

MARKS: 50

Downloaded from Stanmorephysics. com

IN THIS INVESTIGATION YOU WILL :

* Learn terminology and symbols that you can use in sequences and series.
* Guided step for step in solving typical problems.
* Tested with each problem.

QUESTION 1

1.1 Consider the series $2+5+8+11+14+17$.

Given: $S_{n}=T_{1}+T_{2}+T_{3}+\cdots+T_{n}$
$\therefore S_{4}=T_{1}+T_{2}+T_{3}+T_{4}$
Therefore: $S_{1}=2$ en $S_{2}=2+5=7$
Complete:
1.1.1, $S_{3}=, 1, \square-1$
1.1.2 $\quad S_{4}=$

4
1.2 Calculate the sum of the first 4 terms of the series with $T_{k}=2 k-1$.
$S_{n}=\left[2\left(_\right)-1\right]+\left[2\left(_\right)-1\right]+\left[2\left(_\right)-1\right]+\left[2\left(_\right)-1\right]$

$$
=
$$

\qquad
S_{n} can also be written as:
$\sum_{k=1}^{4} 2 \boldsymbol{k}-1=[2(1)-1]+[2(2)-1]+[2(3)-1]+[2(4)-1]$
1.3 Calculate the following:

$$
\sum_{r=0}^{5} 3 \cdot 2^{r}
$$

Downloaded from St anmorephysics. com

1.4 How many terms is in:

1.4.1 the series in 1.3?

1.4.2 $\quad \sum_{k=1}^{8} 3 k$
1.4.3 $\quad \sum_{k=3}^{8} 3 k$
1.5 Give a general expression for the number of terms in the series:

$$
\sum_{k=m}^{n} 3 k
$$

QUESTION 2: To write a series in sigma notation

2.1 Consider the series $1+5+9+\cdots+97$
2.1.1 Calculate the general term of the series.
2.1.2 Calculate how many terms is in the series.
2.1.3 Write the series in sigma notation.
2.2 Write the series $(-3)+(-1)+3+9+\cdots$ to n terms in sigma notation.

QUESTION 3: The sum of arithmetic series.

Given:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
3.1 To calculate the sum of the first 20 terms of the series $2+5+8+11+\cdots$:
3.1.1 Give the values of a, n and d..
3.1.2 Calculate now the sum of the first 20 terms.

Downloaded from St anmorephysics. com

3.2 Consider the series $2+5+8+\cdots+158$
3.2.1 Determine the general term T_{n} of the series.
3.2.2 Calculate the number of terms in the series.
3.2.3 Hence, determine the sum of the series.
3.3 To calculate how many terms of the arithmetic row, 3; 5; 7; \qquad must be added to be equal to 440 :
3.3.1 Give the values of a and d.
3.3.2 Hence, determine the value for n.
3.4 A supermarket stacks the cold drink bottles in a triangle on top of each other. One bottle at the top, two bottles in the second row, three bottles in the third row and so on. A group of campers enter to buy the first 5 rows of bottles. How many bottles are left if the last row had 20 bottles?

QUESTION 4: The sum of geometric series.

Given:

$$
T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; r \neq 1 \quad \text { where } \quad r=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}
$$

4.1 Determine the sum of the first 15 terms of the series:
$\frac{2}{3}+2+6+\cdots$
4.2 Consider the ending series: $256+128+64+32+\cdots+0.25$
4.2.1 Give a value for a and r and hence T_{n}.
4.2.2 Calculate n, the number of terms in the series.
4.2.3 Hence determine the sum of the ending series.

Downloaded from St anmorephysics. com

4.3 To calculate m.
$\sum_{k=3}^{m} \frac{1}{16}(2)^{k}=127.5$
4.3.1 Calculate a and r.
4.3.2 Determine the number of terms.
4.3.3 Calculate m.

QUESTION 5: The sum to infinity of a convergent geometric series.

5.1 Choose the correct option between the brackets:
5.1.1 When a geometric series converge, each consecutive term must be (smaller/bigger) than the previous one.
5.1.2 Therefore $(\boldsymbol{r}> \pm 1 ;-\mathbf{1}<r<1)$
5.2 Given:
$S_{\infty}=\frac{a}{1-r}$
5.2.1 The second term of a convergent series is $\frac{5}{2}$ and the sum to infinity is 10 . Calculate the constant ratio.
5.3 Given: $0 . \dot{2} \dot{3}$ (Write as a normal fraction)
5.3.1 Write the decimal as a geometric series.
5.3.2 Calculate a and r.
5.3.2 Calculate the sum to infinity.

