

MARKS: 100

TIME: 2 hours

This Question paper consists of 13 pages including the cover page and DATA SHEETS

Boundeaded rade om Stanmore paysics, vonte East / Controlled Test 1 2022

INSTRUCTIONS AND INFORMATION

- 1. Write your name on the ANSWER SCRIPT.
- 2. This question paper consists of 6 questions. Answer ALL the questions in the ANSWER SCRIPT.
- 3. Number the answers correctly according to the numbering system used in this question paper
- sics.com 4. Leave ONE line between two sub questions, for example between QUESTION 2.1 QUESTION 2.2.
- 5. You may use a non-programmable calculator.
- 6. You may use appropriate mathematical instruments.
- 7. You are advised to use the attached DATA SHEET ANSWER SCRIPT..
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions etc where required.

etc w strom strom strom strom strom strong s

Bounded of the on Stanmore by sics. Ventbe East / Controlled Test 1 2022 NSC

QUESTION 1: MULTIPLE – CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question number (1.1-1.10) in the ANSWER SCRIPT, for example 1.11 E.

1.1 Which ONE of the following groups of elements are classified as				
	halog	ens?		
	А.	Li, Na, K		
Stanmore	ep Physics	Ne, Ar, Kr	>	
/	C.	F, Cł, Br		
	D.	Si, Ge, As	(2)	
1.2	Accor	ding to the kinetic molecular theory the particles of a solid		
	Α.	vibrate in their fixed positions and have a fixed shape		
	В.	are free to move and are compressible		
	C.	are free to move and have a fixed shape.		
	D.	vibrate in their fixed positions and are compressible.	(2)	
1.3	Which	ONE of the following substances undergoes the process of		
	sublin	nation?		
	Α.	Water		
	В.	Wood		
	C.	Solid carbon dioxide		
	D.	Sodium chloride	(2)	
1.4	Which	ONE of the molecules below contains the greatest number of		
	atoms			
	A.	N ₂		
	В.	H ₂ O		
	C.	CH4		
	D.	H ₂ SO ₄	(2)	

Provention Stanmor aphysics. Venture East / Controlled Test 1 2022 NSC

- 1.5 The chemical formula for sodium sulphate is
 - A. NaSO₄
 - B. Na₂ (SO₄)₂
 - C. Na₂SO₄
 - D. Na(SO₄)₂
- 1.6 An object which is charged positively has
 - A. Gained electrons
 - B. Lost electrons
 - C. Gained protons
 - D. Lost protons
- 1.7 Which of the following is true for metals?

	Thermal conductivity	electrical conductivity
Α.	Good	Good
В.	Good	Poor
C.	Poor	Good
D.	Poor	Poor

1.8 Two insulated, graphite-coated polystyrene spheres are suspended from threads. The spheres are held a small distance apart. The charges on the spheres are -6×10^{-3} C and -2×10^{-3} C.

Which of the following is likely to happen?

- A. The spheres move towards each other and cling to one another.
- B. The spheres will repel each other.
- C. The spheres will swing towards each other, touch each other and move apart again.
- D. The spheres will move towards each other, touch each (2) other and become neutral.

(2)

(2)

(2)

Bounded of the on Stanmore by sics. Ventbe East / Controlled Test 1 2022 NSC

- 1.9 An object is positively charged if it has more
 - A. electrons than protons.
 - B. electrons than neutrons.
 - C. protons than electrons.
 - D. protons than neutrons.
- 1.10 Four identical balloons, each carrying a charge, are suspended from a ceiling, as shown in the diagram below.

Ballon B is negatively charged

Which combination is CORRECT regarding the charges on the balloons?

	SIGN OF	SIGN OF	SIGN OF	
	CHARGE ON A	CHARGE ON C	CHARGE ON D	
А.	_	+	-	
В.	+	+	+	
C.	+	_	_	
D.	+	+	_	(2)
	·	•		[20]

(2)

Bounded of the om Stanmor apply sics. Vombe East / Controlled Test 1 2022 NSC

QUESTION 2

2.1 Define the term *pure substance*.

(2)

2.2 Complete the table below. Write down only the answer next to the question number (2.2.1–2.2.4) in your ANSWER SCRIPT.

