Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES COMMON TEST JUNE 2021

MARKS :75

TIME :1 ½ hours

This question paper consists of 7 pages and 3 data sheets.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

- 1. Write your examination number and centre number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of SIX questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

Copyright reserved Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.6) in the ANSWER BOOK, for example 1.11 D.

- A girl carries a heavy suitcase up a flight of stairs. A boy of the same weight carries 1.1 the same suitcase slowly up the flight of stairs. Which ONE of the following statements is TRUE?
 - A. The girl did lesser work and has lesser power than the boy
 - The girl has lesser power than the boy B.
 - C. The girl did more work and has more power than the boy
 - The girl did the same amount of work as the boy, and has more power D. than the boy
- (2)
- The kinetic energy of object X is E. Object Y has double the mass of X and moves 1.2 with twice the velocity of X. The kinetic energy of Y is ...
 - Α. 2E
 - B. 4E
 - C. 6E
 - 8E

- The wavelengths of light emitted by a distant star appear shorter when observed 1.3 from Earth. From this we can conclude that the star is ...
 - A. moving towards Earth and the light is blue shifted.
 - moving towards Earth and the light is red shifted. В.
 - moving away from Earth and the light is red shifted. C.
 - (2)moving away from Earth and the light is blue shifted. D.

1.4 Three energy distribution curves for oxygen gas under different conditions are shown in the graph below.

Curve R represents the energy distribution for 1 mole of oxygen gas at 30 °C.

Consider the following statements:

- I. Curve P represents 1 mole of oxygen gas at 45 °C.
- II. Curve P represents 2 moles of oxygen gas at 30 °C.
- III. Curve Q represents 1 mole of oxygen gas at 45 °C.
- IV. Curve Q represents 2 moles of oxygen gas at 30 °C.

Which of the above statements are TRUE?

- A I and III.
- B I and IV.
- C II and III.
- D II and IV

1.5 Chromate ions, $CrO_4^{2-}(aq)$ and dichromate ions, $Cr_2O_7^{2-}(aq)$ are in equilibrium in an aqueous solution according to the following balanced equation:

$$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(\ell)$$

yellow orange

Which ONE of the following concentrated solutions should be added to make the colour of the solution orange?

- A NaOH
- B NH₃
- $C Cr_2O_7^{2-}$
- D HCl

(2)

(2)

1.6 The balanced equation below represents the first step in the ionisation of sulphuric acid in water:

$$H_2SO_4(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HSO_4^-(aq)$$

The two BASES in the above reaction are:

- A $H_2SO_4(\ell)$ and $H_2O(\ell)$
- B H₃O⁺(aq) and HSO₄⁻(aq)
- C $H_2O(\ell)$ and $HSO_4^-(aq)$
- D $H_2SO_4(\ell)$ and $H_3O^+(aq)$

(2) [**12]**

QUESTION 2

A 6 kg block starts from rest from a height of 10 m and slides down a smooth incline plane to point A. It then moves along a smooth horizontal portion AB and finally moves up a second ROUGH inclined plane BC. It stops at point C which is 6 m above the horizontal.

The frictional force between the surface and the block is 20 N as it moves from B to C.

- 2.1 State the principle of conservation of mechanical energy in words. (2)
- 2.2 Using Energy Principles, determine the magnitude of the velocity of the block at point A. (4)
- 2.3 State the work energy theorem in words (2)
- 2.4 Draw a labelled free body diagram for the block as it moves up the incline BC. (3)
- 2.5 Using Energy Principles, determine the length of path BC. (5)

[16]

QUESTION 3

A bird is flying in the air above and emits sound waves with a frequency of 1250 Hz. A stationary birdwatcher hears the sound waves at a frequency of 1290 Hz. Take the speed of sound in air to be 340 m·s⁻¹.

- 3.1 State the Doppler Effect in words (2)
- 3.2 Is the bird flying towards or away from the birdwatcher? (1)
- 3.3 Calculate the speed of the bird. (5)

QUESTION 4

A group of learners use the reaction of zinc granules and sulphuric acid to investigate the effect of concentration on reaction rate. The balanced equation for the reaction is:

$$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$$

Two experiments, I and II, were conducted using 8,46 g of zinc. The concentration of sulphuric acid was different for each experiment.

The sketch graph below shows the mass of zinc remaining in the flasks as the reactions proceeded.

