education
Department:
Education
PROVINCE OF KWAZULU-NATAL

CURRICULUM GRADE 10 - $\mathbf{- 1 2}$ DIRECTORATE

NCS (CAPS)

LEARNER ACTIVITY DOCUMENT

GRADE 12

PHYSICAL SCIENCES
 STEP AHEAD PROGRAMME

SOLUTIONS 2021

PREFACE

This support document serves to assist Physical Sciences learners on how to deal with curriculum gaps and learning losses as a result of the impact of COVID-19 in 2020. It also captures the challenging topics in the Grade 10-12 work. Activities should serve as a guide on how various topics are assessed at different cognitive levels and also preparing learners for informal and formal tasks in Physical Sciences. It will cover the following topics:

	TOPIC	PAGE NUMBER
1.	Work, Energy and Power	$3-8$
2.	Reaction Rates	$8-10$
3.	Chemical Equilibrium	$11-22$
4.	Acids and Bases	$23-35$
5.	Chemical Systems	$35-39$

SOLUTIONS

Question 1

1.1

F_{f}

F_{g}
1.2 Force and displacement

$$
\begin{aligned}
1.3 .1 \mathrm{~W}_{\mathrm{A}} & =\mathrm{F}_{\mathrm{A}} \Delta x \operatorname{Cos} \theta \\
& =50 \mathrm{~N} \times 10 \mathrm{~m} \times \operatorname{Cos} 0^{\circ} \\
& =500 \mathrm{~J}
\end{aligned}
$$

1.3.2 $\mathrm{W}_{\mathrm{f}}=\mathrm{F}_{\mathrm{f}} \Delta \mathrm{x} \operatorname{Cos} \theta$

$$
=5 \mathrm{~N} \times 10 \mathrm{~m} \times \operatorname{Cos} 180^{\circ}
$$

$$
=-50 \mathrm{~J}
$$

$$
\text { 1.3.3 } \begin{aligned}
W_{\text {net }} & =W_{A}+W_{f}+F_{N}+W_{F g} \\
& =500 \mathrm{~J}+(-50 \mathrm{~J})+0 \mathrm{~J}+0 \mathrm{~J} \\
& =450 \mathrm{~J}
\end{aligned}
$$

QUESTION 2

Downloaded from Stanmore physics.com

$W=F \Delta x \cos \theta$

$$
\begin{aligned}
\text { 2.1.1 } \begin{aligned}
& \mathrm{W}_{\mathrm{A}}=\mathrm{F}_{\mathrm{net}} \Delta \mathrm{x} \operatorname{Cos} 0^{\circ} \\
&=15 \operatorname{Cos} 30^{\circ} \cdot 8 \mathrm{~m} \cdot \operatorname{Cos} 0^{\circ} \\
&=106.92 \mathrm{~J} \\
& \mathrm{~W}_{\mathrm{f}} \quad=\mathrm{F}_{\mathrm{f}} \Delta \mathrm{x} \operatorname{Cos} \theta \\
& \mathrm{mg}=\mathrm{N}+\mathrm{F}_{\mathrm{V}}
\end{aligned} \\
\mathrm{~F}_{\mathrm{N}}=\mathrm{mg}-\mathrm{F} \sin \theta \\
=3 \times 9.8-15 \sin 30^{\circ} \\
=21.9 \mathrm{~N}
\end{aligned}
$$

$\mathrm{F}_{\mathrm{N}}=\mu \mathrm{k} \mathrm{N}$
$=0.2 \times 21.9 \mathrm{~N}$
$=4.38 \mathrm{~N}$
$W_{f}=F_{f} \Delta x \cos \theta$
$=4.38 \mathrm{~N} \times 8 \mathrm{~m} \cos 180^{\circ}$
$=-35.04 \mathrm{~J}$
$W_{\text {net }}=W_{A}+W_{f}$
$=106.92 \mathrm{~J}+(-35.04 \mathrm{~J})$
$=71.88 \mathrm{~J}$

ACTIVITY 1

1. The net/total work done on an object is equal to the change in the object's kinetic energy. OR The work done on an object by a net force is equal to the change in the object's kinetic energy.
2.

3. $\mathrm{W}_{\mathrm{g}}=\mathrm{Fg}_{\mathrm{g}} \Delta \mathrm{x} \cos \theta$
$=\mathrm{mg} \Delta \mathrm{x} \cos \theta^{\circ}$
$=(6)(9,8)(1,6) \cos 0^{\circ}$
$=94,08 \mathrm{~J}$
4. $W_{n e t}=\Delta \mathrm{E}_{\mathrm{K}}$

```
\(W_{f}+W_{g}+W_{N}=1 / 2 m\left(v_{f}{ }^{2}-v_{i}{ }^{2}\right)\)
\((0,4)(4)(9,8)(1,6) \cos 180^{\circ}+94,08+0=1 / 2(4)\left(v f^{2}-0\right)+1 / 2(6)\left(v_{f}^{2}-0\right)\)
\(\mathrm{V}_{\mathrm{f}}=3,71 \mathrm{~m} \cdot \mathrm{~s}^{-1}\)
```

ACTIVITY 2

1. The net/total work done on an object is equal to the change in the object's kinetic energy. OR The work done on an object by a net force is equal to the change in the object's kinetic energy.
2.

3. Gravitational force or weight of the soldier.
4. W net $=\Delta \mathrm{E}_{\mathrm{k}}$

$$
\begin{aligned}
& W_{F g}+W_{T}+W_{f}=\Delta E_{k} \\
& \quad F_{g} \Delta y \cos \theta+F_{T} \Delta y \cos \theta+F_{f} \Delta y \cos \theta=\Delta E_{k} \\
& (960)(20) \cos 0^{\circ}+(80)(9,8) \cos 180^{\circ}+W_{f}=0 \\
& 19200-15680+W_{f}=0 \\
& W_{f}=3520 \mathrm{~J}
\end{aligned}
$$

5. 6. Air friction and Force of gravity

ACTIVITY 3

1.

The net (total) work done on an object is equal to the change in kinetic energy of the object. OR The work done on an object by a net (resultant) force is equal to the change in kinetic energy of the object.
2.

3. Wnet $=\Delta E_{k}$
$W w+W f+W F=1 / 2 m v f^{2}-1 / 2 m v i^{2}$

```
\(m g \Delta x \cos \theta+W_{f}+W_{F}=1 / 2 m v f^{2}-1 / 2 m v i^{2}\)
\((1500)(9,8) 200 \cos 180^{\circ}+W f+4,8 \times 10^{6}=1 / 2(1500)\left(25^{2}-0\right)\)
\(-2940000+W f+4,8 \times 10^{6}=468750\)
\(W f=-1,39 \times 10^{6} \mathrm{~J}\)
```


ACTIVITY 4

1.

