the conditions affecting the system. State in each case how the amount of NO(g) will be affected if: (Write down only INCREASES, DECREASES or STAYS THE SAME.)

- a) A suitable catalyst is added
 - Remain the same
- b) Some of the carbon monoxide (CO) is removed
- increases
- 2) The following reversible reaction reaches equilibrium at 500 K

 $2A_2X(g) + BA_2(g) \rightleftharpoons 3A_2(g) + BX_2(s)$

For each of the following questions choose what will happen to the amount of BA₂(g) and write down one of the following answers: INCREASE, DECREASE, NO CHANGE.

More $A_2X(g)$ is added?

increase, overall reaction rate increases, forward reaction is favoured, amount of reactants decrease, amount of products increases

b) BX₂(s) is removed *no change, solids have no effect on the equilibrium* SUGGESTED SOLUTIONS TO EXTRA QUESTIONS

- 1. B
- 2. C
- 3. B
- 4. C
- 5. A
- 6. D
- 7. A
- 8. D
- 9. D
- 10.B

CHEM		QUILIBRIU	JM LESSON 3	_SOL	UTIONS			
QUES 1.1	Dow	nloadeo	from Sta	anmo	prephys	ics.com		
1.1.1	Dom	moddoo				103.00111		
	Ratio		H ₂ (g) +	<u>l₂(g)</u> 1	≓ 2HI(g) 2			
	natio	l (mol)		· 1	2	_		
					0			
	<i>n</i> Chan	<i>n</i> Equilibrium (mol) Volume (dm ³)		(-1a) -0.4	(+2a) ✓ + 0.8			
	<i>n</i> Equil			0.6	0.8√			
	Volum			1	1	_		
	-					_		
	lequili mol/dr	brium] n ³	0.6	0.6	0.8√			
Correc	t Table f	format√	I					
								(5)
	1.1.2	Homoger	nous, system c	ontair	ns gases o	nly√ (one ph	ase)	(2)
	113	Increase	in temperature	×د				(2)
	1.1.0	Increase	in pressure √					(=)
		Add a cat	alyst√					
		Increase	concentration	orrea				
1.2		A√√						(2)
QUES	TION 2							
2.1								
	2.1.1	22.4 dm ³	✓					(1)
	2.1.2	. n(SO ₃)	at equilibrium	n = V/	$V_V = 0.22$	$/_{224} = 9,82$	x 10 ⁻³ mol	(6)
		Table √		,	^v m	<i>LL</i> . 1		
			Patio		2SO ₂ (g	<mark>g) + O₂(g) ⇒</mark> 2	2SO ₃ (g)	
		_			2	1	2	
				<u>)</u>	4	3	U	
			<i>n</i> Change (mo	ol)	(-2y)	(-y)	(+2y) ✓	
					-0.00982	-0.00491	0.00982	
		nE		ו	3,99	2,995√	0.00982√	
			Volume (dm ³	3)	4	4	4	
			[equilibrium] mol/dm ³]	0.998	0,749	0.00246	
	212							(1)
	<u>د.</u> ۱.J	DEGILA						[08]
	TION 3							
5.1	3.1.1	B√√						(2)

30	3.1.2	Dynamic equilibrium/ chemic	cal equilib	rium √			(1)
5.2	3.2.1	Reversible reaction ✓				(1)	
	3.2.2	Endothermic√, ΔH > 0 mear	ing energ	y is abs	orbed√		(2)
	3.2.3	$n = m/_M = \frac{168}{28} = 6 \text{ mol}$	(CO) at e	quilibriu	m		(6)
			CO ₂ (g) + C(s)	⇒ 2CO(g)		
		Ratio	1	1	2		
		<i>n</i> Initial (mol)	X		0	-	
		<i>n</i> Change (mol)	(-1a) -3	(-1a) -3√	(+2a) +6√		
		<i>n</i> Equilibrium (mol)	x-3√		6√		
		Volume (dm ³)	2		2	-	
		[equilibrium] mol/dm ³	$\frac{x-3}{2}$		3√		
							[12]

Quest	ion 1							
1.1	1 1 1			U (a)	· I (a)		\ \	(5)
	1.1.1		Ratio	2(g) 1	+ 1 ₂ (g)	<i>≂ 2⊓i(g</i> 2)	(כ)
			<i>n</i> Initial (mol)	1	1	0	-	
			<i>n</i> Change (mol)	(-1a) -0 4	(-1a) -0 4	(+2a)		
			<i>n</i> Equilibrium (mol) 0.6	0.6	0.8	-	
			Volume (dm ³)	1	1	1		
			[equilibrium] mol/dm ³	0.6	0.6	0.8		
	1.1.2	Homo	genous, system co	ntains gas	es only	(one ph	ase)	(2)
	1.1.3	Increa Increa Add a Increa	se in temperature se in pressure catalyst se concentration o	f reactants	3			(2)
1.2		Α						(2)
								[11]
2.1								
	2.1.1	22.4 d	m ³					(1)
	2.1.2	. n(SO	9 ₃)at equilibrium =	$V/V_m = 0.2$	$\frac{2}{22.4} =$	= 9,82 x 1 ⇒ 2SO₃((.0 ⁻³ mol	(6)
			Ratio	2002(9)	1	2	9/	
			<i>n</i> Initial (mol)	4	3	0	-	
			<i>n</i> Change (mol)	(-2y)	(-y)	(+2y)	-	
				0.00982	0.0	0.009		
					04	82		
					91			
			<i>n</i> Equilibrium (mol)	3,99	2,99 5	0.009		
			Volume (dm ³)	4	4	4		
			[oquilibrium]	0.000	0.74	0.002		
			mol/dm ³	0.998	9	46		
	2.1.3	DECR	EASE	-	I		4	(1)