[8]

- 4.1 Define the term *reaction rate*.
- 4.2 Which reactant was in excess? (1)
- 4.3 In experiment I, 1,8816 dm³ of hydrogen gas was collected at STP in the first minute of the reaction.
 - 4.3.1 Calculate the mass of zinc remaining in the flask after one minute (5)
 - 4.3.2 Calculate the rate of reaction (in g·s⁻¹) at one minute (2)
- 4.4 Which experiment, I or II, used a higher concentration of sulphuric acid? (1)
- 4.5 Explain, with reference to the Collision Theory, the effect of concentration on reaction rate

(2)

QUESTION 5

5.1 The thermal decomposition of calcium carbonate (CaCO₃) reaches equilibrium in a sealed container. The reaction is represented by the following equation:

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

5.1.1 State Le Chatelier's principle.

(2)

The volume of the container is now decreased at constant temperature. How will each of the following be affected when a new equilibrium is established? Write down only INCREASES, DECREASES or REMAINS THE SAME.

5.1.2 The concentration of $CO_2(g)$.

(1)

5.1.3 The number of moles of $CaCO_3(s)$. Explain the answer

(3)

5.2 Initially 4 moles of $SO_2(g)$ and 5,50 moles of $O_2(g)$ are mixed in a sealed 2 dm³ container. When the reaction reaches equilibrium at 427 °C, 4 moles of $O_2(g)$ is present in the container.

The balanced equation for the reaction is:

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g) \Delta H < 0$$

Calculate the Kc value for this reaction at 427 °C.

[13]

QUESTION 6

6.1 When oxalic acid (COOH)₂ crystals are added to water it ionises according to the following balanced equation:

$$(COOH)_2(s) + 2H_2O(\ell) \rightleftharpoons (COO)_2^{2-}(aq) + 2H_3O^+(aq)$$

6.1.1 Why is oxalic acid considered to be a weak acid?

(1)

6.1.2 Some sodium oxalate crystals, Na₂(COO)₂, are now added to the solution above. How will the pH of the solution be affected? Choose from: INCREASES, DECREASES or REMAINS THE SAME

(2)

6.2 Learners add 50 cm³ of hydrochloric acid solution of concentration 0,1 mol·dm⁻³ to 25 cm³ of sodium hydroxide solution of concentration 'x' mol.dm⁻³.

The concentration of the hydronium ions in the resulting 75 cm³ solution is found to be 0,0461 mol·dm⁻³.

$$HCl(aq) + NaOH(aq) \Rightarrow NaCl(aq) + H_2O(l)$$

6.2.1 State the Lowry-Bronsted definition of an acid

(1)

6.2.2 Calculate the concentration 'x' of the sodium hydroxide solution.

(7) **[11]**

TOTAL: 75

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS / TABEL 1: FISIESE KONSTANTES

NAME / NAAM	SYMBOL / SIMBOOL	VALUE / WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m·s ⁻²
Universal gravitational constant Universele gravitasiekonstante	G	6,67 × 10 ⁻¹¹ N·m ² ·kg ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m·s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J·s
Coulomb's constant Coulomb se konstante	k	9,0 x 10 ⁹ N·m ² ·C ⁻²
Charge on electron Lading op electron	e ⁻	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg
Mass of Earth Massa van Aarde	М	5,98 × 10 ²⁴ kg
Radius of Earth Radius van Aarde	R _E	6,38 × 10 ⁶ m

TABLE 2: FORMULAE / TABEL 2: FORMULES

MOTION / BEWEGING

$v_f = v_i + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \text{ or/of } \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_f^2 = v_i^2 + 2a\Delta x \text{ or/of } v_f^2 = v_i^2 + 2a\Delta y$	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \text{ or/of } \Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$

FORCE / KRAG

1 31(32 / 1(10))	
$F_{net} = ma$	p=mv
$f_{s(max)} = \mu_s N$	$f_k = \mu_k N$
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	w=mg
$F = \frac{Gm_1m_2}{r^2}$	$g = \frac{GM}{r^2}$