2. The net/total work done on an object is equal to the change in the object's kinetic energy. OR The work done on an object by a net force is equal to the change in the object's kinetic energy.
3. W net $=\Delta E_{k}$
$W_{g / /}+W_{f}=1 / 2 m v_{f}^{2}-1 / 2 m v^{2}$
$m g \sin \theta \Delta x \cos \theta+F_{f} \Delta x \cos \theta=1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2}$
$(60)(9,8) \sin 20^{\circ}(25) \cos 0^{\circ}+(50)(25) \cos 180^{\circ}=1 / 2(60)(15)^{2}-1 / 2(60) \mathrm{vi}^{2}$
$-1250+5027,696=6750-30 \mathrm{vi}^{2}$
$V_{i}=9.95 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

SOLUTIONS:

ACTIVITY 1

1.1

$\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$.
$\mathrm{E}_{\mathrm{p}}=(100)(9.8)(5)$.
$\mathrm{E}_{\mathrm{p}}=4900 \mathrm{~J}$.

1.2

$\mathrm{E}_{\text {mech(top) }}=\mathrm{E}_{\text {mech(bottom) }}$.
$E_{k}+E_{p}=E_{k}+E_{p}$.
$0+4900=\mathrm{E}_{\mathrm{k}}+0$.
$\mathrm{E}_{\mathrm{k}}=4900 \mathrm{~J}$.

1.3

$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$.
$4900=\frac{1}{2}(100) v^{2}$.
$\mathrm{v}=9.9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
Question 2:
1.

Downloaded from Stanmorepfysics.com

$\mathrm{E}_{\text {mech }(\mathrm{top})}=\mathrm{E}_{\text {mech }}$ (bottom) .
$\mathrm{E}_{\mathrm{k}(\mathrm{top})}+\mathrm{E}_{\mathrm{p}(\mathrm{top})}=\mathrm{E}_{\mathrm{k}(\text { bottom })}+\mathrm{E}_{\mathrm{p}(\text { bottom })}$.
$0+0.5(9.8)(10)=\frac{1}{2}(0.5) v^{2}+0$.
$\mathrm{v}=14 \mathrm{~m} / \mathrm{s}$.
2.
$\mathrm{E}_{\mathrm{p}(\mathrm{top})}=\mathrm{mgh}$.
$E_{p(\text { top })}=60(9.8)(10)$.
$\mathrm{E}_{\mathrm{p}}=5800 \mathrm{~J}$.
$\mathrm{E}_{\mathrm{p}(\text { bottom })}=\mathrm{mgh}$.
$\mathrm{E}_{\mathrm{p}(\text { bottom })}=60(9.8)(0)$.
$\mathrm{E}_{\mathrm{p} \text { (bottom) }}=0 \mathrm{~J}$.
\therefore difference in $\mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{p} \text { (top) })}-\mathrm{E}_{\mathrm{p}(\text { bottom })}$.
difference in $E_{p}=5800-0$.
$\Delta \mathrm{E}_{\mathrm{p}}=5800 \mathrm{~J}$.

ACTIVITY 2

1. Energy is neither created nor destroyed; it can ONLY be converted from one form to another.
2. The total mechanical energy of an isolated system remains constant
3. Is a force whose work done in moving an object between two points does not depend on the path taken. For example, gravitational force.
4.

a) No, when frictional force acts on the child, some of the mechanical energy of the child is dissipated to the surroundings.
b) $W=\mathrm{F} \cdot \Delta \mathrm{x} \operatorname{Cos} \theta$.

$$
\mathrm{W}_{\mathrm{g}}=\mathrm{mg} \cdot \mathrm{~h} \operatorname{Cos} \theta
$$

$$
\mathrm{W}_{\mathrm{g}}=38(9.8)(2) \operatorname{Cos} 0 .
$$

$$
\mathrm{W}_{\mathrm{g}}=744.8 \mathrm{~J}
$$

ACTIVITY 3

Question 1.

a).

b).

Conservative Force

- W.Non-conservative force.
- FK.
- F_{A}.

Question 2

2.1. Emech is not conserved.

The system is not isolate/there is frictional force.
2.2.1. A force for which the work done in moving an object between two points does not depend on the path taken.
2.2.2. Gravitational force.
2.3.1.
$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$.
$\mathrm{E}_{\mathrm{k}}=\frac{1}{2}(55)(10)^{2}$.
$\mathrm{E}_{\mathrm{k}}=2750 \mathrm{~J}$.
2.3.2.
$\mathrm{W}_{\mathrm{nc}}=\Delta \mathrm{E}_{\mathrm{k}}+\Delta \mathrm{E}_{\mathrm{p}}$.
$\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{E}_{\mathrm{k}}+\Delta \mathrm{E}_{\mathrm{p}}$.
$\mathrm{f}_{\mathrm{k}} \Delta \mathrm{x} \cdot \operatorname{Cos} \theta=\mathrm{E}_{\mathrm{k}(\mathrm{B})}-\mathrm{E}_{\mathrm{k}(\mathrm{A})}+\mathrm{E}_{\mathrm{p}(\mathrm{B})}-\mathrm{E}_{\mathrm{p}(\mathrm{A})}$.
$8(8) \operatorname{Cos} 180=\mathrm{E}_{\mathrm{k}(\mathrm{B})}-2750+(55)(9.8)(1.2)-0$.
$\mathrm{E}_{\mathrm{k}(\mathrm{B})}=1959.2 \mathrm{~J}$.
2.3.3.
$W_{\text {net }}=\Delta \mathrm{E}_{\mathrm{k}}$.
$\mathrm{W}_{\mathrm{N}}+\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{g}}=\mathrm{E}_{\mathrm{k}(\mathrm{B})}-\mathrm{E}_{\mathrm{k}(\mathrm{A})}$.
$0+8(8) \operatorname{Cos} 180+55(9.8)(1.2) \operatorname{Cos} 180=\mathrm{E}_{\mathrm{k}(\mathrm{B})}-2750$.
$\mathrm{E}_{\mathrm{k}(\mathrm{B})}=1959.2 \mathrm{~J}$.