SUBSTANCE	ELEMENT/ COMPOUND	REASON
Magnesium	2.21	2.2.2
Water	2.2.3	2.2.4

- 2.3 Explain why pots and pans are made of metal but the handles are (2) made of plastic or wood.
- 2.4 Write down the chemical formulae of the following compounds:

		[14]
2.4.3	Ammonium Phosphate	(2)
2.4.2	Calcium hydroxide	(2)
2.4.1	Table salt	(2)

QUESTION 3

3.1 The table below shows the boiling and melting points of substances A toD.

SUBSTANCE	BOILING POINT °C	MELTING POINT °C
A	78	177
В	444	133
С	-188	- 220
D	184	90

3.1.1 Define the term *boiling point*.

(2)

- 3.1.2 From the above table, write down the LETTER (A–D) that represents the substance which is a:
 - (a) liquid at 100 °C (1)
 - (b) Solid at 100 °C (1)
 - (c) Gas at 25° C (1)

Prounde and Carde of Stanmore physics. Ventbe East / Controlled Test 1 2022 NSC

3.1.3 Which ONE of the following diagrams represents the PARTICLE ARRANGEMENT of substance **A** at –120 °C? Write down only I, II or III.

(2)

3.2 The heating curve of a substance is shown below.

Time (minutes)

- 3.2.1 Write down the physical state of the substance at t = 15 minutes (1)
- 3.2.2 What is the boiling point of the substance?
- 3.2.3 How will the average kinetic energy of the particles of the substance be affected between:

(Write down only INCREASES, DECREASES or REMAINS THE SAME.)

- (a) t = 0 minutes and t = 5 minutes. (1)
- (b) t = 5 minutes and t = 10 minutes. (1)
- 3.2.4 Refer to the kinetic molecular theory to fully explain the answer to (3)QUESTION 3.2.3(b).

[14]

(1)

Bounded drade om Stanmor apaysics. Vonte East / Controlled Test 1 2022 NSC

QUESTION 4

E	ELEMENT	1	NUMBER OF	NUMBER OF	NUMBER OF	
1	ON		PROTONS	NEUTRONS	ELECTRONS	
	Р		11	12	11	
	Q		14	16	14	
	R		16	16	16	
4.1	Define	the ter	m atomic number	r.		(2
4.2	Write d	own th	ie:			
	4.2.1	Cherr	nical symbol of ele	ement Q using the i	notation ^A zX	(2
	4.2.2	Eleme	ent (P , Q or R) tha	at is an alkali metal		(1
	4.2.3	Chem	nical symbol of R			(2
4.3	Elemer	nt P rea	acts with oxygen t	to form the compou	nd with the	
	chemic	al form	ula P ₂ O.			
	4.3.1	Predi	ct the chemical fo	rmula that element	Li in the periodic	
		table	will form when it r	reacts with oxygen.		(2
	4.3.2	Expla	in the answer to (QUESTION 4.3.1.		(2
4.4	What is	s the tr	end in ionization e	energy as you move	e from element P	
	to elem	ient R ?	? Write down only	INCREASES, DEC	CREASES or	
	REMAI	NS TH	IE SAME. Explain	the answer.		(4
4.5	How m	any ele	ectrons does an lo	ON of element P ha	ave? Draw the	
	Aufbau	diagra	am of this ion.			(3
4.6	When o	orbitals	of identical energ	gy are available, ele	ectrons are placed	
	in indiv	idual o	rbitals before the	y are paired. Give t	he name of this	(*
	rule.					
4.7	Elemer	nt Y oc	curs as these isot	topes in the followir	ng proportions:	
	Y – 28((92, 23	%); Y – 29 (4, 68	%); Y – 30(3, 09%)		
	Calcula	ate the	relative atomic m	ass of element Y .		(3
						[2

Study the table below and answer the questions that follow.