							[08]
QUES	STION 3						
3.1	3.1.1	В					(2)
30	3.1.2	Dynamic equilibrium/ chem	nical equ	ilibrium			(1)
5.2	3.2.1	Reversible reaction					(1)
	3.2.2	Endorthemic, ΔH > 0 mean	ing ener	gy is ab	sorbed		(2)
	3.2.3	$n = m/_M = \frac{168}{28} = 6 \text{ mol}$	(CO) at e CO ₂ (g	quilibriu) + C(s) :	m ⇔ 2CO(g	g)	(6)
		Ratio	1	1	2		
		<i>n</i> Initial (mol)	X		0	-	
		<i>n</i> Change (mol)	(-1a) -3	(-1a) -3	(+2a) +6		
		<i>n</i> Equilibrium (mol)	x-3		6		
		Volume (dm ³)	2		2		
		[equilibrium] mol/dm ³	$\frac{x-3}{2}$		3		
							[12]

CHE QUE	EMICAL	EQUILIBRIUMLESS WINIOADED TFOI	on <u>a solu</u> n Stanm	rions iorephy	sics.co	om	
1.1		D√√					(2)
1.2							
	1.2.1	F	PCl₅ (g) ⇔ PCl	₃ (g) + Cl₂ (ѯ	g)		(6)
		Ratio	1	1	1		
		<i>n</i> Initial (mol)	0.375	0	0		
		nChange (mol)	(-1x) - 0.125	(-1x) - 0.125	(+1x)√ 0.125		
		nEquilibrium (mol)	0.25	0.125√	0.125		
		Volume (dm ³)	1	1	1		
		[equilibrium] mol/dm³	0.250	0.125	0.125√		
	1.2.2	(0,25) = 6,25 x 10 ⁻² ✓ At equilibrium the reactants✓✓	concentrati	ion of pro	ducts is	lower than the concentration of	(2)
QUE	STION	2					
2.1	2.1.1	A state when the reaction. ✓✓	rate of the t	forward re	eaction is	equal to the rate of the reverse	(2)
	2.1.2	$n = m/M = \frac{1.12}{28}$ Let <i>n</i> Initial =y	₃ = 0.04 mo 9Br₂(g) ⇒ CO (l (CO) at e (g) + Br ₂ (g)	əquilibriur	n	(8)
		Ratio	1	1	1		
		<i>n</i> Initial (mol)	У	0	0		
		nChange	(-1x) -	(+1x)	(+1x)√		
		(mol)	0.04	+0.04	+0.04		

		nEquilibrium (mol)	y-0.04√	0.04	0.04√		
		Volume (dm ³)	2	2	2	-	
		[equilibrium] mol/dm³	$\frac{y-0.04}{2}$	0.02	0.02√		
		$Kc = \frac{[Br_2][CO]}{[COBr_2]} \checkmark$ $\checkmark 0.19 = \frac{0.02 \times 0.02}{[COBr_2]}$ $= 0.00211 \text{ mol/dm}$	∕ 3√			_	
	2.1.3	$\frac{y - 0.04}{2} = 0.00211 \checkmark$ y = 0.044 \lambda					(4)
		$\%$ decomposed = $\frac{1}{0}$ = 90.9	0.04 .044 01%√				
	2.1.4	Kc< 0,19√√					(2)
	2.1.5	NO CHANGE√					(1) [15]
QUE	STION :	3					
3.1	3.1.1 3.1.2	increase√ decrease√					(1)
3.2							

	3.2.1	<i>n</i> Initial O ₂ (g) = $m/_M$ =	$\frac{x}{32} = 0.0$)31 <i>x</i>			(8)
		2	SO ₂ (g) + O ₂ (g) ≓ 2SO₃(g)			
		Ratio	2	1	2		
		<i>n</i> Initial (mol)	4	0.031x√	0		
		<i>n</i> Change (mol) (-2y)	(-у)	(+2y)√		
			-3	-1.5	+3		
		<i>n</i> Equilibrium (mol)	1	0.031x- 1.5√	3		
		Volume (dm ³)	2	2	2		
		[equilibrium] mol/dm³	0.5	$\frac{0.031x-1.}{2}$	1.5√		
		$Kc = \frac{[SO_3]^2}{[SO_2]^2[0_2]} \checkmark$ $4.5 \checkmark = \frac{(1.5)^2}{0.5^2} \times \frac{0.031x - 1.5}{2}$ $x = 176.00 \ g \checkmark$	(
	3.2.2	$\frac{1}{4.5} = 0.222 \checkmark$					(1)
							[11]
4.1		When the equilibrium i new equilibrium by favo	n a closed ouring the re	system is dist eaction that wi	urbed, th ill oppose	e system will re-instate a the disturbance.	
4.2		Endothermic ✓ Decrease in temperatu The reverse reaction is N2O4 gas increases. O	re favours t s favoured./ R Number	he exothermic /OR Number of moles/amo	reaction of moles unt of NC	 ✓. /amount/concentration of /acreases. ✓ 	(3)
4.3							
••••••	4.3.1	Increases√					(1)
	4.3.2	Remains the same√					(1)
	4.3.3	Increases√					(1)