1. Power is the rate at which work is done.

2 - W. - $\mathrm{J} \cdot \mathrm{s}^{-1}$.
$3.1 \quad \mathrm{~W}=\mathrm{F} \Delta \mathrm{x} \operatorname{Cos} \theta$. $\mathrm{W}=(120)(3) \operatorname{Cos} 0$. $\mathrm{W}=360 \mathrm{~J}$.
$\mathrm{P}=\frac{\mathrm{W}}{\Delta \mathrm{t}}$.
$P=\frac{360}{5}$.
$\mathrm{P}=72 \mathrm{~W}$.
$3.2 \quad W=F \Delta x \operatorname{Cos} \theta$. $\mathrm{W}=(20)(3) \operatorname{Cos} 180$. $\mathrm{W}=-60 \mathrm{~J}$. $\mathrm{P}=\frac{\mathrm{W}}{\Delta \mathrm{t}}$.

Downloaded from Stanmorepfysics.com

$P=\frac{60}{5}$.
$\mathrm{P}=12 \mathrm{~W}$.
4.1 $\quad \mathrm{W}=\mathrm{F} \Delta \mathrm{x} \operatorname{Cos} \theta$.
$W=(750)(10000) \operatorname{Cos} 180$.
$\mathrm{W}=-7500000 \mathrm{~J}$.
$4.2 \quad 110 \mathrm{Km} \cdot \mathrm{h}^{-1}=30.56 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
$\mathrm{P}_{\mathrm{av}}=\mathrm{F} \cdot \mathrm{v}_{\mathrm{av}}$.
$\mathrm{P}_{\mathrm{av}}=750(30.56)$.
$\mathrm{P}_{\mathrm{av}}=22920 \mathrm{~W}$.

Worksheet: Reaction rate solutions

Downloaded from Stanmorepfysics.com

QUESTION 3		
3.		
3.1	Change in concentration of reactants or products	(2)
3.2	HCl has a higher concentration Reaction mixture is heated thus temperature is higher Zinc powder has been used resulting to a larger surface area	(6)
3.3	Addition of positive catalyst Nature of a reactant	(2)
4.	$\begin{aligned} \text { Average rate } & =\frac{\Delta c}{\Delta t} \\ & =\frac{1,45-1,90}{15-0} \\ & =-0,03 \mathrm{~mol} \cdot \mathrm{dm}^{3} \\ & =0,03 \mathrm{~mol} \cdot \mathrm{dm}^{3} \end{aligned}$	
5.	The more water gets hotter the higher the temperature, according to collision theory, - The speeds of the particles increase - The average kinetic energy of the particles increases - More particles have sufficient kinetic energy - Which increases the number of effective collisions taking place per unit time - Thus, rate of reaction increases	
6.		
6.1	The higher the amount of the metal, the higher the volume of the hydrogen gas produced	(2)
6.2	Concentration of HCl Volume of HCl Temperature	(2)
6.3	The reaction has reached completion/reaction has stopped/ reactants has been used up	(2)
6.4	$125 \mathrm{~cm}^{3}$	(2)

CLASS ACTIVITY SOLUTIONS

1) Consider the following reaction that has reached equilibrium at $200^{\circ} \mathrm{C}$.

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{~g})
$$

After equilibrium was reached, certain changes were made to the conditions affecting the system. State in each case how the amount of $\mathrm{NO}(\mathrm{g})$ will be affected if:
(Write down only INCREASES, DECREASES or STAYS THE SAME.)
a) A suitable catalyst is added Remain the same
b) Some of the carbon monoxide (CO) is removed increases
2) The following reversible reaction reaches equilibrium at 500 K

$$
2 \mathrm{~A}_{2} \mathrm{X}(\mathrm{~g})+\mathrm{BA}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{BX}_{2}(\mathrm{~s})
$$

For each of the following questions choose what will happen to the amount of $\mathrm{BA}_{2}(\mathrm{~g})$ and write down one of the following answers: INCREASE, DECREASE, NO CHANGE.
More $\mathrm{A}_{2} \mathrm{X}(\mathrm{g})$ is added?
increase, overall reaction rate increases, forward reaction is favoured, amount of reactants decrease, amount of products increases
b) $B X_{2}(s)$ is removed

no change, solids have no effect on the equilibrium
 SUGGESTED SOLUTIONS TO EXTRA QUESTIONS

1. B
2. C
3. B
4. C
5. A
6. D
7. A
8. D
9. D
10.B

CHEMICAL EQUILIBRIUM LESSON 3_SOLUTIONS

QUESTION 1

1.1 Downloaded from Stanmorepfysics.com
1.1.1

$\mathrm{H}_{2}(\mathrm{~g})$	$+\mathrm{I}_{\mathbf{2}}(\mathrm{g})$	$\rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$	
Ratio	$\mathbf{1}$	$\mathbf{1}$	2
nInitial (mol)	$\mathbf{1}$	1	0
nChange (mol)	$(-1 \mathrm{a})$ -0.4	$(-1 \mathrm{a})$ -0.4	$(+2 \mathrm{a})$ +0.8
n Equilibrium (mol)	0.6	0.6	$0.8 \checkmark$
Volume (dm^{3})	1	1	1
[equilibrium] mol/dm			

Correct Table format \checkmark
1.1.2 Homogenous, system contains gases only r (one phase)
1.1.3 Increase in temperature \checkmark

Increase in pressure \checkmark
Add a catalyst \checkmark
Increase concentration of reactants \checkmark (any TWO)
QUESTION 2
2.1
2.1.1 $22.4 \mathrm{dm}^{3} \checkmark$
2.1.2 $n\left(\mathrm{SO}_{3}\right)$ at equilibrium $=V / V_{m}=0.22 / 22.4=9,82 \times 10^{-3} \mathrm{~mol}$

Table

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$			
Ratio	2	1	2
nlnitial (mol)	4	3	0
n Change (mol)	$\begin{gathered} (-2 y) \\ -0.00982 \end{gathered}$	$\begin{gathered} (-y) \\ -0.00491 \end{gathered}$	$\begin{aligned} & \hline(+2 y) \quad \checkmark \\ & 0.00982 \end{aligned}$
n Equilibrium (mol)	3,99	2,995	0.00982 r
Volume (dm^{3})	4	4	4
[equilibrium] $\mathrm{mol} / \mathrm{dm}^{3}$	0.998	0,749	0.00246

2.1.3 DECREASE \checkmark

QUESTION 3

3.1
3.1.1 Br

Question 1

1.2.2 At equilibrium the concentration of products is lower than the concentration of reactants $\checkmark \checkmark$

QUESTION 2

2.1

2.1.1	A state when the rate of the forward reaction is reaction.			
2.1.2 $\mathrm{n}=\mathrm{m} / \mathrm{M}=1.12 / 28=0.04 \mathrm{~mol}(\mathrm{CO})$ at equilibrium Let \boldsymbol{n} Initial $=y$$\mathrm{COBr}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$				
	Ratio	1	1	1
	nlnitial (mol)	y	0	0
	nChange (mol)	$(-1 x)$ 0.04	$\begin{gathered} \hline(+1 x) \\ +0.04 \end{gathered}$	$\begin{aligned} & (+1 x)^{\vee} \\ & +0.04 \end{aligned}$