QUESTION 5

5.1	Define the term covalent bond.		
5.2	Draw Lewis diagrams for the following molecules:		
	5.2.1	N2	(2)
	5.2.2	NH ₃	(2)
5.3	Potassium burns in chlorine gas to form potassium chloride.		
	5.3.1	Name the type of bonding that occurs in potassium chloride.	(1)
	5.3.2	By means of Lewis diagrams, show the formation of	(5)
		potassium chloride.	
			[12]

QUESTION 6

A Learner in Physical Sciences class rubs his hair with a plastic rod. The rod becomes negatively charged. The learner now opens a tap so that thin stream water runs from it. When the rod is brought close to the water without touching it, it is observed that the water bends towards the rod as shown in the diagram below.

- 6.1 Give a reason why the steam of water bends towards the rod. (3)
 During rubbing process 10¹⁴ electrons are transferred to the rod.
- 6.2 Calculate the net charge carried by the rod after rubbing. (3)

Provention Stanmoracon Sics. Vonte East / Controlled Test 1 2022 NSC

6.3 Two small metal spheres, on insulated stands, carry charges of -3×10^{-6} *C* and $+6 \times 10^{-6}$ *C* respectively. The spheres were moved to touch one another, got separated and then returned to their original positions

- 6.3.2 Will the spheres at Stage 3 **Attract** or **Repel**? (1)
- 6.3.3 Write down the reason for your answer in 6.3.2 above. (2)
- 6.3.4 State the *principle of Conservation of Charge.* (2)
- 6.3.5 Calculate the charge on **Sphere P** at **Stage 3** (3)
- 6.3.6 Comparing stage 1 and stage 3, determine the number of (3) electrons transferred.

[18]

TOTAL: 100

4.2 Information sheets – Paper 1 (Physics)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m·s ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	с	3,0 x 10 ⁸ m⋅s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J⋅s
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_f = v_i + a \Delta t$	$\Delta \mathbf{x} = \mathbf{v}_{i} \Delta t + \frac{1}{2} \mathbf{a} \Delta t^{2}$
$v_f^2 = v_i^2 + 2a\Delta x$	$\Delta \mathbf{x} = \left(\frac{\mathbf{v}_{f} + \mathbf{v}_{i}}{2}\right) \Delta \mathbf{t}$

WORK, ENERGY AND POWER/ARBEID, ENERGIE EN DRYWING

U=mgh or/of E _P = mgh	$K = \frac{1}{2}mv^2$ or/of $E_k = \frac{1}{2}mv^2$
	2 2

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$
E=hf or/of E=h $\frac{c}{\lambda}$	

ELECTRIC CIRCUITS/ELEKTRIESE STROOMBANE

$Q = I \Delta t$	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
$R_s = R_1 + R_2 +$	$V = \frac{W}{Q}$

4.3 Information sheets – Paper 2 (Chemistry)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^e	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T ^e	273 K
Charge on electron Lading op elektron	e	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	NA	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$	
$c = \frac{n}{V}$ OR $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$	