4.4	<i>n</i> Equil	l ibrium N₂O₄(g)= 8 N ₂ O	30% of x= (₄(g) ⇒ 2 NO ₂).8x √ (g))	8)
		Ratio	1	2	
		<i>n</i> Initial (mol)	x	0	
		<i>n</i> Change (mol)	(-y)	(+2y) ✓	
			-0.2x√	+0.4x	
		<i>n</i> Equilibrium (mol)	0.8x√	0.4x	
		Volume (dm ³)	2	2	
		[equilibrium] mol/dm³	0.4x	0.2x√	
	$Kc = \frac{[l]}{[l]}$	$\frac{[NO_2]^2}{[N_2O_4]}$			
	0.16√=	$=\frac{(0.2x)^2}{0.4x}\checkmark$			
	x = 1.	60 mol√			
					[16]

CHEMICAL EQUILIBRIUM

GRAPHS

SOLUTIONS

MCQ

- 1.1.1 A
- 1.1.2 C
- 1.1.3 C
- 1.1.4 A

QUESTION TWO (ONE WORD ANSWERS)

- 2.1 catalyst
- 2.2 temperature
- 2.3 chemical equilibrium
- 2.4 reversible
- 2.5 Kc
- 3.
- 3.1.1 The concentration of nitrogen $\sqrt{}$ was increased $\sqrt{}$ / or more nitrogen was added $\sqrt{}$

3.1.2 The pressure $\sqrt{}$ was increased $\sqrt{}.$

```
3.1.3 The temperature \sqrt{\text{was increased}} \sqrt{1000}
```

3.2 $t_1 \sqrt{and} t_2 \sqrt$

EX 4

4.1 The stage in a chemical reaction in which the rate of the forward reaction is equal to the rate of the reverse reaction . $\sqrt{\sqrt{}}$

- 4.2.1 Higher than. $\boldsymbol{\sqrt{}}$
- 4.2.2 Equal to. $\sqrt{}$
- 4.3.1 NO₂ is added. $\sqrt{}$
- 4.3.2 The pressure was increased. \checkmark
- 4.4 Increases $\sqrt{}$

An increase in temperature favours the endothermic reaction. $\sqrt{}$

The forward reaction is endothermic. $\sqrt{}$

EX 5.

5.1 The reaction reached equilibrium $\sqrt{}$

5.2 Concentration of H₂ was increased, or Some H₂ was added at t₁. \checkmark The concentration of HI then increased/more HI was formed \checkmark while some H₂ and I₂ were used up \checkmark until equilibrium was reestablished at t₂. \checkmark

EX 6

- 6.1 The reaction is at equilibrium. $\sqrt{}$
- 6.2 The concentration of NH₃ was increased or more NH₃ was added. $\sqrt{}$
- 6.3 According to Le Chatelier's Principle the reverse reaction will favoured. $\sqrt{}$

The concentrations of of N₂ and H₂ increases $\sqrt{}$ and concentrations of NH₃ decreases $\sqrt{}$.

EX 7

- 7.1 A reaction is reversible when products can be converted back to reactants. $\sqrt{}$
- 7.2 No change. $\sqrt{}$
- 7.3.1 Temperature decreases $\sqrt{}$
- 7.3.2 Decrease in temperature decreases the rate of both forward and reverse reactions. $\sqrt{}$ Decrease in temperature favours the exothermic reaction. $\sqrt{}$ The reverse (exothermic) reaction is faster or reverse reaction is favoured. Or the forward (endothermic) reaction will be slower. $\sqrt{}$
- EX 8
- 8.1 When the rate of forward reaction is equal to reverse reaction. $\sqrt{\sqrt{3}}$

Page 2

EX 9

9.1 Amount/number of moles/volume of (gas) reactants equals amount/number of moles/volume of (gas) products. \checkmark

OR A change in pressure will change the concentration of the reactants and products equally.

9.2 (Chemical/dynamic) equilibrium. \checkmark **OR** The rate of the forward reaction equals the rate of the reverse reaction.

9.3 Addition of a <u>catalyst</u> \checkmark

Increase in pressure ✓

9.4.1

✓ ndothermic ✓

ス

- The rate of the forward reaction decreases more./The rate of the reverse reaction decreases less. \checkmark
- A decrease in temperature favours the exothermic reaction. \checkmark

9.4.2 Decreases

9.5 Reactants/H₂/I₂ removed ✓

POSSIBLE ANSWERS-LESSON 1

CW ACTIVITY

1.

