PROVINCIAL GOVERNMENT
REPUBLIC OF SOUTH AFRICA
department of
EDUCATION
VHEMBE EAST DISTRICT

PHYSICAL SCIENCES
 TERM 1 CONTROLLED TEST
 07 MARCH 2022

MARKS: 100

TIME: 2 hours

This Question paper consists of 13 pages including the cover page and DATA SHEETS

INSTRUCTIONS AND INFORMATION

1. Write your name on the ANSWER SCRIPT.
2. This question paper consists of 6 questions. Answer ALL the questions in the ANSWER SCRIPT.
3. Number the answers correctly according to the numbering system used in this question paper
4. Leave ONE line between two sub questions, for example between

QUESTION 2.1 QUESTION 2.2.
5. You may use a non-programmable calculator.
6. You may use appropriate mathematical instruments.
7. You are advised to use the attached DATA SHEET ANSWER SCRIPT..
8. Show ALL formulae and substitutions in ALL calculations.
9. Round off your final numerical answers to a minimum of TWO decimal places.
10. Give brief motivations, discussions etc where required.

QUESTION 1: MULTIPLE - CHOICE QUESTIONS

Four options are provided as possible answers to the following questions.
Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER SCRIPT, for example 1.11 E.
1.1 Which ONE of the following groups of elements are classified as halogens?
A. $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$
morep B sics. Nel Ar, Kr
C. $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$
D. $\mathrm{Si}, \mathrm{Ge}, \mathrm{As}$
1.2 According to the kinetic molecular theory the particles of a solid \qquad
A. vibrate in their fixed positions and have a fixed shape
B. are free to move and are compressible
C. are free to move and have a fixed shape.
D. vibrate in their fixed positions and are compressible.
1.3 Which ONE of the following substances undergoes the process of sublimation?
A. Water
B. Wood
C. Solid carbon dioxide
D. Sodium Chloride
1.4 Which ONE of the molecules below contains the greatest number of atoms?
A) N_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. CH_{4}
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$
1.5 The chemical formula for sodium sulphate is \qquad
A. $\quad \mathrm{NaSO}_{4}$
B. $\quad \mathrm{Na}_{2}\left(\mathrm{SO}_{4}\right)_{2}$
C. $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $\quad \mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$
1.6 An object which is charged positively has
A. Gained electrons
B. Lost electrons
C. Gained protons
D. Lost protons
(2)
1.7 Which of the following is true for metals?

	Thermal conductivity	electrical conductivity
A.	Good	Good
B.	Good	Poor
C.	Poor	Good
D.	Poor	Poor

1.8 Two insulated, graphite-coated polystyrene spheres are suspended from threads. The spheres are held a small distance apart. The charges on the spheres are $-6 \times 10^{-3} \mathrm{C}$ and $-2 \times 10^{-3} \mathrm{C}$.

Which of the following is likely to happen?
A. The spheres move towards each other and cling to one another.
B. The spheres will repel each other.
C. The spheres will swing towards each other, touch each other and move apart again.
D. The spheres will move towards each other, touch each other and become neutral.
1.9 An object is positively charged if it has more
A. electrons than protons.
B. electrons than neutrons.
C. protons than electrons.
D. protons than neutrons.
1.10 Four identical balloons, each carrying a charge, are suspended from a ceiling, as shown in the diagram below.

Ballon B is negatively charged
Which combination is CORRECT regarding the charges on the balloons?

	SIGN OF CHARGE ON A	SIGN OF CHARGE ON C	SIGN OF CHARGE ON D	
A.	-	+	-	
B.	+	+	+	
C.	+	-	-	
D.	+	+	-	

QUESTION 2

2.1 Define the term pure substance.
2.2 Complete the table below. Write down only the answer next to the question number (2.2.1-2.2.4) in your ANSWER SCRIPT.

