

CURRICULUM GRADE 10 -12 DIRECTORATE

NCS (CAPS)

LEARNER SUPPORT DOCUMENT

GRADE 12

MATHEMATICS STEP AHEAD PROGRAMME 2022 Stanmore physics.com

This document has been compiled by the KZN FET Mathematics Subject Advisors.

PREFACE

This support document serves to assist Mathematics learners on how to deal with curriculum gaps and learning losses as a result of the impact of COVID-19 since 2020. It also captures the challenging topics in the Grade 10 - 12 work. The exercises should be used in conjunction with the 2022 Recovery Annual Teaching Plans. Activities should serve as a guide on how to assess topics dealt with in this document. It will cover the following:

	TABLE OF CONT	TENTS CONT
	TOPICS	PAGE NUMBERS
1.	NUMBER PATTERNS	3 - 29
2.	EUCLIDEAN GEOMETRY	30 - 60
3.	TRIGONOMETRY	61 - 93
	downloaded from.	

General term: $T_n = an^2 + bn + c$

- It is also worth noting that quadratic sequences will have a minimum or maximum value, since they assume the shape of a parabola when sketched.
- Worked examples:
 - Given the quadratic number pattern: 4; 9; 18; 31; ...
 (a) Determine the next term (T₅). (b)

Determine the *n*-th term (general term).

 $T_5 = 48$

2. Determine the maximum value of a quadratic sequence given by $T_n = -n^2 + 26n - 170$. Solution:

By completing a square, $T_n = -n^2 + 26n - 170 = -(n - 13)^2 - 1$, which implies that the maximum value of the sequence is -1.

Also, by differentiation, the maximum term of the sequence can be determined, i.e. From $T_n = -n^2 + 26n - 170$ $\Rightarrow T'_n = -2n + 26$ At maximum -2n + 26 = 0Thus, n = 13, which means that T_{13} is the maximum term. Finally, $T_{13} = -(13)^2 + 26(13) - 170 = -1$

ACTIVITIES/ASSESSMENTS

- Classwork/Homework
 - 1. Consider the following number pattern: 6; 13; 22; 33; ...
 - 1.1 Write down the next term of the number pattern.
 - 1.2 Determine the n^{th} of the sequence.
 - 1.3 For what value/s of n is T_n equal to 2 497?
 - 2. Given the quadratic pattern: -9; -6; 1; x; 27; ...
 - 2.1 Calculate the value of x.
 - 2.2 Determine the general term of the pattern.
 - 2.3 Determine T_{100} .
 - 2.4 Which term in the sequence will be equal to 397?
 - 3. Consider the quadratic number pattern: -145; -122; -101; . . .
 - 3.1 Write down the next term of the sequence.
 - 3.2 Show that the general term of the pattern is $T_n = -n^2 + 26n 170$.
 - 3.3 Between which two terms of the quadratic pattern will there be a difference of -121?

3.4 What value must be added to each term of the number pattern so that the value of the maximum term in the new number pattern thus formed will be 1.

LESSON 2: Arithmetic (Linear) SequencesTerm1Week1Grade12Duration1 HourWeighting25/150Date
Term 1 Week 1 Grade 12 Duration 1 Hour Weighting 25/150 Date
Duration1 HourWeighting25/150Date
Sub-topics Arithmetic Sequences
RELATED CONCEPTS/ TERMS/VOCABULARY
• Pattern: a repetitive regular arrangement of things.
• Sequence (progression): the order in which related number/things follow one another.
PRIOR-KNOWLEDGE/ BACKGROUND KNOWLEDGE
• Linear sequence
Solving linear equations
NOTES
• What an arithmetic sequence is?
- Arithmetic number sequences are sequences in which the difference between consecutive(successive) terms is constant
\circ How the general term of an arithmetic sequence is derived?
 Algebraically, an arithmetic sequence is written as follows:
$T_1 = a$
$T_2 = a + d$
$T_3 = a + d + d = a + 2d$
$T_4 = a + d + d + d = a + 3d$
$T_5 = a + d + d + d + d = a + 4d = a + (5 - 1)d$
$T_6 = a + d + d + d + d + d = a + 5d = a + (6 - 1)d$
$T_n = a + (n-1)d$, the general term, where:
T_{r} is term number n (N only) in the sequence.
a is the first term,
$d = T_n - T_{n-1}$ is the constant difference between successive terms, and,
n is the position of the term in the sequence, which can only be a natural
number.
• Since the difference between terms is constant, it can be concluded that if three consecutive
terms are given, as shown below:
I_1 ; I_2 ; I_3 ;
$T_2 - T_1$: $T_2 - T_2$

Then, it follows that $T_2 - T_1 = T_3 - T_2$. This can be applied to any three successive terms of any arithmetic sequence.