1.Complete the following table of salts formed during acid-base reactions

Acid/Base	НСІ	HNO ₃	H ₂ SO ₄
кон	КСІ	KNO ₃	K ₂ SO ₄
NaOH	NaCl	NaNO ₃	Na ₂ SO ₄
Na₂O	NaCI	NaNO ₃	Na ₂ SO ₄
MgO	MgCl ₂	Mg(NO ₃) ₂	MgSO ₄
NaHCO₃	NaCl	NaNO ₃	Na ₂ SO ₄
CaCO ₃	CaCl ₂	Ca(NO ₃) ₂	CaSO ₄

2. NAME THE FOLLOWING ACIDS, BASES OR IONS

- 2.1 NaOH sodium hydroxide
- 2.2 CH₃COOH ethanoic acid
- 2.3 (COOH)₂ oxalic acid
- 2.4 Ca(OH)₂ calcium hydroxide
- 2.5 HNO₃ nitric acid
- 2.6 H₂SO₄ sulphuric acid
- 2.7 NaHCO₃ sodium hydrogen carbonate

- 2.8 H₃O⁺ hydronium / oxonium ion
- 2.9 HSO₄⁻ hydrogen sulphate ion
- 2.10 CO_3^{2-} carbonate ion
- 2.11 NH_4^+ ammonium ion
- 2.12 HCO3⁻ hydrogen carbonate ion
- 2.13 NH₃ ammonia

3. CHEMICAL FORMULAE:

$$n = \underbrace{V}_{V_m}$$
 $n = \frac{m}{M}$ $c = \frac{n}{V}$ $c = \frac{m}{MV}$

3.1 Calculate the concentration of a 0,2 mol solution of Na_2CO_3 with a volume of 150 cm³. (3)

$$\frac{Solution}{c = \frac{n}{V}}$$
$$c = \frac{0.2}{0.15}$$

3.2 Calculate the number of mol of NaOH in 250 cm³ solution of concentration of 0,25 moldm⁻³

Solution

 $c = \frac{n}{V}$ $0,25 = \frac{n}{0,25}$

n= 0,0625 mol

3.3 Calculate the mass of NaCl needed to prepare a solution of concentration 0,2 moldm⁻³ in a 150 ml flask. (3)

$$c = \frac{m}{MV}$$

0,2 = $\frac{m}{58,5 X 0,15}$
m= 1,76 g

3.4 Calculate the concentration of H⁺ ions in 0,25 moldm⁻³ H₂SO₄. (3) <u>Solution</u>

(3)

- $1 H_2SO_4 : 2H^+$ 1 : 2 $[H^+] = 2 [H_2SO_4]$ $= 0,25 \times 2$ $= 0,50 \text{ mol.dm}^{-3}$
- 3.5 210 g of impure sodium hydrogen carbonate reacts with excess hydrochloric acid to form 44,8 dm³ of carbon dioxide gas at STP .The balanced equation for this reaction is given below. NaHCO₃ + HCI → NaCI + CO₂ + H₂O
 Calculate the % purity of sodium hydrogen carbonate in this mass. (5)

Solution

 $1 \text{ NaHCO}_3 = 1 \text{ CO}_2$

$$n_{NaHCO_{3}} = n_{CO_{2}} \qquad n = \frac{m}{M}$$

$$n = \frac{V}{V_{m}} \qquad 2 = \frac{m}{84}$$

$$n = \frac{44.8}{2224} \qquad m = 168g$$

$$n_{NaHCO_{3}} = \qquad The mass of pure NaHCO_{3} = 168 g$$

$$\% purity = \frac{168}{210} \times 100$$

$$= 80 \%$$

3.6 Consider the following balanced chemical reaction between calcium carbonate and nitic acid.

CaCO₃ + 2 HNO₃ → Ca(NO₃)₂ + CO₂ + H₂O Calculate the mass of CaCO₃ needed to completely react with 30 cm³ solution of nitric acid of concentration 0,0125 moldm⁻³.

(5)

Solution

 $c = \frac{n}{V}$ $0,0125 = \frac{n}{0,03}$ n = 0,000375 mol $n (CaCO_3) = 0,000375 \div 2$ = 0,000375 mol $n = \frac{m}{M}$

HOMEWORK POSSIBLE ANSWERS

1.	<u>Solution</u>	
	$n(NaCl) = \frac{m}{M}$	$n = \frac{m}{M}$
	14,625	11
	$n = \frac{1}{58,5}$	$0.125 = \frac{m}{1000}$
	n= 0,25 mol	106
	Ratio Na ₂ CO ₃ : NaCl 1 : 2	m= 13,25g
	n(Na ₂ CO ₃) = 0,125 mol	%purity
		mass of pure substance
		$=\frac{1}{Mass of impure substance} x100$

$$\% purity = \frac{13,25}{20}x\ 100$$

2.