Grade 12

INVESTIGATION 1

QUESTION 1

1.1 1.1.1 $S_{3}=7+8=15$
1.1.2 $\quad S_{4}=15+11=26$
1.2 $\quad T_{k}=2 k-1$.
$S_{n}=[2(1)-1]+[2(2)-1]+[2(3)-1]+[2(4)-1]$
$=1+3+5+7$
$=16$
1.3

(2)

$$
\begin{aligned}
\sum_{r=0}^{5} 3 \cdot 2^{r} & =3 \cdot 2^{0}+3 \cdot 2^{1}+3 \cdot 2^{2}+3 \cdot 2^{3}+3 \cdot 2^{4}+3 \cdot 2^{5} \\
& =3+6+12+24+48+96 \\
& =189
\end{aligned}
$$

1.4 The number of terms in:
1.4.1 the series in 1.4 is 6
1.4.2 $\sum_{k=1}^{8} 3 k$ is 8
1.4.3 $\sum_{k=3}^{8} 3 k$ is $\quad 6$
1.5 The number of terms in the series:

$$
\sum_{k=m}^{n} 3 k \quad \text { is } n-(m-1)=n-m+1
$$

QUESTION 2: To write the series in sigma-notation

2.1 Given: $1+5+9+\cdots+97$
2.1.1 The first difference is constant. \rightarrow Arithmetic series.

General term: $T_{n}=a+(n-1) d$

$$
\begin{align*}
& a=1 ; \quad d=4 \\
& \therefore T_{n}=1+(n-1) 4 \\
& \quad=4 n-3 \tag{2}
\end{align*}
$$

Downloaded from St anmorephysics. com

2.1.2 The last term is $4 n-3=97$

$$
\begin{array}{rlrl}
& \therefore & 4 n & =97+3 \\
& \therefore & n & =\frac{100}{4} \\
& & =25 \tag{2}
\end{array}
$$

2.1.3 In sigma notasion:

$$
\begin{equation*}
\sum_{n=1}^{25} 4 n-3 \tag{1}
\end{equation*}
$$

2.2

$$
\begin{gather*}
(-3)+(-1)+3+9+\cdots \tag{3}\\
+2+4+6 \\
+2+2
\end{gather*}
$$

Second difference constant: \rightarrow Quadratic number pattern $\therefore T_{n}=a n^{2}+b n+c$

$$
\begin{aligned}
& 2 a=2 \quad \therefore a=1 \\
& 3 a+b=2 \quad \therefore b=2-3=-1 \\
& a+b+c=-3 \quad \therefore 1-1+c=-3 \quad \therefore c=-3 \\
& \therefore T_{n}=n^{2}-n-3 \\
& \therefore \sum_{k=1}^{n} k^{2}-k-3
\end{aligned}
$$

QUESTION 3: The sum of arithmetic series:

3.1 To calculate the sum of the first 20 terms of the series $2+5+8+11+\cdots$:
3.1.1 $a=2, n=20$ and $d=3$..
3.1.2 $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{align*}
S_{20} & =\frac{20}{2}[2(2)+(20-1) 3] \\
& =10(61) \\
& =610 \tag{1}
\end{align*}
$$

3.2 Given: $2+5+8+\cdots+158$
3.2.1 $\quad T_{n}=2+(n-1) 3=3 n-1$
3.2.2 $3 n-1=158$
$\therefore \quad 3 n=159$
$\therefore \quad n=53$

Downloaded from St anmorephysics. com

3.2.3

$$
\begin{align*}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{53}{2}[2(2)+(53-1) 3] \\
& =4240 \tag{2}
\end{align*}
$$

3.3 To calculate the number of terms in the arithmetic row that will add up to 440:3;5; $7 ; \ldots$

$$
\begin{equation*}
\text { 3.3.1 } \quad a=3 \text { and } d=2 \text {. } \tag{1}
\end{equation*}
$$

3.3.2

$$
\begin{array}{rlrl}
& \frac{n}{2}[2 a+(n-1) d]=440 \\
& \therefore & \frac{n}{2}[2(3)+2(n-1)]=440 \\
& & n[6+2 n-2]=880 \\
& \therefore & 2 n^{2}+4 n-880 & =0 \\
& \therefore & n^{2}+2 n-440 & =0 \\
& \therefore & (n+22)(n-20) & =0 \\
& \therefore & n=20 \quad n & \neq-22 \tag{2}
\end{array}
$$

3.4 The general term of the row is $T_{n}=n$

The number of bottles that is left is:

$$
\sum_{n=6}^{20} n=6+7+8+\cdots+20
$$

The number of terms is $20-6+1=15$

$$
\begin{aligned}
\therefore S_{15} & =\frac{15}{2}[2(6)+(15-1)(1)] \\
& =195
\end{aligned}
$$

There is 195 bottles left after the first 5 rows are sold.