Downloaded from Stanmore physics.com

		$\begin{aligned} & \text { nInitial } \mathbf{O}_{2}(\mathbf{g})=m / M=x \\ & \text { Ratio } \\ & \hline \begin{array}{c} \text { nInitial (mol) } \end{array} \\ & \hline \begin{array}{c} \text { nEquange (mol) } \\ \text { (mol) } \end{array} \\ & \hline \begin{array}{c} \text { Volume (dm }{ }^{3} \text {) } \\ \text { [equilibrium] } \\ \text { mol } / \mathrm{dm}^{3} \end{array} \\ & \hline \end{aligned}$ $\begin{aligned} & K c=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[0_{2}\right]} \\ & 4.5 \checkmark=\frac{\left.(1.5)^{2}\right]}{0.5^{2}} \times \frac{0.031 \mathrm{x}-1.5}{2} \checkmark \\ & x=176.00 \mathrm{~g} \checkmark \end{aligned}$	$=0$ 2 2 4 $(-2 y)$ -3 1 2 0.5	$31 x$ $0.031 x \vee$ $(-y)$ -1.5 $0.031 x-$ 1.5 2	 2 0 $+2 y)^{\vee}$ +3 3 2 $1.5 \checkmark$	(8)
	3.2.2	$\frac{1}{4.5}=0.222 \checkmark$				(1)
						[11]
4.1		When the equilibrium in new equilibrium by favou $\checkmark v$	losed the	system is dis action that will	urbed, oppo	
4.2		Endothermic \checkmark Decrease in temperature The reverse reaction is $\mathrm{N}_{2} \mathrm{O}_{4}$ gas increases. OR	vours oured umbe	e exothermic OR Number of moles/amo	reactio of mole nt of N	(3)
4.3						
	4.3.1	Increases \checkmark				(1)
	4.3.2	Remains the same \checkmark				(1)
	4.3.3	Increases \checkmark				(1)

4.4	nEquilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=$ $\begin{aligned} & K c=\frac{\left[N O_{2}\right]^{2}}{\left[N_{2} O_{4}\right]} \downarrow \\ & 0.16 \checkmark=\frac{(0.2 x)^{2}}{0.4 x} \checkmark \\ & x=1.60 \mathrm{~mol} \checkmark \end{aligned}$	$\%$ of $x=$ 1 x $(-y)$ $-0.2 x \vee$ $0.8 x \vee$ 2 $0.4 x$		(8)
				[16]

Downloaded from Stanmorephysics.com

CHEMICAL EQUILIBRIUM

GRAPHS

SOLUTIONS

MCQ
1.1.1 A
1.1.2 C
1.1.3 C
1.1.4 A

QUESTION TWO (ONE WORD ANSWERS)

2.1 catalyst
2.2 temperature
2.3 chemical equilibrium
2.4 reversible
2.5 Kc
3.
3.1.1 The concentration of nitrogen $\sqrt{ }$ was increased $\sqrt{ } /$ or more nitrogen was added $\sqrt{ } \sqrt{ }$
3.1.2 The pressure $\sqrt{ }$ was increased $\sqrt{ }$.
3.1.3 The temperature $\sqrt{ }$ was increased $\sqrt{ }$
$3.2 t_{1} \sqrt{ }$ and $t_{2} \sqrt{ }$
EX 4
4.1 The stage in a chemical reaction in which the rate of the forward reaction is equal to the rate of the reverse reaction. $\sqrt{ } \sqrt{ }$
4.2.1 Higher than. V
4.2.2 Equal to. $\sqrt{ }$
4.3.1 NO_{2} is added. $\sqrt{ }$
4.3.2 The pressure was increased. $\sqrt{ }$
4.4 Increases $\sqrt{ }$

An increase in temperature favours the endothermic reaction. $\sqrt{ }$
The forward reaction is endothermic. $\sqrt{ }$

EX 5.

5.1 The reaction reached equilibrium $\sqrt{ }$
5.2 Concentration of H_{2} was increased, or Some H_{2} was added at t_{1}. \checkmark The concentration of HI then increased/more HI was formed \checkmark while some H_{2} and I_{2} were used up \checkmark until equilibrium was reestablished at t2.

EX 6

6.1 The reaction is at equilibrium. $\sqrt{ }$
6.2 The concentration of NH_{3} was increased or more NH_{3} was added. \downarrow
6.3 According to Le Chatelier's Principle the reverse reaction will favoured.

The concentrations of of N_{2} and H_{2} increases $\sqrt{ }$ and concentrations of NH_{3} decreases $\sqrt{ }$.

EX 7

7.1 A reaction is reversible when products can be converted back to reactants. V
7.2 No change.V
7.3.1 Temperature decreases $\sqrt{ }$
7.3.2 Decrease in temperature decreases the rate of both forward and reverse reactions. $\sqrt{ }$ Decrease in temperature favours the exothermic reaction. $\sqrt{ }$ The reverse (exothermic) reaction is faster or reverse reaction is favoured.
Or the forward (endothermic) reaction will be slower. $\sqrt{ }$
EX 8
8.1 When the rate of forward reaction is equal to reverse reaction. $\sqrt{ } \sqrt{ }$

Page 2

EX 9

9.1 Amount/number of moles/volume of (gas) reactants equals amount/number of moles/volume of (gas) products.

OR A change in pressure will change the concentration of the reactants and products equally.
9.2 (Chemical/dynamic) equilibrium. \checkmark OR The rate of the forward reaction equals the rate of the reverse reaction.
9.3 Addition of a catalyst \checkmark

Increase in pressure \checkmark
9.4.1
$\underbrace{\text { ndothermic }}{ }^{\checkmark}$

- The rate of the forward reaction decreases more./The rate of the reverse reaction decreases less. \checkmark
- A decrease in temperature favours the exothermic reaction.