- 2.1 An acid that ionises completely in water to produce a high concentration of hydronium ions
- 2.2 It can donate two protons/Hydrogen ions per molecule
- 3
- 3.1 Ampholyte
- 3.2 H₂CO₃
- 4.
- 4.1 It is a proton acceptor
- 4.2 $H_2O + HCI \rightarrow H_3O^+ + CI^-$

5.

- 5.1 Amount of solute per unit volume of solvent.
- 5.2 $C = \frac{n}{v}$

 $0,75 = \frac{n}{5}$ n = 3,75 mol $c = \frac{n}{V}$ $c = \frac{3,75}{1000}$ $C = 0,00375 \text{ mol.dm}^{-3}$ $5.3 \quad c = \frac{n}{V}$ $0,75 = \frac{n}{5}$ n = 3,75 mol

OR Nbefore dilution = Nafter dilution $C_1V_1 = C_2V_2$ $0,75 (5) = C_2 (1000)$ $C_2 = 0,00375 \text{ moldm}^{-3}$

Ratio HNO₃ : Ca(OH)₂ 2 : 1 n (Ca(OH)₂ = ½ (3,75) = 1,875 mol

$$n = \frac{m}{M}$$

$$1,875 = \frac{m}{74}$$

$$m = 138,75g,$$

Since the mass of $Ca(OH)_2$ available is less than the required mass of 138,75g , it will be insufficient

LESSON 2

SOLUTIONS

Activity 1

1.1 A

1.2.1

1.2.2

Activity 2

2.1 2.1.1 NH₃, CI⁻

2.1.2 H₂O, CN⁻

2.2	
2.2.1	H_2SO_4 , H_3O^+
2.2.2	H ₂ O, HCO ₃ ⁻

LESSON 3

SOLUTIONS

- 1. Define the following terms:
- 1.1 Strong acid- ionise completely in water to form a high concentration of H_3O^+ ions (2)
- Strong base- dissociate completely in water to form a high concentration of OH⁻ (2) ions.
- Concentrated acid- contain a large amount (number of moles) of acid in proportion (2) to the volume of water.
- Dilute base- contain a small amount (number of moles) of a base in proportion to (2) the volume of water.
- 2 Calculate the concentration of H_3O^+ and OH^- ions in the following solutions:
- 2.1 NaOH of concentration 0,00001 mol.dm⁻³

 NaOH
 Na⁺
 + OH⁻

 Ratio
 1
 1

 0,00001
 0,00001
 0,00001

 $[OH^{-}] = 0,00001 \text{ mol.dm}^{-3}$

 $[H_{3}O^{+}][OH^{-}] = 1 \times 10^{-14}$ [H_{3}O^{+}](0,00001) = 1 \times 10^{-14} [H_{3}O^{+}] = 1 x 10^{-9} mol.dm⁻³

2.2 HCl of concentration 0,5 mol.dm⁻³

HCI \longrightarrow H⁺ + CI⁻ Ratio 1 1 1

0,5 0,5 0,5

 $[H_3O^+] = 0.5 \text{ mol.dm}^{-3}$

 $[H_{3}O^{+}][OH^{-}] = 1 \times 10^{-14}$ (0,5) [OH^{-}] = 1 × 10^{-14} [OH^{-}] = 2 × 10^{-14} mol.dm^{-3}

- 3 Calculate the pH of:
- 3.1 0,2 mol.dm⁻³ of HNO₃ HNO₃ \longrightarrow H⁺ + NO³⁻

Ratio	1	1	1
	0,2	0,2	0,2

 $[H_3O^+] = 0.2 \text{ mol.dm}^{-3}$ $pH = -\log[H_3O^+]$ $= -\log(0,2)$ = 0,70 3.2 0,04 mol.dm⁻³ of H₂SO₄ $H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$ Ratio 1 2 1 0,04 0,08 0,04 $[H_3O^+] = 2(0,04)$ $= 0.08 \text{ mol.dm}^{-3}$ $pH = -\log[H_3O^+]$ $= -\log(0,08)$ = 1.10 3.3 0,2 mol.dm⁻³ of Ba(OH)₂ $pH = - log[H_3O^+]$ $Ba(OH)_2 \longrightarrow Ba^+ + 2OH^ = -\log(2.5 \times 10^{-14})$ Ratio 1 1 2 0.2 0.2 0,4 = 13,6 $[OH^{-}] = 0,4 \text{ mol.dm}^{-3}$ $[H_3O^+][OH^-] = 1 \times 10^{-14}$ $[H_3O^+](0,4) = 1 \times 10^{-14}$ $[H_3O^+] = 2.5 \times 10^{-14} \text{ mol.dm}^{-3}$ $pH = -log[H_3O^+]$ 4. $3 = -\log[H_3O^+]$ $[H_3O^+] = 0,001 \text{ mol.dm}^{-3}$ $pH = -\log[H_3O^+]$ 5 $4,92 = -\log[H_3O^+]$ $[H_3O^+] = 1.2023 \times 10^{-5} \text{ moldm}^{-3}$ $H_3PO_4 \rightarrow 3 H^+ + PO_4^{3-}$. 1 : 3 $[H_3 PO_4] = \frac{1}{3} [H^+]$ $=\frac{1}{3}$ (1,2023x10⁻⁵) = 4,0075 x10⁻⁶ mol.dm⁻³

LESSON 4

ACTIVITY SOLUTIONS

1. Define the following terms:

- 1.1 Strong acid- ionise completely in water to form a high concentration of H_3O^+ ions (2)
- 1.2 Strong base- dissociate completely in water to form a high concentration of OH⁻ (2) ions.
- 1.3 Concentrated acid- contain a large amount (number of moles) of acid in proportion (2) to the volume of water.
- 1.4 Dilute base- contain a small amount (number of moles) of a base in proportion to (2) the volume of water.