QUESTION 4: The sum of geometric series:

Given:

$$
T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; r \neq 1 \quad \text { where } r=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}
$$

Downloaded from St anmorephysics. com

4.1 Calculate the sum of the first 15 terms of the series:
$\frac{2}{3}+2+6+\cdots$
$r=\frac{2}{\frac{2}{3}}=\frac{6}{2}=3 \quad$ and $\quad a=\frac{2}{3}$
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$S_{15}=\frac{\frac{2}{3}\left(3^{15}-1\right)}{3-1}$

$$
\begin{equation*}
\text { = } 4782 \text { 968,67 } \tag{2}
\end{equation*}
$$

4.2 Consider the ending series $256+128+64+32+\cdots+0,25$
4.2.1 $a=256$

$$
\begin{align*}
& r=\frac{128}{256}=\frac{64}{128}=\frac{1}{2} \\
& \therefore T_{n}=256 \cdot\left(\frac{1}{2}\right)^{n-1} . \tag{1}
\end{align*}
$$

4.2.2 $256 \cdot\left(\frac{1}{2}\right)^{n-1}=\frac{1}{4}$
$\therefore 2^{8} \cdot 2^{-n+1}=2^{-2}$
$\therefore \quad 8-n+1=-2$

$$
\begin{equation*}
\therefore \quad n=11 \tag{1}
\end{equation*}
$$

4.2.3 The sum of the ending series is:
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; r \neq 1$
$S_{10}=\frac{256\left(\left(\frac{1}{2}\right)^{n}-1\right)}{\frac{1}{2}-1}$

$$
\begin{equation*}
=511,5 \tag{2}
\end{equation*}
$$

4.3
$\sum_{k=3}^{m} \frac{1}{16}(2)^{k}=\frac{1}{16}(2)^{3}+\frac{1}{16}(2)^{4}+\frac{1}{16}(2)^{5}+\cdots+\frac{1}{16}(2)^{m}$
4.3.1 $\quad a=\frac{1}{16}(2)^{3}=\frac{1}{2}$

$$
\begin{equation*}
r=2 \tag{1}
\end{equation*}
$$

4.3.2 The number of terms is:

$$
\begin{equation*}
m-3+1=m-2 \tag{1}
\end{equation*}
$$

Downloaded from Stanmorephysics. com

4.3.3 Therefore:

$$
\begin{align*}
& S_{m-2}=\frac{a\left(r^{m-2}-1\right)}{r-1} \\
& \therefore 127.5=\frac{0.5\left(2^{m-2}-1\right)}{2-1} \\
& \therefore 255=2^{m-2}-1 \\
& \therefore 256=2^{m-2} \\
& \therefore \quad 2^{8}=2^{m-2} \\
& \therefore \quad 8=m-2 \\
& \therefore \quad m=10 \tag{3}
\end{align*}
$$

QUESTION 5: The sum to infinite of a convergent geometric series:

5.1 5.1.1 smaller

5.1.2 (-1 <r <1)

5.2

$$
\begin{array}{ll}
\text { 5.2.1 } & T_{2}=a \cdot r^{1}=\frac{5}{2} \quad \text { and } \frac{a}{1-r}=10 \tag{1}\\
& \therefore a=\frac{5}{2 r} \quad \therefore a=10(1-r) \\
& \therefore \frac{5}{2 r}=10(1-r) \\
& \therefore 5=20 r-20 r^{2} \\
& \therefore 20 r^{2}-20 r+5=0 \\
& \therefore(10 r-5)(2 r-1)=0 \\
& \therefore r=\frac{5}{10} \text { or } r=\frac{1}{2} \\
& \therefore r=\frac{1}{2}
\end{array}
$$

5.3 Given: $0 . \dot{2} \dot{3}$
5.3.1 $0, \dot{2} \dot{3}=0,23+0,0023+0,000023+\cdots$
5.3.2 $a=0,23$ and $r=0,01$.
5.3.2 The sum to infinite is:

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} ;-1<r<1 \\
S_{\infty} & =\frac{0.23}{1-0.01} \\
& =\frac{23}{99}
\end{aligned}
$$

