

education

Department of Education FREE STATE PROVINCE

GRADE 10

This question paper consists of 4 pages

Copyright reserved Please turn over

Downloaded from Stanmorephysics.com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 4 questions.
- 2. Clearly show ALL calculations, diagrams, graphs, etc. that you have used to determine your answers.
- 3. Answers only will NOT necessarily be awarded full marks.
- 4. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 5. Diagrams are NOT necessarily drawn to scale.
- You may use an approved scientific (non-programmable and 6. calculator non-graphical), unless stated otherwise.
- downloaded From stammadownloaded An information sheet with formulae is included at the end of the question paper. 7.

Write neatly and legibly. 8.

Copyright reserved Please turn over

Downloaded from Stanmorephysics.com

QUESTION 1

- 1.1 Show that 0,75 is rational number. (1)
- 1.2 Round 34,4678 off to two decimals (1)
- 1.3 Consider the following numbers: $\sqrt{25}$; $\sqrt{-7}$; π

Which one of the following numbers is:

- (2)1.4 Determine two positive integers between which $\sqrt{33}$ lies.
- 1.5 Simplify completely

1.5.1
$$3x(2x-4xy)$$
 (2)

1.5.2
$$(x-3)^2$$
 (2)

1.3.2 Rational (1)

1.3.3 Non-real (1)

Determine two positive integers between which
$$\sqrt{33}$$
 lies. (2)

Simplify completely

1.5.1 $3x(2x-4xy)$ (2)

1.5.2 $(x-3)^2$ (2)

1.5.3 $(2r-p)(3r^2-4rp+p^2)$ (3)

ESTION 2

Factorize completely

2.1.1 $2x^2-8$ (2)

2.1.2 x^2-4x+3 (2)

2.1.3 $2px+3qx-2py-3qy$ (3)

[14]

QUESTION 2

2.1 Factorize completely

$$2.1.1 \quad 2x^2 - 8 \tag{2}$$

$$2.1.2 x^2 - 4x + 3 (2)$$

$$2.1.3 \quad 2 px + 3 qx - 2 py - 3 qy \tag{3}$$

2.2 Simplify

$$\frac{27x^3 - 8}{27x^2 + 18x + 12} \tag{4}$$

[12]

Downloaded from Stanmorephysics.com

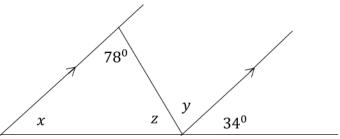
QUESTION 3

3.1 Solve for x

$$3.1.1 \quad (2x+1)(x-3) = 0 \tag{2}$$

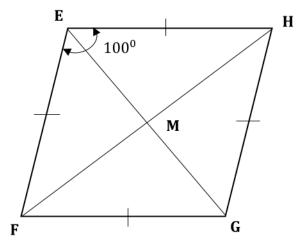
$$3.1.2 \quad 3^{\times} = 1$$
 (2)

3.1.3
$$-4 \le 3x - 1 \le 5$$
 (represent your answer graphically) (4)


$$3.1.4 9^{2x+3} = 27^{x+5} (4)$$

3.2 Solve for x and y simultaneously
$$2x - y = -1$$
 and $x + 2y = 12$ (4)

[16]


QUESTION 4

4.1 Find the values of x, y and z in the diagram below. Give a reason for each statement.

(5)

4.2 EFGH is a rhombus in which the diagonals EG and FH intersect at M. $F\hat{E}H = 100^{\circ}$

Find the value of:

$$4.2.2 \quad \widehat{\mathsf{EFM}} \tag{2}$$

[9]

TOTAL: 50

Copyright reserved Please turn over

GRADE 10

MARKS: 50

TIME: 1 HOUR

QUESTION 1						
1.1	$ \begin{array}{c} 0,75 \\ = \frac{75}{100} \\ = \frac{3}{4} \end{array} $		$ \frac{75}{100} $ OR $ \frac{3}{4} $			
1.2		78 = 34,47 hysics.com	(1) ✓ answer (1)			
1.3	.J, Jp	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	1.3.1	π	✓ answer (1)			
	1.3.2	$\sqrt{25}$	✓ answer (1)			
	1.3.3	$\sqrt{-7}$	✓ answer (1)			
1.4	√25 <	wo positive integers between which $\sqrt{33}$ lies.				
	$5 < \sqrt{33} < 6 \checkmark$ $\therefore \sqrt{33} \text{ lies between 5and 6}$		$\checkmark \sqrt{25} < \sqrt{33} < \sqrt{36}$ $\checkmark \text{answer}$ (2)			
1.5	1.5.1	$3x(2x-4xy) = 6x^2 - 12x^2y$	distribution law $ \checkmark 6x^{2} $ $ \checkmark -12x^{2}y $ (2)			
	1.5.2	$(x-3)^2$ = $(x-3)(x-3)$ \checkmark = $x^2 - 6x + 9$ \checkmark	$\checkmark (x-3)(x-3)$ $\checkmark x^2 - 6x + 9$ (2)			
	1.5.3	$(2r - p)(3r^{2} - 4rp + p^{2})$ $= 6r^{3} - 8r^{2}p + 2rp - 3r^{2}p + 4rp - p^{3}$ $= 6r^{3} - 11r^{2}p + 6rp^{2} - p^{3}$				
			[14]			
	QUESTION 2		(1105 - 40			
2.1	2.1.1	$2x^2-8$	✓HCF of 2 ✓brackets			
		$= 2(x^2 - 4) \checkmark$ $= 2(x + 2)(x - 2) \checkmark$	(2)			
	2.1.2	$= 2(x+2)(x-2) \checkmark $ $x^2 - 4x + 3$	√√Factors			
		$= (x-3)(x-1) \checkmark \checkmark$	(2)			