2 Calculate the concentration of H_3O^+ and OH^- ions in the following solutions:

2.1 NaOH of concentration 0,00001 mol.dm⁻³

NaOH —	→ Na ⁺	+ OH ⁻
Ratio 1	1	1
0,00001	0,00001	0,00001

 $[OH^{-}] = 0,00001 \text{ mol.dm}^{-3}$

 $[H_{3}O^{+}][OH^{-}] = 1 \times 10^{-14}$ [H_{3}O^{+}](0,00001) = 1 × 10^{-14} [H_{3}O^{+}] = 1 × 10^{-9} mol.dm^{-3}

2.2 HCl of concentration 0,5 mol.dm⁻³

HCI \longrightarrow H⁺ + CI⁻ Ratio 1 1 1

0,5 0,5 0,5

 $[H_3O^+] = 0.5 \text{ mol.dm}^{-3}$

- $[H_{3}O^{+}][OH^{-}] = 1 \times 10^{-14}$ (0,5) [OH^{-}] = 1 × 10^{-14} [OH^{-}] = 2 × 10^{-14} mol.dm^{-3}
- 3 Calculate the pH of:
- 3.1 0,2 mol.dm⁻³ of HNO₃

 $HNO_3 \longrightarrow H^+ + NO^{3-}$

(4)

(4)

Ratio 1 1 1 0,2 0,2 0.2 $[H_3O^+] = 0.2 \text{ mol.dm}^{-3}$ $pH = -\log[H_3O^+]$ $= -\log(0,2)$ = 0,70 3.2 0,04 mol.dm⁻³ of H₂SO₄ $H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$ Ratio 2 1 1 0,04 0,08 0,04 $[H_3O^+] = 2(0,04)$ $= 0.08 \text{ mol.dm}^{-3}$ $pH = -\log[H_3O^+]$ $= -\log(0,08)$ = 1.10 3.3 0,2 mol.dm⁻³ of Ba(OH)₂ $pH = - log[H_3O^+]$ Ba(OH)₂ → Ba⁺ + 2OH⁻ $= -\log(2.5 \times 10^{-14})$ Ratio 1 1 2 0.2 0.2 0,4 = 13,6 $[OH^{-}] = 0,4 \text{ mol.dm}^{-3}$ $[H_3O^+][OH^-] = 1 \times 10^{-14}$ $[H_3O^+](0,4) = 1 \times 10^{-14}$ $[H_3O^+] = 2.5 \times 10^{-14} \text{ mol.dm}^{-3}$

LESSON 4

HOMEWORK/CLASSWORK ACTIVITY

 Define the term End point A stage of titration where the indicator changes the colour
 45 cm³ of sodium hydroxide solution is pipetted into a conical flask and titrated with a 0,12 mol⋅dm⁻³ oxalic acid (H₂C₂O₄). Using a suitable indicator, it was found that 20,3 cm³ of acid was needed to neutralise the base. 2NaOH + H₂C₂O₄ → Na₂C₂O₄ + 2H₂O

32

(2)

2.1 Write down the name an indicator that would be suitable for the (3) above titration. Give a reason for your answer Phenolphthalein Reaction between weak acid and strong base pH range of Phenolphthalein is between 8,3 - 10 2.2 How many grams of oxalic acid is necessary to make (4) 150cm³ of standard solution, $c = \frac{n}{v}$ $c = \frac{m}{MV}$ $0,12 = \frac{n}{0.15}$ OR n = 0,018 mol

 $0,12 = \frac{m}{90x0.15}$ $0,018 = \frac{m}{90}$ m = 1,62gm= 1,62g

2.3 Calculate the concentration of the sodium hydroxide solution. (4)

Ca.Va $\frac{d}{Cb.Vb} = \frac{na}{nb}$ $\frac{0,12 \times 20,3}{Cb \times 45} = \frac{1}{2}$ $Cb = 0,108 \text{ mol.dm}^{-3}$

3

A learner accidentally spills some sulphuric acid of concentration 6mol·dm⁻³ from a flask on the laboratory bench. Her teacher tells her to neutralise the spilled acid by sprinkling sodium hydrogen carbonate powder onto it. The reaction that takes place is: (Assume that the H_2SO_4 ionises completely.)

 $H_2SO_4(aq) + 2NaHCO_3(s) \rightarrow Na_2SO_4(aq) + 2H_2O(\ell) + 2CO_2(q)$ The fizzing, due to the formation of carbon dioxide, stops after the learner has added 27 g sodium hydrogen carbonate to the spilled acid.