SUBSTANCE	ELEMENT/ COMPOUND	REASON
Magnesium	2.21	2.2 .2
Water	2.2 .3	2.2 .4

2.3 Explain why pots and pans are made of metal but the handles are made of plastic or wood.
2.4 Write down the chemical formulae of the following compounds:
2.4.1 Table salt
(2)
2.4.2 Calcium hydroxide
2.4.3 Ammonium Phosphate

QUESTION 3

3.1 The table below shows the boiling and melting points of substances \mathbf{A} to
D.

SUBSTANCE	BOILING POINT $^{\circ} \mathrm{C}$	MELTING POINT ${ }^{\circ} \mathrm{C}$
A	78	177
B	444	133
C	-188	-220
D	184	90

3.1.1 Define the term boiling point.
3.1.2 From the above table, write down the LETTER (A-D) that represents the substance which is a:
(a) liquid at $100^{\circ} \mathrm{C}$
(b) Solid at $100^{\circ} \mathrm{C}$
(c) Gas at $25^{\circ} \mathrm{C}$
3.1.3 Which ONE of the following diagrams represents the PARTICLE ARRANGEMENT of substance A at $-120^{\circ} \mathrm{C}$?

Write down only I, II or III.

(2)
3.2 The heating curve of a substance is shown below.

Time (minutes)
3.2.1 Write down the physical state of the substance at $\mathrm{t}=15$ minutes
3.2.2 What is the boiling point of the substance?
3.2.3 How will the average kinetic energy of the particles of the substance be affected between:
(Write down only INCREASES, DECREASES or REMAINS THE SAME.)
(a) $t=0$ minutes and $t=5$ minutes.
(b) $t=5$ minutes and $t=10$ minutes.
3.2.4 Refer to the kinetic molecular theory to fully explain the answer to QUESTION 3.2.3(b).

QUESTION 4

Study the table below and answer the questions that follow.

ELEMENT / ION	NUMBER OF PROTONS	NUMBER OF NEUTRONS	NUMBER OF ELECTRONS
\mathbf{P}	11	12	11
\mathbf{Q}	14	16	14
\mathbf{R}	16	16	16

4.1 Define the term atomic number.
4.2 Write down the:
4.2.1 Chemical symbol of element \mathbf{Q} using the notation ${ }^{\mathrm{A}} \mathrm{Z} \mathrm{X}$
4.2.2 Element (\mathbf{P}, \mathbf{Q} or \mathbf{R}) that is an alkali metal
4.2.3 Chemical symbol of \mathbf{R}
4.3 Element \mathbf{P} reacts with oxygen to form the compound with the chemical formula $\mathrm{P}_{2} \mathrm{O}$.
4.3.1 Predict the chemical formula that element $L i$ in the periodic table will form when it reacts with oxygen.

4.3.2 Explain the answer to QUESTION 4.3.1.

4.4 What is the trend in ionization energy as you move from element \mathbf{P} to element R? Write down only INCREASES, DECREASES or REMAINS THE SAME. Explain the answer.
4.5 How many electrons does an ION of element \mathbf{P} have? Draw the Aufbau diagram of this ion.
4.6 When orbitals of identical energy are available, electrons are placed in individual orbitals before they are paired. Give the name of this rule.
4.7 Element \mathbf{Y} occurs as these isotopes in the following proportions:

Y - 28(92, 23\%); Y - 29 (4, 68\%); Y - 30(3, 09\%)
Calculate the relative atomic mass of element \mathbf{Y}.

QUESTION 5

5.1 Define the term covalent bond.
5.2 Draw Lewis diagrams for the following molecules:
5.2.1 $\quad \mathrm{N}_{2}$
5.2.2 $\quad \mathrm{NH}_{3}$
5.3 Potassium burns in chlorine gas to form potassium chloride.
5.3.1 Name the type of bonding that occurs in potassium chloride.
5.3.2 By means of Lewis diagrams, show the formation of potassium chloride.

QUESTION 6

A Learner in Physical Sciences class rubs his hair with a plastic rod. The rod becomes negatively charged. The learner now opens a tap so that thin stream water runs from it. When the rod is brought close to the water without touching it, it is observed that the water bends towards the rod as shown in the diagram below.