9.4.2 Decreases

9.5 Reactants $/ \mathrm{H}_{2} / \mathrm{I}_{2}$ removed \checkmark

POSSIBLE ANSWERS-LESSON 1

CW ACTIVITY

1.Complete the following table of salts formed during acid-base reactions

Acid/Base	$\mathbf{H C l}$	$\mathbf{H N O}_{3}$	$\mathbf{H}_{2} \mathbf{S O}_{4}$
$\mathbf{K O H}$	KCl	KNO_{3}	$\mathrm{~K}_{2} \mathrm{SO}_{4}$
$\mathbf{N a O H}$	NaCl	NaNO_{3}	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\mathrm{Na}_{2} \mathbf{O}$	NaCl	NaNO_{3}	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\mathbf{M g O}$	MgCl_{2}	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgSO_{4}
NaHCO_{3}	NaCl	NaNO_{3}	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
CaCO_{3}	CaCl_{2}	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	CaSO_{4}

2. NAME THE FOLLOWING ACIDS, BASES OR IONS
2.1 NaOH sodium hydroxide
$2.2 \mathrm{CH}_{3} \mathrm{COOH}$ ethanoic acid
$2.3(\mathrm{COOH})_{2}$ oxalic acid
$2.4 \mathrm{Ca}(\mathrm{OH})_{2}$ calcium hydroxide
$2.5 \quad \mathrm{HNO}_{3}$ nitric acid
$2.6 \quad \mathrm{H}_{2} \mathrm{SO}_{4} \quad$ sulphuric acid
2.7 NaHCO_{3} sodium hydrogen carbonate
$2.8 \mathrm{H}_{3} \mathrm{O}^{+}$hydronium / oxonium ion
$2.9 \mathrm{HSO}_{4}{ }^{-}$hydrogen sulphate ion
$2.10 \mathrm{CO}_{3}{ }^{2-}$ carbonate ion
$2.11 \mathrm{NH}_{4}{ }^{+}$ammonium ion
$2.12 \mathrm{HCO}_{3}{ }^{-}$hydrogen carbonate ion
$2.13 \mathrm{NH}_{3}$ ammonia

3. CHEMICAL FORMULAE:

$$
n=\frac{V}{V_{m}} \quad n=\frac{m}{M} \quad c=\frac{n}{V} \quad c=\frac{m}{M V}
$$

3.1 Calculate the concentration of a $0,2 \mathrm{~mol}$ solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with a volume of $150 \mathrm{~cm}^{3}$.

Solution

$c=\frac{n}{V}$
$c=\frac{0,2}{0,15}$
$=1,33 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$
3.2 Calculate the number of mol of NaOH in $250 \mathrm{~cm}^{3}$ solution of concentration of $0,25 \mathrm{moldm}^{-3}$

Solution

$c=\frac{n}{V}$
$0,25=\frac{n}{0,25}$
$\mathrm{n}=0,0625 \mathrm{~mol}$
3.3 Calculate the mass of NaCl needed to prepare a solution of concentration 0,2 moldm $^{-3}$ in a 150 ml flask.

Solution

$c=\frac{m}{M V}$
$0,2=\frac{m}{58,5 \times 0,15}$
$\mathrm{m}=1,76 \mathrm{~g}$
3.4 Calculate the concentration of H^{+}ions in 0,25 moldm $^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$.

Solution

Downloaded from Stanmore physics.com

$$
\begin{aligned}
& 1 \mathrm{H}_{2} \mathrm{SO}_{4}: 2 \mathrm{H}^{+} \\
& 1 \text { : } 2 \\
& {\left[\mathrm{H}^{+}\right]=2\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]} \\
& =0,25 \times 2 \\
& =0,50 \mathrm{~mol} \cdot \mathrm{dm}^{-3}
\end{aligned}
$$

3.5210 g of impure sodium hydrogen carbonate reacts with excess hydrochloric acid to form $44,8 \mathrm{dm}^{3}$ of carbon dioxide gas at STP. The balanced equation for this reaction is given below.

$$
\begin{equation*}
\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \tag{5}
\end{equation*}
$$

Calculate the \% purity of sodium hydrogen carbonate in this mass.

Solution

$1 \mathrm{NaHCO}_{3}=1 \mathrm{CO}_{2}$

$$
\begin{array}{rl}
\mathrm{n}_{\mathrm{NaHCO}_{3}}=\mathrm{n}_{\mathrm{CO}_{2}} & \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\
\mathrm{n}=\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{m}}} & 2=\frac{\mathrm{m}}{84} \\
\mathrm{n}=\frac{44,8}{22} 44 \mathrm{~m} & \mathrm{~m}=168 \mathrm{~g} \\
= & \begin{aligned}
& 2 \mathrm{~mol} \\
& \mathrm{n}_{\mathrm{NaHCO}_{3}}= \text { The mass of pure } \mathrm{NaHCO}_{3}=168 \mathrm{~g} \\
& \\
& \\
&=\frac{168}{210} \times 100 \\
&=80 \%
\end{aligned}
\end{array}
$$

3.6 Consider the following balanced chemical reaction between calcium carbonate and nitic acid.
$\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Calculate the mass of CaCO_{3} needed to completely react with
$30 \mathrm{~cm}^{3}$ solution of nitric acid of concentration $0,0125 \mathrm{moldm}^{-3}$.

Solution

$$
\begin{aligned}
& c=\frac{n}{V} \\
& \mathrm{n}\left(\mathrm{HNO}_{3}\right): \mathrm{n}\left(\mathrm{CaCO}_{3}\right) \\
& 0,0125=\frac{n}{0,03} \\
& 2 \text { : } 1 \\
& \mathrm{n}=0,000375 \mathrm{~mol} \\
& \mathrm{n}\left(\mathrm{CaCO}_{3}\right)=0,000375 \div 2 \\
& =0,0291875 \mathrm{~mol} \\
& n=\frac{m}{M}
\end{aligned}
$$

HOMEWORK POSSIBLE ANSWERS

1. Solution
$n(\mathrm{NaCl})=\frac{m}{M}$

$$
\begin{aligned}
& n=\frac{m}{M} \\
& 0,125=\frac{m}{106} \\
& m=13,25 \mathrm{~g}
\end{aligned}
$$

$n=\frac{14,625}{58,5}$
$\mathrm{n}=0,25 \mathrm{~mol}$
Ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{NaCl}$
1 : 2
$\mathrm{n}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0,125 \mathrm{~mol}$

$$
\begin{aligned}
& \text { \%purity } \\
& =\frac{\text { mass of pure substance }}{\text { Mass of impure substance }} \times 100 \\
& \% \text { purity }=\frac{13,25}{20} \times 100
\end{aligned}
$$

|2. |
2.1 An acid that ionises completely in water to produce a high concentration of hydronium ions
2.2 It can donate two protons/Hydrogen ions per molecule 3
3.1 Ampholyte
$3.2 \mathrm{H}_{2} \mathrm{CO}_{3}$
4.
4.1 It is a proton acceptor
$4.2 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

Downloaded from Stanmorepfysics.com
5.
5.1 Amount of solute per unit volume of solvent.
$5.2 \quad C=\frac{n}{V}$
$0,75=\frac{n}{5}$
$\mathrm{n}=3,75 \mathrm{~mol}$
$c=\frac{n}{V}$
$c=\frac{3,75}{1000}$