3.1 Calculate the volume of sulphuric acid that spilled. Assume that all (6) the sodium hydrogen carbonate reacts with all the acid.

$$n = \frac{m}{M}$$

$$n = \frac{27}{84}$$

$$n = 0,32 \text{ mol}$$

$$n(\text{H2SO4}) = \frac{1}{2} (0,32) = 0,16 \text{ mol}$$

$$c = \frac{n}{V}$$

$$6 = \frac{0,16}{V}$$

$$V = 0,027 \text{ dm}^{3}$$

The learner now dilutes some of the 6 mol dm⁻³ sulphuric acid solution in the flask to 0,1 mol \cdot dm⁻³. Calculate the volume of the 6 mol·dm⁻³ sulphuric acid solution 3.2 (2) needed to prepare 1 dm³ of the dilute acid. Ca.Va = Cb.Vb6. Va = 0,1 . 1 $Va = 0,017 \text{ dm}^3$ During a titration 25 cm^{3} of the 0,1 mol·dm^{$^-3$} sulphuric acid solution is added to an Erlenmeyer flask and titrated with a 0,1 mol \cdot dm⁻³ sodium hydroxide solution. Calculate the pH of the solution in the flask after the addition of 30 (8) cm^3 of sodium hydroxide. The endpoint of the titration is not yet reached at this point For the acid $c = \frac{n}{v}$ $0,1 = \frac{n}{0,025}$ n = 0,0025molFor the base that reacted $0,1 = \frac{n}{0.03}$ n = 0,003m0IRatio of Acid : Base 1:2 n (acid) = $\frac{1}{2}$ n (base) = $\frac{1}{2}$ 0,003 = 0,0015 mol n (acid unreacted) = n (initial) - n (reacted)= 0,0025 - 0,0015 = 0,001 mol $c = \frac{n}{v}$ Actual volume = $25 + 30 = 55 \text{ cm}^3$ $c = \frac{0,001}{0,055}$ $C = 0.018 \text{ mol.dm}^{-3}$ pH = -log [H3O+] $= -\log(2 \times 0.018)$ = 1,44**LESSON 5**

CLASSWORK EXERCISE

4

1.Write down ionic equations for the hydrolysis reaction for the following salts 1.1 Na₂CO₃ + H₂O \rightarrow CO₃²⁻ + H₂O \rightarrow HCO₃⁻ + OH⁻ 1.2 CH₃COONa + H₂O \rightarrow BASIC SOLUTION

CH ₃ COO ⁻ + H ₂ O → CH ₃ COOH + OH ⁻	BASIC SOLUTION
1.3 NaHCO₃ + H₂O →	
$HCO_3^- + H_2O \rightarrow H_2CO_3 + OH^-$	BASIC SOLUTION
1.4. KCl + H₂O →	
Cl ⁻ + H ₂ O → 1HCl + 1OH ⁻	NEUTRAL SALT
1.5 NaCN + H₂O→	
$CN^{-} + H_2O \rightarrow HCN + OH^{-}$	BASIC SOLUTION
1.6 (NH₄)₂SO₄ + H₂O →	
NH4 ⁺ + H2O →NH3 + H3O ⁺	ACIDIC SOLUTION

SOLUTIONS
1.1.1 A
1.2.1 Fertilizers replenish nutrients depleted by the growing of crops.
1.2.2 Damage to crops /soil resulting in small or no harvest/ less income.
Excessive fertilizer seeps into groundwater and contaminates drinking water (any
Runs into rivers and / or dams and causes eutrophication.
1.2.3 Enhance growth of crops/ plants to produce more food for humans
Food security for humans
Production / application of fertilizer results in job creation selling fertilizers
Stimulates the economy (any one)

2.1			
	2.1.1	The ratio of Nitrogen(N), Phosphorus (P) and potassium (K) in the certain fertilizer	
	2.1.2	Percentage fertiliser in the bag	
	040		
	2.1.3	% K= 5/12x 22%=9,17 %	
		m(N)=9,17/100x 10kg =0,92 kg	
2.2			
	2.2.1	% P= 3/7x 22%=9,43%	
		m (P) =9,43/100 x 2%= 0,19kg	
2.3	001	Total paraantage of fortilizer	
	2.3.1	rotal percentage of rentilizer	
	2.3.2	Mass of fertilizer in P =25/100 x50 kg = 12,5 kg	
		Mass of fertilizer in Q = 20/100 x 50kg =10kg	
		Amount of potassium in Q =3/10 x12,5 kg =3,75 kg	
		Amount of potassium in $Q = 4/8 \times 10 \text{ kg} = 5 \text{ kg}$	
		Fertiliser Q has more potassium per mass than fertilizer P	
24			
∠. ¬	2.4.1	NH₄NO₃ : 80g 28g N	
		$20ka = 28/80 \times 20$	
		m(N) = 7 kg	
		No. DO_{1} : 164 a 21 a D	
		12 kg	
		m(P) = 2,27 kg	
		KCI : 74,5 g 39g K	
		18 kg 39/74,5 x18 m (K) =9,42 kg	
		N·P· K	
		7:2,27:9,42	
		3:1:4	
L			