- The general term, T_n , can also be used to determine the value of n, the position of any term in an arithmetic sequence.
- Worked examples:

1. Consider the arithmetic sequence: x; 4x + 5; 10x - 5; . . .

- 1.1 Determine the value of x.
- 1.2 Write the numerical values of the first three terms of the sequence.
- 1.3 Determine the general term of the sequence.
- 1.4 What is the twentieth term of the sequence?
- 1.5 Which term of the sequence will be equal to 1945.

Solutions:

1.1
$$T_2 - T_1 = T_3 - T_2$$

 $4x + 5 - x = 10x - 5 - (4x + 5)$

$$x = 5$$

- 1.2 $T_1 = 5$ $T_2 = 4(5) + 5 = 25$ $T_3 = 10(5) - 5 = 45$
- 1.3 $T_n = a + (n-1)d$ $T_n = 5 + 20(n-1)$ $T_n = 20n - 15$
- $1.4 \quad T_{20} = 20(20) 15 = 385$
- 1.5 1945 = 20n 1520n = 1960n = 98

ACTIVITIES/ASSESSMENTS

Classwork/Homework

- 1. p; 2p + 2; 5p + 3; ... are the first three terms of an arithmetic sequence.
 - (a) Calculate the value of *p*.
 - (b) Determine the sequence.
 - (c) Find the 49th term.
 - (d) Which term of the sequence is 100.5?
- 2. Determine an expression for the nth term for an arithmetic sequence whose 6th term is 13 and

the 14th term is 33.

3. Consider the following arithmetic sequence: -11; $2\sin x$; 15; ... Determine the values of x in the interval $[0^\circ; 90^\circ]$ for which the sequence will be arithmetic.

			motrio Comercia		
		LESSON 3: Geor	metric Sequen	ces	
Гerm	1	Week	1	Grade	12
Duration	60 minutes	Weighting	25	Date	
Sub-topics	Geometric Sequ	iences			
RELATED C	ONCEPTS/ TER	RMS/VOCABULAI	RY		
Pattern: a r	epetitive regular a	arrangement of thing	gs.		
• Sequence (progression): the	order in which relate	ed number/thi	ngs follow one anot	her.
Geometric	: something that re	elates to geometric s	hapes or figur	es.	
PRIOR-KNO	WLEDGE/ BAC	KGROUND KNO	WLEDGE		
Laws of ex	ponents				
• Solving ex	ponential equation	ns			
NOTES					
• What a	geometric sequer	nce is?			
_	Geometric number	er sequences are seq	uences in whi	ch the ratio between	
	consecutive(succ	essive) terms is com	imon.		
- How th	e general term of	a geometric sequen	ce is derived?		
0 110 11	le general term of	a goometrie bequein			
	The concred term	for a competitio com	vonoo oon ho	lamirrad as follows	
_	The general term	for a geometric sequ	uence can be o	lerived as follows:	
_	The general term $T_1 = a$	for a geometric sequ	uence can be o	lerived as follows:	
_	The general term $T_1 = a$ $T_2 = a \times r = ar$	for a geometric sequ	uence can be o	lerived as follows:	
_	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r = ar$	for a geometric sequence ar^2	uence can be o	lerived as follows:	
_	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times$	for a geometric sequence ar^2 $ar^2 = ar^3$	uence can be o	lerived as follows:	
_	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$	for a geometric sequence ar^2 $ar^2 = ar^3$ $ar \times r = ar^4 = ar^3$	uence can be o	lerived as follows:	
_	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence ar^2 $ar^2 = ar^3$ $ar \times r = ar^4 = ar^3$	uence can be o	lerived as follows:	
_	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence ar^2 $xr = ar^3$ $xr \times r = ar^4 = ar^3$	uence can be o	lerived as follows:	
	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence ar^2 $ar^2 = ar^3$ $ar \times r = ar^4 = ar^5$	uence can be c	lerived as follows:	
	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence ar^2 $ar^2 = ar^3$ $ar \times r = ar^4 = ar^5$ general term, where:	uence can be o	lerived as follows:	
_	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence ar^{2} $ar^{2} = ar^{3}$ $ar \times r = ar^{4} = ar^{3}$ general term, where: a number n (N only	uence can be o 5–1	lerived as follows: nce,	
	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence ar^{2} $ar = ar^{3}$ $ar \times r = ar^{4} = ar^{5}$ general term, where: a number n (N only irst term,	uence can be o 5–1	lerived as follows: nce,	
	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence for a geometric sequence $a r^2$ $a r = ar^3$ $a r \times r = ar^4 = ar^3$ general term, where: a number $n (\mathbb{N} \text{ only})$ irst term, s the common ratio	uence can be o 5–1) in the seque: between succe	lerived as follows: nce, essive terms, and,	
	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times$ $T_5 = a \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence for a geometric sequence ar^{2} $ar = ar^{3}$ $ar \times r = ar^{4} = ar^{3}$ general term, where: an number n (N only irst term, s the common ratio bosition of the term is	uence can be o 5–1) in the sequence between succe	herived as follows: nce, essive terms, and,	a natural
	The general term $T_1 = a$ $T_2 = a \times r = ar$ $T_3 = a \times r \times r =$ $T_4 = a \times r \times r \times r \times$ $T_5 = a \times r \times r \times r \times$ $T_6 = ar^{6-1}$	for a geometric sequence for a geometric sequence $a r^2$ $a r = ar^3$ $a r \times r = ar^4 = ar^3$ general term, where: a number n (N only irst term, s the common ratio position of the term i	uence can be o 5–1 between succe n the sequence	lerived as follows: nce, essive terms, and, e, which can only be	e a natural