OR

nbefore dilution $=\mathrm{nafter}$ dilution
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
$0,75(5)=C_{2}(1000)$
$\mathrm{C}_{2}=0,00375 \mathrm{moldm}^{-3}$
$\mathrm{C}=0,00375 \mathrm{~mol} . \mathrm{dm}^{-3}$
$5.3 \quad c=\frac{n}{V}$
$0,75=\frac{n}{5}$
$\mathrm{n}=3,75 \mathrm{~mol}$

Ratio $\mathrm{HNO}_{3}: \mathrm{Ca}(\mathrm{OH})_{2}$

$$
2: 1
$$

$\mathrm{n}\left(\mathrm{Ca}(\mathrm{OH})_{2}=1 / 2(3,75)=1,875 \mathrm{~mol}\right.$
$n=\frac{m}{M}$
$1,875=\frac{m}{74}$
$m=138,75 \mathrm{~g}$,
Since the mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ available is less than the required mass of $138,75 \mathrm{~g}$, it will be insufficient

LESSON 2

SOLUTIONS

Activity 1

1.1 A
1.2.1

1.2.2

Activity 2

2.1
2.1.1 $\mathrm{NH}_{3}, \mathrm{Cl}^{-}$
2.1.2 $\mathrm{H}_{2} \mathrm{O}, \mathrm{CN}^{-}$

2.2	
2.2 .1	$\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{O}^{+}$
2.2 .2	$\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}{ }^{-}$

LESSON 3

SOLUTIONS

1. Define the following terms:
1.1 Strong acid- ionise completely in water to form a high concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions
1.2 Strong base- dissociate completely in water to form a high concentration of OH^{-} ions.
1.3 Concentrated acid- contain a large amount (number of moles) of acid in proportion to the volume of water.
1.4 Dilute base- contain a small amount (number of moles) of a base in proportion to the volume of water.

2 Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions in the following solutions:
2.1 NaOH of concentration $0,00001 \mathrm{~mol} . \mathrm{dm}^{-3}$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=0,00001 \mathrm{~mol} . \mathrm{dm}^{-3} } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] }=1 \times 10^{-14} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0,00001) }=1 \times 10^{-14} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] }=1 \times 10^{-9} \mathrm{~mol} . \mathrm{dm}^{-3}
\end{aligned}
$$

2.2 HCl of concentration $0,5 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$
$\underset{\text { Ratio }}{\mathrm{HCl}} \longrightarrow \mathrm{H}^{+} \longrightarrow \underset{1}{\mathrm{H}^{+}}+\mathrm{Cl}^{-}$

$$
\begin{array}{lll}
0,5 & 0,5 & 0,5
\end{array}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0,5 \mathrm{~mol} . \mathrm{dm}^{-3}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

$$
(0,5)\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

$$
\left[\mathrm{OH}^{-}\right]=2 \times 10^{-14} \mathrm{~mol} . \mathrm{dm}^{-3}
$$

3 Calculate the pH of:
$3.10,2$ mol.dm ${ }^{-3}$ of HNO_{3}
$\mathrm{HNO}_{3} \longrightarrow \mathrm{H}^{+}+\mathrm{NO}^{3-}$
$\begin{array}{llll}\text { Ratio } & 1 & 1 & 1\end{array}$
0,2 $0,2 \quad 0,2$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0,2 \mathrm{~mol} \cdot \mathrm{dm}^{-3}} \\
& \begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log (0,2) \\
& =0,70
\end{aligned}
\end{aligned}
$$

$3.20,04 \mathrm{~mol}^{2} . \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}
$$

$3.30,2 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0,4)=1 \times 10^{-14}} \\
& \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2,5 \times 10^{-14} \mathrm{~mol} . \mathrm{dm}^{-3}
\end{aligned}
$$

4. $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
3=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0,001 \mathrm{~mol} . \mathrm{dm}^{-3}$
$5 \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\begin{aligned}
& 4,92=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.2023 \times 10^{-5} \mathrm{moldm}^{-3}}
\end{aligned}
$$

$$
\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-}
$$

$$
1: 3
$$

$$
\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\frac{1}{3}\left[\mathrm{H}^{+}\right]
$$

$$
=\frac{1}{3}\left(1,2023 \times 10^{-5}\right)
$$

$$
=4,0075 \times 10^{-6} \mathrm{~mol}^{2} \mathrm{dm}^{-3}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\text { Ratio } 1 & 2 & 1
\end{array} \\
& 0,04 \quad 0,08 \quad 0,04 \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2(0,04)} \\
& =0.08 \mathrm{~mol}^{2} \mathrm{dm}^{-3} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log (0,08) \\
& \text { = } 1.10
\end{aligned}
$$

LESSON 4

ACTIVITY SOLUTIONS

1. Define the following terms:

1.1 Strong acid- ionise completely in water to form a high concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions
1.2 Strong base- dissociate completely in water to form a high concentration of OH^{-} ions.
1.3 Concentrated acid- contain a large amount (number of moles) of acid in proportion to the volume of water.
1.4 Dilute base- contain a small amount (number of moles) of a base in proportion to the volume of water.

2 Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions in the following solutions:
2.1 NaOH of concentration $0,00001 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$

NaOH	Na^{+}	OH^{-}
Ratio 1	1	1
0,00001	0,00001	0,00001

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=0,00001 \mathrm{~mol} . \mathrm{dm}^{-3} } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] }=1 \times 10^{-14} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0,00001) }=1 \times 10^{-14} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] }=1 \times 10^{-9} \mathrm{~mol} . \mathrm{dm}^{-3}
\end{aligned}
$$

2.2 HCl of concentration $0,5 \mathrm{~mol} . \mathrm{dm}^{-3}$

$$
\begin{gathered}
\mathrm{HCl} \\
\text { Ratio } \\
\mathrm{H}
\end{gathered} \mathrm{H}^{\mathrm{H}^{+}}+\begin{gathered}
\mathrm{Cl}^{-} \\
1
\end{gathered}
$$

$0,5 \quad 0,5 \quad 0,5$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0,5 \mathrm{~mol}^{2} \mathrm{dm}^{-3}
$$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}} \\
& (0,5)\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right]=2 \times 10^{-14}{\mathrm{~mol} . \mathrm{dm}^{-3}}^{\text {a }}}
\end{aligned}
$$