SOLUI	IONS	WORKSHEET 3			
1.1.1 (Jstwald p	Drocess			
1.1.2 C	atalyst/ s	speed up the rate of reaction			
1.1.3 N	litrogen c	lioxide			
1.1.4 3	3NO2 + H	20 → 2HNO ₃ (aq) + NO			
1.1.5 D	ecrease	pressure			
Ir	ncrease v	volume			
D	ecrease	temperature			
1.2.1 2	-4-3-1				
1.2.2 2	NH ₃ + H ₂	$SO_4 \longrightarrow (NH_4)_2 SO_4$			
1.2.3Va	anadium	pentoxide			
1.2.4 S	$O_3(a) + b$	$H_2SO_4 \longrightarrow H_2S_2O_7$			
1.2.5 S	ulphuric	acid will form (white) mist.			
Т	he reacti	on is very exothermic/ gives off too much heat			
	The reaction is very exothermic/ gives on too much heat				
		SOLUTION (LESSON 3) ACTIVITY 2			
2.2.1.					
	2.1.1				
	2.2.1.1	B&C			
	2.2.1.2	Nitric Acid /HNO3			
	2213	Δ			
	<u> </u>				
	2214	$2 \text{ NH}_{2}(\alpha) + \text{H}_{2} \text{SO} + (\text{NH}_{2})_{2} \text$			
	۲.۷.۱.4	$2 \text{ INERS (9) T I I 200 } \rightarrow (\text{INERS (9) T I I 200 } \rightarrow (\text{INERS (9) T I 200 } \rightarrow (INERS (9) $			
	0.0.4.5				
	2.2.1.5	D			

SOLUTIONS FOR REVISION QUESTIONS QUESTION 1

1.1.1 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ Bal	(3)
1.1.2 Catalyst OR Increase the reaction rate	(1)
1.2 Exothermic. The temperature increases1.3 An exothermic reaction is favoured by a decrease in temperature.The forward reaction is favoured.	(2)
Higher yield (of SO ₃).	(3)
1.4.1 H ₂ S ₂ O ₇	(1)
1.4.2 A mist will form (which is difficult to collect). OR The reaction is too exothe	rmic.
$1.5 \text{ H}_2\text{SO}_4 + 2\text{NH}_3 \rightarrow (\text{NH}_4)_2\text{SO}_4$	(1) (3)

[14]

QUESTION 2

2.1.1 Haber process.	(1)
$2.1.2 \text{ N}_2 + 3\text{H}_2 \rightleftharpoons 2\text{NH}_3$	(3)
2.1.3 Air	(1)
2.2.1 40%	(1)
2.2.2 High yield and high rate due to higher concentration.	(2)
2.2.3 Low reaction rate.	(1)
2.3 OPTION 1	
% N in NH ₄ NO ₃ = $\frac{28}{80} \times 100 = 35\%$	
m(N) in 50 kg:= $\frac{35}{100} \times 50 = 17.5 kg$	
OPTION 2	
M(N) in NH ₄ NO ₃ = $\frac{28}{80} \times 50 = 17.5 \ kg$	(3)
QUESTION 3	
3.1.1 Air	(1)
0.4.0 Network was there is the set	(4)

(1)
(1)
(1)
(1)
(1)

3.2.4	$SO_3\text{+} H_2SO_4 \rightarrow H_2S_2O_7$	(3)
3.3.1	%N[NH ₄ NO ₃] =28/80 x 100 = 35%	

 $N[(NH_4)_2SO_4] = 28/132 \times 100 = 21,21\%$

Ammonium nitrate (has the highest percentage of nitrogen).	(4)
3.3.2 Ostwald process	(1)
	[14]

4.1 Percentage of fertiliser (N, P and K) present in the fertiliser.	
4.2	
4.2.1 A	
4.2.2 C	
4.2.3 C	
4.3	
4.3.1 %N = 3/6 x 28= 14%	

(2)

4.2.2				
OPTION 1	OPTION 2			
22% of 20 kg = 4,4 kg				
	4/9 x 22 = 9,78%			
4/9x 4,4 = 1,96 kg	9,78% of 20 kg = 1,96 kg			
OPTION 3				
22% of 20 kg = 4,4 kg				
44,44% of 4,4 = 1,96 kg				

 $4.4 \text{ H}_2\text{SO}_4 + 2\text{NH}_3 \ \rightarrow (\text{NH}_4)_2\text{SO}_4$

ACTIVITY 5

5.1	Vanadium pentoxide	(1)
5.2	$N_2 + 3H_2 \rightleftharpoons 2NH_3$	(3)
5.3	22% of 5 kg = 1, 1 kg	
	7/11 x 1, 1 = 0,7 kg = 700 g	
	n=m/M = 700/14= 50 moles	(5)
5.4	Excess plants block sunlight from aquatic life and organisms die. /Lack of	
	oxygen.	(1)
		[10]