GAUTENG NORTH DISTRICT OFFICE | Blind bloom | | | |------------------------------|---|-------------------| | LEARNER'S NAME & SURNAME | : | MSIU | | SUBJECT | : | MATHEMATICS | | GRADE
Stanmorephysics.com | : | anno 9 | | TASK | C | Term 1 Assignment | | MARKS | : | 50 | | DURATION | : | 1 Hour | | Question | 12 | 2 | 3 | 4 | 5 | Total | |-----------------|--------------------------|---|--------------------------|----------|---------------------|-------| | Topic | Properties
of Numbers | Calculation
s and
Calculation
Techniques | Multiples
and Factors | Integers | Solving
Problems | | | Total
Mark | 07 | 13 | 5 | 12 | 13 | 50 | | Learner
Mark | | | | | | | Instructions to the learner - 1. Read all the instructions carefully. - 2. Answer all the questions in the spaces provided. - 3. All working must be shown. - 4. The assignment is out of 50 marks. - 5. The duration is 1 hour. - 6. Approved scientific calculators may be used unless stated otherwise. **Question 1 [Properties of Numbers]** 1.1 The diagram below is an exact representation of the real number system. Classify the numbers below in accordance with the area in which they belong. Some numbers may be repeated. $$-\frac{7}{3}$$; 2π ; $\sqrt[3]{9}$; $2,\dot{3}$; 0 ; $\sqrt{4}$; 10 The Real Number System Write your answers on the spaces provided below. | 1.2 | Insert the two whole numbers on both sides of $\sqrt{24}$: | (2) | |-------|---|----------------| | | $<\sqrt{24}<$ | | | | | [07] | | Q | Question 2 [Calculations and Calculation Techniques] | | | 2.1 | Use estimation to calculate the following by rounding off the numbers | s to the (4) | | Stann | nearest 100. 2.1.1 723 + 586 mcrephysics.com 2.1.2 2850 - 1155 | on | | 2.2 | Determine the exact answer for each of the calculations in question 2 | 2.1 above, (4) | | | by working out the errors caused by rounding, and compensating for | | | | 2.2.1 723 + 586 2.2.2 2850 - 1155 | | | | - COM S | | | 2.3 | Multiply the following by using the column Method: 1988×34 | (2) | | | 90MII. | | | | | | | A municipality has budgeted R80 000 for putting up new street name boards. | | | | | | | | |--|-------------------------------|---------------------------|--|--|--|--|--| | | st R134 each. How many | | | | | | | | an be put up, and how mu | ich money will be left in the | e budget? | arian O Markintan and E | 1 | | | | | | | | stion 3 [Multiples and F | actorsj | | | | | | | | hree numbers are given b | pelow. Use prime factorisat | tion to determine the HCI | | | | | | | nd LCM. | | | | | | | | | 1848 | 132 | 462 | #### Question 4 [Integers] 4.1 Determine the number that makes the following statement true. (1) 53 - (a certain number) = 65 The certain number =_____ 4.2 Calculate the following without the use of a calculator: $4.2.1 \quad \frac{50 \times 33 + 25 \times 50}{10 \times 50 - 50 \times 19} \tag{3}$ ______ 4.2.2 $-3 - (-2)(5) - (-4)^3$ (3) ____ 4.2.3 $\frac{3^{3} - \left(-\sqrt{4}\right)^{2} + \sqrt[3]{-64}}{-4^{2} \times 1^{3} + 17}$ (5) [12] ## **Question 5 [Solving Problems]** | eason for your answer. | | | | | | |--|---------------------------|----------------------|---------------------|----------------------|-----------------------| | Numbers of pens | 2 | 6 | 10 | | 20 | | Price in Rands | 7 | 21 | | 42 |) former plaushe his lands i | n 10 daya | if he week | - E trootor | o Howlo | النيد مصال ال | | A farmer ploughs his lands i
ake if he uses only 3 tractor | _ | if ne uses | s 5 tractor | s. How Io | ng will it | | and if the uses offiny o tractor | Karabo and John are at the | same res | stop aloi | ngside a h | nighway. I | Karabo | | Karabo and John are at the
started driving along the hig | | • | _ | - | | | | jhway at a | constant | speed of | 80 km/h. | An hour | | started driving along the hig
ater, John started driving a
Karabo at the constant spec | jhway at a
long the sa | constant
ame high | speed of way in the | 80 km/h.
same dir | An hour
rection as | | started driving along the hig
ater, John started driving a | jhway at a
long the sa | constant
ame high | speed of way in the | 80 km/h.
same dir | An hour
rection as | | started driving along the hig
ater, John started driving a
Karabo at the constant spec | jhway at a
long the sa | constant
ame high | speed of way in the | 80 km/h.
same dir | An hour
rection as | | started driving along the hig
ater, John started driving a
Karabo at the constant spec | jhway at a
long the sa | constant
ame high | speed of way in the | 80 km/h.