6.1 Give a reason why the steam of water bends towards the rod.

During rubbing process 10^{14} electrons are transferred to the rod.
6.2 Calculate the net charge carried by the rod after rubbing.
6.3 Two small metal spheres, on insulated stands, carry charges of $\mathbf{- 3 \times}$ $10^{-6} C$ and $+6 \times 10^{-6} C$ respectively. The spheres were moved to touch one another, got separated and then returned to their original positions

6.3.1 Which ONE of the two spheres, \mathbf{P} or \mathbf{R}, at Stage 1, has
electron deficiency?
6.3.2 Will the spheres at Stage 3 Attract or Repel?
6.3.3 Write down the reason for your answer in 6.3.2 above.
6.3.4 State the principle of Conservation of Charge.
6.3.5 Calculate the charge on Sphere \mathbf{P} at Stage 3
6.3.6 Comparing stage 1 and stage 3 , determine the number of electrons transferred.

4.2 Information sheets - Paper 1 (Physics)

tABLE 1: PHYSICAL CONSTANTSITABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m $\cdot \mathrm{s}^{-2}$
Speed of light in a vacuum Spoed van lig in 'n vakuum	c	$3,0 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Planck's constant Planck se konstante	h	$6,63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Charge on electron Lading op elektron	e	$-1,6 \times 10^{-19} \mathrm{C}$
Electron mass Elektronmassa	m_{e}	$9,11 \times 10^{-31} \mathrm{~kg}$

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_{f}=v_{i}+a \Delta t$	$\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$	$\Delta x=\left(\frac{v_{f}+v_{i}}{2}\right) \Delta t$

WORK, ENERGY AND POWER/ARBEID, ENERGIE EN DRYWING

$\mathrm{U}=\mathrm{mgh}$ or/of $\mathrm{E}_{\mathrm{P}}=\mathrm{mgh}$	$\mathrm{K}=\frac{1}{2} m v^{2}$ or/of $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} m v^{2}$

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v=f \lambda$	$T=\frac{1}{f}$
$E=h f$ or/of $E=h \frac{c}{\lambda}$	

ELECTRIC CIRCUITS/ELEKTRIESE STROOMBANE

$Q=I \Delta t$	$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$
$R_{s}=R_{1}+R_{2}+\ldots$	$V=\frac{W}{Q}$

4.3 Information sheets - Paper 2 (Chemistry)

TABLE 1: PHYSICAL CONSTANTSITABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p^{θ}	$1,013 \times 10^{5} \mathrm{~Pa}$
Molar gas volume at STP Molêre gasvolume by STD	V_{m}	$22,4 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$
Standard temperature Standaardtemperatuur	T^{9}	273 K
Charge on electron Lading op elektron	e	$-1,6 \times 10^{-19} \mathrm{C}$
Avogadro's Constant Avogadro-konstante	N_{A}	$6,02 \times 10^{23} \mathrm{~mol}^{-1}$

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n=\frac{m}{M}$	$n=\frac{N}{N_{A}}$
$c=\frac{n}{V} \quad$ OR $\quad c=\frac{m}{M V}$	$n=\frac{V}{V_{m}}$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

VHEMBE EAST DISTRICT

NATIONAL
 SENIOR CERTIFICATE

GRADE 10

PHYSICAL SCIENCES TERM 1 CONTROLLED TEST 07 MARCH 2022

QUESTION 1

1.1 C $\checkmark \checkmark$
1.2 A $\checkmark \checkmark$
$1.3 C \checkmark \checkmark$
$1.4 \mathrm{D} \checkmark \checkmark$
1.5 C $\checkmark \checkmark$
1.6 B $\checkmark \checkmark$
1.7 A $\checkmark \checkmark$
$1.8 B \checkmark \checkmark$
$1.9 \mathrm{C} \checkmark \checkmark$
$1.10 B \checkmark \checkmark$

QUESTION 2

2.1 Pure substance is a substance that cannot be separated into simpler
components by physical method. $\checkmark \checkmark$
2.2
2.2.1 Element \checkmark
2.2.2 Made up of similar atoms of element \checkmark
2.2.3 Compound \checkmark
2.2.4 Made up of two or more different atoms \checkmark
2.3 Metals are good thermal conductor while plastic and wood are good insulators. $\checkmark \checkmark$
2.4
2.4.1 $\mathrm{NaCl} \checkmark \checkmark$
2.4.2 $\mathrm{Ca}(\mathrm{OH})_{2} \checkmark \checkmark$
2.4.3 $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \checkmark \checkmark$

QUESTION 3

3.1
3.1.1 The temperature at which the vapour pressure is equal to the external /atmospheric pressure. $\checkmark \checkmark$
3.1.2
(a) $D \checkmark$
(b) $B \checkmark$
(c) $C \checkmark$
3.1.3 $\mid \checkmark \checkmark$
3.2
3.2.1 Liquid \checkmark
3.2.2 $132{ }^{\circ} \mathrm{C} \checkmark$
3.2.3 (a) Increases \checkmark
(b) Remains the same \checkmark
3.2.4 Heat energy is used to break forces between particles \checkmark resulting in a phase change \checkmark and not to change the speed at which particles move.