3 Calculate the pH of:
$3.1 \quad 0,2$ mol.dm ${ }^{-3}$ of HNO_{3}

$$
\mathrm{HNO}_{3} \longrightarrow \mathrm{H}^{+}+\mathrm{NO}^{3-}
$$

Downloaded from Stanmorepfysics.com

$$
\begin{aligned}
& \text { Ratio } \begin{array}{c}
1 \\
0,2 \\
0,2 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=} \\
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{mol}_{3} \mathrm{O}^{+}\right]
\end{aligned} \\
\begin{aligned}
& =-\log (0,2) \\
& =0,70
\end{aligned}
\end{array} .
\end{aligned}
$$

$3.20,04 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$

| Ratio 1 | 2 | 1 |
| :--- | :--- | :--- | :--- |

$0,04 \quad 0,08 \quad 0,04$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2(0,04)$
$=0.08 \mathrm{~mol}^{\mathrm{dm}}{ }^{-3}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$=-\log (0,08)$
$=1.10$
$3.30,2 \mathrm{~mol}^{2} \mathrm{dm}^{-3}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$

$\mathrm{Ba}(\mathrm{OH})_{2}$	Ba	$2 \mathrm{OH}^{-}$	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Ratio 1	1	2	$=-\log \left(2,5 \times 10^{-14}\right)$
0,2	0,2	0,4	13,6
$\left[\mathrm{OH}^{-}\right]=0,4 \mathrm{~mol} . \mathrm{dm}^{-3}$			

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0,4)=1 \times 10^{-14}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2,5 \times 10^{-14} \mathrm{~mol}^{2} . \mathrm{dm}^{-3}$

LESSON 4

HOMEWORK/CLASSWORK ACTIVITY
1 Define the term End point
A stage of titration where the indicator changes the colour
$2 \quad 45 \mathrm{~cm}^{3}$ of sodium hydroxide solution is pipetted into a conical flask and titrated with a $0,12 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$. Using a suitable indicator, it was found that $20,3 \mathrm{~cm}^{3}$ of acid was needed to neutralise the base.
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
2.1 Write down the name an indicator that would be suitable for the above titration. Give a reason for your answer Phenolphthalein
Reaction between weak acid and strong base
pH range of Phenolphthalein is between 8,3-10
2.2 How many grams of oxalic acid is necessary to make
$150 \mathrm{~cm}^{3}$ of standard solution,
$c=\frac{n}{V}$
$0,12=\frac{n}{0,15}$
$c=\frac{m}{M V}$
$\mathrm{n}=0,018 \mathrm{~mol}$
$0,018=\frac{m}{90}$
$m=1,62 g$

$$
\begin{aligned}
& 0,12=\frac{m}{90 \times 0,15} \\
& m=1,62 \mathrm{~g}
\end{aligned}
$$

2.3 Calculate the concentration of the sodium hydroxide solution.
$\frac{C a \cdot V a}{C b \cdot V b}=\frac{n a}{n b}$
$\frac{0,12 \times 20,3}{C b \times 45}=\frac{1}{2}$
$\mathrm{Cb}=0,108 \mathrm{~mol} . \mathrm{dm}^{-3}$

A learner accidentally spills some sulphuric acid of concentration $6 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ from a flask on the laboratory bench. Her teacher tells her to neutralise the spilled acid by sprinkling sodium hydrogen carbonate powder onto it. The reaction that takes place is:
(Assume that the $\mathrm{H}_{2} \mathrm{SO}_{4}$ ionises completely.)
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{CO}_{2}(\mathrm{~g})$
The fizzing, due to the formation of carbon dioxide, stops after the learner has added 27 g sodium hydrogen carbonate to the spilled acid.
3.1 Calculate the volume of sulphuric acid that spilled. Assume that all the sodium hydrogen carbonate reacts with all the acid.
$n=\frac{m}{M}$
$n=\frac{27}{84}$
$\mathrm{n}=0,32 \mathrm{~mol}$
$n(H 2 S O 4)=1 / 2(0,32)=0,16 \mathrm{~mol}$
$c=\frac{n}{V}$
$6=\frac{0,16}{V}$
$V=0,027 \mathrm{dm}^{3}$

Downloaded from Stanmorepfysics.com

The learner now dilutes some of the $6 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ sulphuric acid solution in the flask to $0,1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$.
3.2 Calculate the volume of the $6 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ sulphuric acid solution needed to prepare $1 \mathrm{dm}^{3}$ of the dilute acid.
$\mathrm{Ca} . \mathrm{Va}=\mathrm{Cb} . \mathrm{Vb}$
6. $\mathrm{Va}=0,1.1$
$\mathrm{Va}=0,017 \mathrm{dm}^{3}$

During a titration $25 \mathrm{~cm}^{3}$ of the $0,1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ sulphuric acid solution is added to an Erlenmeyer flask and titrated with a $0,1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ sodium hydroxide solution.
Calculate the pH of the solution in the flask after the addition of 30
cm^{3} of sodium hydroxide. The endpoint of the titration is not yet reached at this point
For the acid
$c=\frac{n}{V}$
$0,1=\frac{n}{0,025}$
$\mathrm{n}=0,0025 \mathrm{~mol}$
For the base that reacted
$0,1=\frac{n}{0,03}$
$\mathrm{n}=0,003 \mathrm{mOl}$
Ratio of Acid : Base
1 : 2
$n($ acid $)=1 / 2 n($ base $)=1 / 20,003=0,0015 \mathrm{~mol}$
$\mathrm{n}($ acid unreacted $)=\mathrm{n}$ (initial) -n (reacted)
$=0,0025-0,0015=0,001 \mathrm{~mol}$
$c=\frac{n}{V} \quad$ Actual volume $=25+30=55 \mathrm{~cm}^{3}$
$c=\frac{0,001}{0,055}$
$\mathrm{C}=0,018 \mathrm{~mol} . \mathrm{dm}^{-3}$
$\mathrm{pH}=-\log [\mathrm{H} 3 \mathrm{O}+]$
$=-\log (2 \times 0,018)$
$=1,44$

LESSON 5

CLASSWORK EXERCISE

1.Write down ionic equations for the hydrolysis reaction for the following salts
$1.1 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{OH}^{-}$
BASIC SOLUTION
1.2 $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightarrow$

$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$	BASIC SOLUTION
$1.3 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow$	
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$	BASIC SOLUTION
$1.4 . \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow$	
$\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 1 \mathrm{HCl}+1 \mathrm{OH}^{-}$	NEUTRAL SALT
$1.5{\mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow}$$\mathrm{CN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCN}+\mathrm{OH}^{-}$ $1.6\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$	BASIC SOLUTION
ACIDIC SOLUTION	

SOLUTIONS

1.1.1 A
1.2.1 Fertilizers replenish nutrients depleted by the growing of crops.
1.2.2 Damage to crops /soil resulting in small or no harvest/ less income.