same dir | An hour
rection as | The End? #### GAUTENG NORTH DISTRCT OFFICE | MEMORANDUM | | | | | | | |------------|---|-------------------|--|--|--|--| | SUBJECT | : | MATHEMATICS | | | | | | GRADE | : | 9 | | | | | | TASK | : | Term 1 Assignment | | | | | | MARKS | : | 50 | | | | | | DURATION | i | 1 Hour | | | | | ## **Question 1 [Properties of Numbers]** | | 1.1.1 | $-\frac{7}{3}$; 2, $\dot{3}$; 0; $\sqrt{4}$; 10 \checkmark A | (1) | |-----|-------|--|------| | | 1.1.2 | 0 ; √4 ;10 ✓A | (1) | | | 1.1.3 | 0 ; √4 ;10 ✓A | (1) | | | 1.1.4 | $\sqrt{4}$; $10\checkmark$ A | (1) | | | 1.1.5 | 2π ; ³ √9 ✓ A | (1) | | 1.2 | | the two whole numbers on both sides of $\sqrt{24}$: | (2) | | | | | [07] | #### **Question 2 [Calculations and Calculation Techniques]** | 2.1 | | | (4) | |-----|---|---------------------------------|-----| | | 2.1.1 723 + 586 | 2.1.2 2850 - 1155 | | | | 723 ≈ 700 | 2850 ≈ 2900 | | | | | ├ ✓A | | | | 586 ≈ 600 | 1155 ≈ 1200 | | | | $\therefore 700 + 600 = 1300 \checkmark CA$ | ∴ 2900 – 1200 = 1700 √CA | | | | | | | | 2.2 | 2.2.1 723 + 586 | 2.2.2 2850 – 1155 | (4) | | | Estimated answer = 1300 | Estimated answer = 1700 | | | | 1300 + 23 − 14 ✓M | 1700 − 50 + 45 ✓M | | | | = 1309 √CA | = 1695 √CA | | | | | | | | | Award only 1 mark for the answer if compensated errors. | learner did not show the | | | 2.3 | Multiply the following by using the colu | nn Method: | (2) | | | 1988 × 34 | | | | | 19 | 988 | | | | | | | | | <u>× 34</u> | | |-----|--|------| | | 7952 √A | | | | <u>59640</u> ✓A | | | | 67592 No mark for the final answer. | | | 2.4 | $1988 \times 34 = 67592 \checkmark A$ one mark for answer. | (1) | | | | (0) | | 2.5 | $R80\ 000 \div R134 = 597,0149254$ | (2) | | | ∴ 597 street names can be put up. ✓ A | | | | $597 \times R134 = R79998$ | | | | $R80\ 000 - R79\ 998 = R2$ | | | | ∴ there will be R2 left√CA | | | | | [13] | #### **Question 3 [Multiples and Factors]** ### Question 4 [Integers] | 4.1 | The certain number = $-12\checkmark \mathbf{A}$ | (1) | |-------|---|-----| | 4.2.1 | $50 \times 33 + 25 \times 50$ | (3) | | | $19 \times 50 - 50 \times 48$ | | $$= \frac{50(33 + 25)}{50(19 - 48)} \checkmark \mathbf{M}$$ $$= \frac{58}{-29} \checkmark \mathbf{CA}$$ $$= -2 \checkmark \mathbf{CA}$$ $$4.2.2 \quad -3 - (-2)(5) - (-4)^3$$ $$= -3 - 10 - (-64) \checkmark \mathbf{M}$$ $$= -13 + 64 \checkmark \mathbf{CA}$$ $$= 51 \checkmark \mathbf{CA}$$ $$4.2.3 \quad \frac{3^3 - (-\sqrt{4})^2 + \sqrt[3]{-64}}{-4^2 \times 1^3 + 17}$$ $$= \frac{27 \checkmark \mathbf{A} - (4) \checkmark \mathbf{A} + (-4) \checkmark \mathbf{A}}{-16 + 17 \checkmark \mathbf{M}}$$ $$= \frac{19}{1}$$ $$= 19 \checkmark \mathbf{CA}$$ [12] #### **Question 5 [Solving Problems]** | 5.1 | 4 : 3 ✓A | | | | | | (1) | | |-----|---|-----------------------------------|---|----------------------------|------------|---------------------------|-----|--| | 5.2 | Numbers of pens 2 6 10 12√A 20 | | | | | | | | | | Price in Rands | 7 | 21 | 35√A | 42 | 70√A | | | | | The proportion is direct, as the increases at the same rate. \checkmark if 'same rate' is not mention or The proportion is direct, number of Pens constant. \checkmark A $\left(\frac{number \ of \ Pens}{Price \ in \ rands}\right)$ = | A(no maned). Der of per a const | rk should shoul | be awa
by the pr | ded for t | t he reason
s a | | | | 5.3 | Indirect Proportion: number | r of days | × numbe | er of trac | tors = a c | constant | (3) | | | | Let the number of days usir | ng 3 tract | ors equa | \mathbf{x} . | | | | | | | $x \times 3 = 12 \times 5 \checkmark \mathbf{M}$ | | |-----|--|------| | | W + | | | | $3x = 60\checkmark$ CA | | | | $x = 20$ \checkmark A | | | 5.4 | By the time John catches up with Karabo, the distance travelled by each of them will be equal. | (5) | | | distance = time × speed | | | | Let John's travelling time be = x | | | | Karabo started travelling 2 hours before John | | | | \therefore Karabo's travelling time will be = $(x + 2)$ | | | | John's Distance = Karabo's Distance | | | | time × speed = time × speed
$\therefore x \times 120 = (x + 2) \times 90 \checkmark \checkmark \checkmark \mathbf{M}$ | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | 120x - 90x = 180 | | | | 30x = 180 | | | | $x = 6 \checkmark CA$ It will take John 6 hours to catch up with Karabo. | | | | it will take John J Hours to catch up with Karabo. | | | | | | | | | | | | | [13] | The End?