WORK, ENERGY AND POWER / ARBEID, ENERGIE EN DRYWING

$W = F\Delta x \cos \theta$	$U = mgh or/ofE_p = mgh$							
$K = \frac{1}{2} mv^2 \text{ or/of } E_k = \frac{1}{2} mv^2$	$W_{net} = \Delta K$	or/of	$W_{net} = \Delta E_k$					
2 2	$\Delta K = K_f - K_i$	or/of	$\Delta E_k = E_{kf} - E_{ki}$					
$W_{nc} = \Delta K + \Delta U$ or/of $W_{nc} = \Delta E_k + \Delta E_p$	$P = \frac{W}{\Delta t}$							
$P_{av} = F \cdot v_{av} / P_{gem} = F \cdot v_{gem}$								

WAVES, SOUND AND LIGHT / GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$	
$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$	$E=hf or/ofE=h\frac{c}{\lambda}$	
	. 17	

 $E = W_o + E_{k(max)}$ or/of $E = W_o + K_{(max)}$ where/waar E = hf and/en W_o = hf_o and/en $E_{k(max)} = \frac{1}{2} m v_{max}^2$ or/of $K_{(max)} = \frac{1}{2} m v_{max}^2$

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op electron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$			$n = \frac{N}{N_A}$
$c = \frac{n}{V}$	or/of	$c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{\mathbf{c_a}\mathbf{v_a}}{\mathbf{c_b}\mathbf{v_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}}$	- '		$pH = -log[H_3O^+]$

 $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$

13 L

102 **No**

101 **M**d

100 Fm

99 Es

8 C

97 **B**

Se Ca

95 **A**m

94 **Pu**

93 **N**p

92 U 238

91 **Pa**

90 Th 232

																				
Do		aded 1	Low S	S te	ann	₩	36	<u>p</u> h	XS	ic C	SX (.	8	æ			71	Lu	175	
	17 (MI)		о IT (17	3,0 Ce			8,2 B	80		- -	127		ς'2 Α			20	Ϋ́	173	
	16 <u>S</u>		3,5 ∞ O 4	9		32	34		79	25		128	84	2,0 Po			69	E	169	
	3 (2)		► Z 3'0	15		31	33		75	21		122	83	ون 1	209		89	Щ	167	
	4 €		ς; Ο φ	7 4	8,r 2	28	32		73	20	8,1 Sn	119	82	8,1 Pb	207		29	유	165	
	13		2,0 C Q 3	- 5			31		20	49	<u>۲</u>	115	8	8,1 Te	204		99	^	163	
	12						30		65	48	ارا 2	112		Hg	201		65	q T	159	
AN ELE	7							٦٥ 6°١	63,5	47		108	79	Au	197		64	D	157	
ADEL V	10		Symbol Simbool		mass	mass	nassa	28	ار 8,1	29		z,s Pd	106	78	Ŧ	195		63	Ш	152
JENE	ത	umber <i>yetal</i>	+	7	tive atomic mass	atoommassa	ı	8,1 O	29	45		103	77	<u>_</u>	192		62	Sm	150	
ב ב ב	œ	Atomic numbel Atoomgetal	29 9, Cu 63,5		relative	elatiewe		Fe	26	44	2,2 Ru	101	9/	Os	190		61	Pm		
BEL 3: DIE PERIODIENE I ABEL VAIN ELEIMEN	7	₹ -	1		Approximate relat	Benaderde relatiewe	25	6,1 Mn 8,1	52	43	ون 1		75	Re	186		09	N	144	
8 E	9	EUTEL	Electronegativity Elektronegatiwiteiī		Appro	Bena	24	9'l 5	52	42	8,1 M	96	74	>	184		29	P	141	
	2	KEYISLEUTEL	Electro <i>Elektro</i>				23	9'l	51	41	Q N	92	73	Ta	181		28	Ce	140	
	4	_					22	ت ۱'و	48	40	7, Z		72	ون ا	179					
	က						21	ε'ı Sc	45	39	۲,۲ ۲,۲		22	La	139	83	Ac			
	7 =	Ē	_	9 5	Σ W		20	Ca		38	S	88	26	Ba	137			526		
	-€	T	ر ان ان	7	Z':		19	0'1 2'0		37	Rb 0,1		55	80 80 1'0		87	6'0 上			
				1	C' 4		1	0.0		1			1	, - ^						

TABLE 3: THE PERIODIC TABLE OF ELEMENTS BEL 3: DIE PERIODIEKE TABEL VAN ELEMEN

۲'۲

0'1

6'0

8,0

8,0

۷'0

۷'0