	2.1.3	2 px + 3qx - 2 py - 3qy	
		$= (2px-2py)+(3qx-3qy)\checkmark$	
		$=2p(x-y)+3q(x-y)\checkmark$	
		$=(2y+3q)(x-y)\checkmark$	(One weight
		OR	√Grouping
		$= (2px+3qx)+(-2py-3qy)\checkmark$	✓ Common factor for two brackets
		$= x(2p+3q) - y(2p+3q) \checkmark$	√answer
		$=(x-y)(2p+3q)\checkmark$	
			(3)
	2.2	$\frac{27x^3 - 8}{27x^2 + 18x + 12}$	√√Factorising numerator
		$= \frac{(3x-2)(9x^2+6x+4)}{3(9x^2+6x+4)} \checkmark \checkmark$	✓ Factorising denominator
		$=\frac{3(9x^2+6x+4)}{3(9x^2+6x+4)}$	√ answer
		$=\frac{3x-2}{3}$	(4)
		3	[11]
			[11]
_	STION		
3.1		Solve for x:	
	3.1.1	(2x+1)(x-3)=0 (2x+1)=0 or $(x-3)=0$	$\checkmark x = -\frac{1}{2} \text{ or } \checkmark x = 3$
		$x = -\frac{1}{2}$ \checkmark or $x = 3$ \checkmark	
		_	(2)
	3.1.2	$3^{\times} = 1$	$\checkmark 3^{\times} = 3^{0}$
		$ \begin{vmatrix} 3^{x} = 3^{0} \\ x = 0 \end{vmatrix} $	√ 3 = 3 √answer
		X - 0	(2)
	3.1.3	$-4 \le 3x - 1 \le 5$ $-4 + 1 \le 3x \le 5 + 1$	✓simplification
		$-3 \le 3x \le 6 \checkmark$	Simplification
		$-1 \le x \le 2 \checkmark \checkmark$	√-1 √ 2
		•	√ graphical
		-1 2	representation
	3.1.4	9 ^{2x+3} = 27 ^{x+5}	(4)
		$3^{2(2x+3)}=3^{3(x+5)}$	✓ same base
		$3^{2x+6} = 3^{3x+15} \checkmark 4x+6=3x+15 \checkmark$	✓ simplifying ✓ equating exponents
1		4x+0=3x+13 v	. , ,

		x = 9 √	
		X = 3 ·	√answer
			(4)
	3.2	2x - y = -1(1) and $x + 2y = 12$ (2)	(4)
	0.2	$x = -2y + 12 \dots (3)$	✓ Making x subject of
		Substitute equation 3 into equation 1	the formula
		Eq 1: $2(-2y+12) - y = -1$	✓ Subt eq 3 into 1
		-4y + 24 - y = -1	
		-5y = -25	
		y = 5 ✓	✓ y = 5
		Eq 3: $x = -2(5) + 12$, ,
		x = 2 ✓	$\sqrt{x} = 2$
			(4)
			[16]
QUESTION 4			
4.1		Statement	
		$x = 34^{\circ} (Corrsp \angle s =) \checkmark$	√S&R
		70 (Alt. (c.) (
		$y = 78$ (Alt $\angle s =)\checkmark$	√S&R
			· oan
		$z = 180 - 112 \checkmark$ (Int \angle of \triangle or a \angle s on straight line are	
		suppl)	√S
		z = 68° √	√R
			√answer
			(5)
4.2	4.2.1		
		FEM = $50\checkmark$ (Diagonals of rhombus bisect at the vertex	√S
		∠s)√	√R
	4.0.0		(2)
	4.2.2	EFM =180 – (50 + 90) (sum of \angle s in Δ) \checkmark	√S √R
		EFM = 40° ✓	(2)
			(2)
			[9]
		1	