Excessive fertilizer seeps into groundwater and contaminates drinking water (any
Runs into rivers and / or dams and causes eutrophication.
1.2.3 Enhance growth of crops/ plants to produce more food for humans

Food security for humans
Production / application of fertilizer results in job creation selling fertilizers
Stimulates the economy (any one)

2.1			
	2.1 .1	The ratio of Nitrogen(N), Phosphorus (P) and potassium (K) in the certain fertilizer	
	2.1.2	Percentage fertiliser in the bag	
	2.1 .3	$\begin{aligned} & \% \mathrm{~K}=5 / 12 \times 22 \%=9,17 \% \\ & m(N)=9,17 / 100 \times 10 \mathrm{~kg}=0,92 \mathrm{~kg} \end{aligned}$	
2.2			
	2.2.1	$\begin{aligned} & \% P=3 / 7 \times 22 \%=9,43 \% \\ & m(P)=9,43 / 100 \times 2 \%=0,19 \mathrm{~kg} \end{aligned}$	
2.3			
	2.3.1	Total percentage of fertilizer	
	$2.3 .2$	Mass of fertilizer in $P=25 / 100 \times 50 \mathrm{~kg}=12,5 \mathrm{~kg}$ Mass of fertilizer in $Q=20 / 100 \times 50 \mathrm{~kg}=10 \mathrm{~kg}$ Amount of potassium in $\mathrm{Q}=3 / 10 \times 12,5 \mathrm{~kg}=3,75 \mathrm{~kg}$ Amount of potassium in $\mathrm{Q}=4 / 8 \times 10 \mathrm{~kg}=5 \mathrm{~kg}$ Fertiliser Q has more potassium per mass than fertilizer P	
2.4			
	2.4.1	$\begin{gathered} \mathrm{NH}_{4} \mathrm{NO}_{3}: 80 \mathrm{~g}---28 \mathrm{~g} \mathrm{~N} \\ 20 \mathrm{~kg} \ldots \ldots 28 / 80 \times 20 \\ \mathrm{~m}(\mathrm{~N})=7 \mathrm{~kg} \\ \mathrm{Na}_{3} \mathrm{PO}_{4}: 164 \mathrm{~g} \ldots .31 \mathrm{~g} \mathrm{P} \\ 12 \mathrm{~kg} \ldots \ldots .31 / 164 \times 12 \\ \mathrm{~m}(\mathrm{P})=2,27 \mathrm{~kg} \\ \mathrm{KCl}: 74,5 \mathrm{~g} \ldots \ldots .39 \mathrm{~g} \mathrm{~K} \\ \\ 18 \mathrm{~kg} \ldots \ldots .39 / 74,5 \mathrm{x} 18 \\ \mathrm{~m}(\mathrm{~K})=9,42 \mathrm{~kg} \\ \mathrm{~N}: \mathrm{P}: \mathrm{K} \\ 7: 2,27: 9,42 \\ 3: 1: 4 \end{gathered}$	

Downloaded from Stanmorepfysics.com

SOLUTIONS WORKSHEET 3

1.1.1 Ostwald process
1.1.2 Catalyst/ speed up the rate of reaction
1.1.3 Nitrogen dioxide
1.1.4 $3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}$
1.1.5 Decrease pressure Increase volume Decrease temperature
1.2.1 2-4-3-1
1.2.2 $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
1.2.3Vanadium pentoxide
1.2.4 $\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
1.2.5 Sulphuric acid will form (white) mist.

The reaction is very exothermic/ gives off too much heat

SOLUTIONS FOR REVISION QUESTIONS QUESTION 1

1.1.1 $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \mathrm{Bal}$
1.1.2 Catalyst OR Increase the reaction rate
1.2 Exothermic. The temperature increases
1.3 An exothermic reaction is favoured by a decrease in temperature.

The forward reaction is favoured.
Higher yield (of SO_{3}).
1.4.1 $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
1.4.2 A mist will form (which is difficult to collect). OR The reaction is too exothermic.
$1.5 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

QUESTION 2

2.1.1 Haber process.
2.1.2 $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
2.1.3 Air
2.2.1 40\%
2.2.2 High yield and high rate due to higher concentration.
2.2.3 Low reaction rate.

2.3 OPTION 1

$\% \mathrm{~N}$ in $\mathrm{NH}_{4} \mathrm{NO}_{3}=\frac{28}{80} \times 100=35 \%$
$\mathrm{m}(\mathrm{N})$ in $50 \mathrm{~kg}:=\frac{35}{100} \times 50=17.5 \mathrm{~kg}$

OPTION 2

$\mathrm{M}(\mathrm{N})$ in $\mathrm{NH}_{4} \mathrm{NO}_{3}=\frac{28}{80} \times 50=17.5 \mathrm{~kg}$

QUESTION 3

3.1.1 Air
3.1.2 Natural gas / methane / oil / coal
3.1.3 Sulphur / iron pyrite / iron sulphide
3.2.1 Haber process
3.2.2 Ammonia
3.2.3 $\mathrm{H}_{2} \mathrm{SO}_{4}$
3.2.4 $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
3.3.1 $\% \mathrm{~N}\left[\mathrm{NH}_{4} \mathrm{NO}_{3}\right]=28 / 80 \times 100=35 \%$
$\% \mathrm{~N}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]=28 / 132 \times 100=21,21 \%$
Ammonium nitrate (has the highest percentage of nitrogen).
3.3.2 Ostwald process
4.1 Percentage of fertiliser (N, P and K) present in the fertiliser.
4.2
4.2.1 A
4.2.2 C
4.2.3 C
4.3
$4.3 .1 \% N=3 / 6 \times 28=14 \%$

Downloaded from Stanmorepfysics.com
4.2.2

OPTION 1	
22% of $20 \mathrm{~kg}=4,4 \mathrm{~kg}$	OPTION 2
$4 / 9 \times 4,4=1,96 \mathrm{~kg}$	$4 / 9 \times 22=9,78 \%$
OPTION 3	$9,78 \%$ of $20 \mathrm{~kg}=1,96 \mathrm{~kg}$
22% of $20 \mathrm{~kg}=4,4 \mathrm{~kg}$	
$44,44 \%$ of $4,4=1,96 \mathrm{~kg}$	

$4.4 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

ACTIVITY 5

5.1 Vanadium pentoxide
5.2 $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
5.322% of $5 \mathrm{~kg}=1,1 \mathrm{~kg}$ $7 / 11 \times 1,1=0,7 \mathrm{~kg}=700 \mathrm{~g}$ $n=m / M=700 / 14=50$ moles
5.4 Excess plants block sunlight from aquatic life and organisms die. /Lack of oxygen.