Bounded drade om Stanmoraephysics. Vonte East / Controlled Test 1 2022 NSC

Physical Sciences Grade 10

29 Examination Guidelines DBE/2015

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
(I)	(II)											(III)	(IV)	(V)	(VI)	(VII)	(VIII)
1	1					A	tomic n	umber									2
H				(EY/SLE	UIEL		Atoomg	letal									He
ิพี่1						r	+	-									4
3	4]		Electr	onegativ	itu	29	Sum	hal			5	6	7	8	9	10
Li	Be			Elektro	negatiwi	teit 🕂	ຼ Cu	+-Sim	bool			B	C	_N	0	_F	Ne
÷7	÷9						63,5					N11	N12	m14	e ⁶ 16	₹19	20
11	12	1					t					13	14	15	16	17	18
Na	"Mg				Approx	cimate re	elative a	tomic m	ass			3A.	"Si	_P	"S	30	Ar
ë 23	- 24				Benad	erde rela	atiewe at	toomma	58a			-27	÷28	N31	N32	m35,5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
"Κ	Ca	"Sc	۳I	۳°	"Cr	۵Mn	"Fe	"Co	"Ni	_Cu	_س Zn	"Ga	"Ge	As	 _Se	 _Br	Kr
a 39	₹ 4 0	- 45	-48	₽ 51	₽ 52	- 55	-56	÷59	÷59	- 63,5	~ 65	₽ 70	73	∾ั75	N79	R80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
_∞ Rb	_o Sr	Ν	.,Zr	Nb	Mo	"LC	_∾ Ru	_∾ Rh	_∾ Pd	"A g	⊾Cq	, In	_∞ Sn	_Sb	_Te	<u>ا</u> م	Xe
a ⁶ 86	- 88	, 89	÷91	92	÷96	÷	[∾] 101	∾ 1 03	∾ ¹ 106	÷108	÷112	÷115	÷119	÷122	∾ ¹ 128	∾Î127	131
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
⊾ Cs	_໑ Ba	La	۵Hf	Ta	W	Re	Os	lr –	Pt	Au	Hg	۳f	∞Pb	"Bi	Po	"At	Rn
¢ 133	° 137	139	÷179	181	184	186	190	192	195	197	201	-204	÷207	÷209	2	N,	
87	88	89															
⊾ Fr	ຸ Ra	Ac		58	59	60	61	62	63	64	65	66	67	68	69	70	71
°	o [:] 226			Ce	Pr	Nd	Pm	Sm	Fu	Gd	Th	Dv	Ho	Fr	Tm	Yh	Lu -
				140	141	144	• •••	150	152	157	159	163	165	167	169	173	175
				00	04	0.2	0.2	0.4	05	00	07	00	00	100	404	102	402
				50 TL		52	93 N	94 D	95 A	56 C	9/ DL	50	55	T	Mal	No.	103
				in	ra	U	мр	ru	AM	Cm	DK	u	CS .	гm	Ma	NO	Lľ
				232		238											

Downloaded from Stanmorephysics.com

EDUCATION VHEMBE EAST DISTRICT

VHEMBE EAST DISTRICT

NATIONAL

SENIOR CERTIFICATE

GRADE 10

PHYSICAL SCIENCES TERM 1 CONTROLLED TEST 07 MARCH 2022

MARKS: 100

This Memorandum consists of 7 pages including the cover page.

QUESTION 1

		[20]
1.10	B √√	(2)
1.9	C √√	(2)
1.8	B ✓✓	(2)
1.7	A ✓✓	(2)
1.6	B √√	(2)
1.5	C ✓✓	(2)
1.4	D ✓✓	(2)
1.3	C ✓✓	(2)
1.2	A ✓✓	(2)
1.1	C √√	(2)

QUESTION 2

2.1	Pure substance is a substance that cannot be separated into simpler				
	comp	onents by physical method. 🗸 🗸	(2)		
2.2					
	2.2.1	Element 🗸	(1)		
	2.2.2	Made up of similar atoms of element \checkmark	(1)		
	2.2.3	Compound ✓	(1)		
	2.2.4	Made up of two or more different atoms \checkmark	(1)		
2.3	Metal	s are good thermal conductor while plastic and wood are good			
	insula	tors. 🗸 🗸	(2)		
2.4					
	2.4.1	NaCl 🗸	(2)		
	2.4.2	Ca(OH)₂ ✓✓	(2)		
	2.4.3	(NH₄)3PO₄ ✓✓	(2)		
			[14]		

QUESTION 3

3.1

	3.1.1	The temperature at which the vapour pressure is equal to the	
		external /atmospheric pressure. ✓✓	(2)
	3.1.2		
		(a) D ✓	(1)
		(b) B ✓	(1)
		(c) C ✓	(1)
	3.1.3		(2)
3.2			
	3.2.1	Liquid 🗸	(1)
	3.2.2	132 °C ✓	(1)
3.2.3	(a)	Increases 🗸	(1)
	(b)	Remains the same ✓	(1)
3.2.4	Heat <u>e</u>	nergy is used to break forces between particles \checkmark resulting in a	
	phase	change \checkmark and not to change the speed at which particles	
	move.	\checkmark	
	OR		
	Heat e	nergy is used to increase the potential energy ✓of the particles	
	making	them move further apart \checkmark resulting in a phase change. \checkmark	(3)
			[14]