OR
Heat energy is used to increase the potential energy \checkmark of the particles making them move further apart \checkmark resulting in a phase change. \checkmark

QUESTION 4

4.1 The number of protons in an atom of an element. $\checkmark \checkmark$
4.2
4.2.1 $\quad{ }_{14}^{30} \mathbf{S i} \quad \checkmark \checkmark \quad /{ }_{14}^{28} \mathbf{S i}$
4.2.2 $\mathrm{P} \checkmark /$ Sodium $/ \mathrm{Na}$
4.2.3 $S^{2-} \checkmark \checkmark$
4.3
4.3.1 $\mathrm{Li}_{2} \mathrm{O} \checkmark \checkmark$
4.3.2 Li is in the same group as $\mathrm{P} / \mathrm{Na} \checkmark$ OR Li is in group $1 \quad \therefore$ has the same valency as $\mathrm{P} / \mathrm{Na} . \checkmark$.
4.4 Increases.

From P to R, the atomic radius gets smaller. \checkmark
OR The outer electrons get closer to the nucleus.
The attraction between the nucleus and the outer electron gets
stronger \checkmark
\therefore more energy is needed to remove the electrons.
4.510 (electrons)

$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	
$2 p \checkmark$			

4.6 Hund's rule \checkmark
4.7 Relative Atomic Mass

$$
\begin{align*}
& \frac{28 \times 92,23+29 \times 4,6830 \times 3,09 \checkmark}{100 \checkmark} \\
\operatorname{Ar}= & 28,11(u) \checkmark \tag{3}
\end{align*}
$$

QUESTION 5

5.1 The sharing of electrons between atoms to form molecules.
5.2

5.2.1
 ${ }_{x}^{x} N_{x}^{x}: N:$

5.2.2

5.3
5.3.1 lonic bonding
5.3.2

QUESTION 6

6.1 Water molecules are polarized by the rod, \checkmark the positive pole of the water is attracted to the negative pole, \checkmark causing stream of water to bend towards rod.
6.2 $\quad Q=n q_{e} \checkmark$
$=1 \times 10^{14}\left(-1.6 \times 10^{-19}\right) \checkmark$
$Q=-1.6 \times 10^{-5} \mathrm{C}$
6.3
6.3.1 Sphere R \checkmark
6.3.2 Repel \checkmark
6.3.3 At stage 3 both spheres have the same charge $\checkmark \checkmark$
6.3.4 The net charge of an isolated system remains the same during any physical process $\checkmark \checkmark$
6.3.5 $\quad Q_{P}=\frac{Q_{P+} Q_{R}}{2} \checkmark$

$$
\begin{align*}
& =\frac{-3 \times 10^{-6}+6 \times 10^{-6}}{2} \\
Q_{P} & =+1.5 \times 10^{-6} \mathrm{C} \tag{3}
\end{align*}
$$

6.3.6 OPTION 1 Using charge \mathbf{P}

$$
\begin{aligned}
& \Delta Q=\text { nqe } \checkmark \\
& +1,5 \times 10^{-6}-\left(-3 \times 10^{-6}\right)=n\left(-1.6 \times 10^{-19}\right) \\
& \quad n=2.8 \times 10^{13} \text { electrons } \checkmark
\end{aligned}
$$

OPTION 2 Using charge R

$$
\begin{align*}
& \Delta Q=\text { nqe } \checkmark \\
& +1,5 \times 10^{-6}-\left(-3 \times 10^{-6}\right)=n\left(-1.6 \times 10^{-19}\right) \tag{3}\\
& \quad n=2.8 \times 10^{13} \text { electrons } \checkmark
\end{align*}
$$