Boundoaded rade om Stanmoragehysics. CON hembe East / Test 1 Memo 2022

QUESTION 4

4.1	The <u>number of protons</u> in an atom of an element. $\checkmark\checkmark$					
4.2	4.2.1	³⁰ ₁₄ Si ✓✓ / . ²⁸ ₁₄ Si	(2)			
	4.2.2	P ✓/ Sodium / Na	(1)			
	4.2.3	S ²⁻ √√	(2)			
4.3						
	4.3.1	Li₂O ✓✓	(2)			
	4.3.2	Li is in the same group as $$ P / Na $$ \checkmark				
		OR Li is in group 1 \therefore has the same valency as P/Na. \checkmark .	(2)			
4.4	Increas	ses. ✓				
	From F	P to R, the atomic radius gets smaller. ✓				
	OR Th	e outer electrons get closer to the nucleus.				
	The at	traction between the nucleus and the outer electron gets	(4)			
	stronge	er ✓				
	∴ more	e energy is needed to remove the electrons. \checkmark				

4.5 10 (electrons) ✓

4.6 Hund's rule ✓

(1)

4.7 Relative Atomic Mass

$$\frac{28 \times 92,23 + 29 \times 4,68 \ 30 \times 3,09 \checkmark}{100 \checkmark}$$
Ar = 28,11 (u) \sqcap (3)

[22]

Boundoaded rade om Stanmorage sics. CON hembe East / Test 1 Memo 2022

QUESTION 5

5.1 The sharing of electrons between atoms to form molecules. \checkmark	(2)
--	-----

5.2

5.2.2
$$H \stackrel{\bullet}{\times} \stackrel{\bullet}{N} \stackrel{\bullet}{\times} H \qquad (2)$$

5.3

5.3.1 Ionic bonding
$$\checkmark$$
 (1)

5.3.2
$$\underset{\kappa}{\times}$$
 + $\underset{\kappa}{F}$ \longrightarrow $K_{\chi}F \longrightarrow$ KF \checkmark (5)

QUESTION 6

6.1 Water molecules are polarized by the rod, ✓ the positive pole of the water is attracted to the negative pole, ✓ causing stream of water to bend towards rod. ✓ (3)

6.2
$$Q = nq_e \checkmark$$

= $1 \times 10^{14} (-1.6 \times 10^{-19}) \checkmark$
 $Q = -1.6 \times 10^{-5} C \checkmark$ (3)

6.3

6.3.1	Sphere R ✓	(1)
6.3.2	Repel 🗸	(1)
6.3.3	At stage 3 both spheres have the same charge $\checkmark\checkmark$	(2)
6.3.4	The net charge of an isolated system remains the same during	
	any physical process ✓✓	(2)
6.3.5	$Q_{P} = \frac{Q_{P+Q_{R}}}{2} \checkmark$	

$$= \frac{-3 X 10^{-6} + 6 X 10^{-6}}{2} \checkmark$$

$$Q_{P} = + 1.5 \times 10^{-6} C \checkmark$$
(3)

6.3.6 OPTION 1 Using charge P

 $\begin{aligned} \Delta Q &= nqe \checkmark \\ +1.5 \times 10^{-6} - (-3 \times 10^{-6}) = n(-1.6 \times 10^{-19}) \checkmark \\ n &= 2.8 \times 10^{13} \text{ electrons } \checkmark \end{aligned}$

OPTION 2 Using charge R

$$\Delta Q = nqe \checkmark$$

+1,5 × 10⁻⁶ - (-3 × 10⁻⁶) = n(-1.6 × 10⁻¹⁹) \lambda (3)
$$n = 2.8 \times 10^{13} \text{ electrons } \checkmark$$

[18]

TOTAL: 100

Bounded and Stanmoregany Sics. CON hembe East / Test 1 Memo 2022