• Since the ratio between terms is common, it can be shown that if three consecutive terms are given:

Then, it implies that $\frac{T_2}{T_1} = \frac{T_3}{T_2}$. This can be applied to any three successive terms of any geometric sequence.

- The general term, T_n , can also be used to determine the value of n, the position of any term in any geometric sequence.
- Worked examples:
 - 1. x 4; x + 2 and 3x + 1 respectively represent T_4 , T_5 and T_6 of a geometric sequence.
 - 1.1 Determine the value of x.
 - 1.2 Determine the numerical values of the first three terms of the sequence.
 - 1.3 Determine the general term of the sequence.
 - 1.4 What is the tenth term of the sequence?
 - 1.5 Which term of the sequence will be equal to $\frac{3125}{8}$?

Solutions:

1.1
$$\frac{T_5}{T_4} = \frac{T_6}{T_5}$$

$$\therefore \frac{x+2}{x-4} = \frac{3x+1}{x+2}$$

$$\therefore (x+2)(x+2) = (3x+1)(x-4)$$

$$\therefore x^2 + 4x + 4 = 3x^2 - 11x - 4$$

$$\therefore -2x^2 + 15x + 8 = 0$$

$$\therefore 2x^2 - 15x - 8 = 0$$

$$\therefore (2x+1)(x-8) = 0$$

$$\therefore x = -\frac{1}{2} \text{ or } x = 8$$

1.2
$$x = -\frac{1}{2}$$
 or $x = 8$
 $\therefore T_4 = -\frac{9}{2}$ or $T_4 = 4$
 $\therefore T_5 = \frac{3}{2}$ or $T_5 = 10$.
 $\therefore T_6 = -\frac{1}{2}$ or $T_6 = 25$
 $\therefore r = -\frac{1}{2} = -\frac{1}{3}$ or $r = \frac{25}{10} = \frac{5}{2}$
 $T_6 = ar^5$ $T_6 = ar^5$
 $\therefore -\frac{1}{2} = a\left(-\frac{1}{3}\right)^5$ or $\therefore 25 = a\left(\frac{5}{2}\right)^5$
 $\therefore a = \frac{243}{2}$ or $\therefore a = \frac{32}{125}$
 \therefore The sequence is \therefore The sequence is
 $\frac{243}{2}; -\frac{81}{2}; \frac{27}{2}, \dots$ or $\frac{32}{125}; \frac{16}{25}; \frac{8}{5}, \dots$
1.3 $T_n = ar^{n-1}$
 $T_n = \frac{243}{2} \left(-\frac{1}{3}\right)^{n-1}$ or $T_n = \frac{32}{125} \left(\frac{5}{2}\right)^{n-1}$
1.4 $T_{10} = \frac{243}{2} \left(-\frac{1}{3}\right)^{10-1} = -\frac{1}{162}$
or
 $T_{10} = \frac{32}{125} \left(\frac{5}{2}\right)^{10-1} = \frac{15625}{16}$
1.5 From $T_n = \frac{32}{125} \left(\frac{5}{2}\right)^{n-1}$
 $\frac{3125}{8} = \frac{32}{125} \left(\frac{5}{2}\right)^{n-1}$

$$\left(\frac{5}{2}\right)^8 = \left(\frac{5}{2}\right)^{n-1}$$

8 = n - 1

 $\therefore n = 9$

ACTIVITIES/ASSESSMENTS

• Classwork/Homework

- 1. k+1; k-1; 2k-5; ... are the first three terms of a geometric sequence, where k < 0:
 - (a) Calculate the value of k.
 - (b) Determine the sequence.
 - (c) Determine the general term of the sequence.
 - (d) Find the 10th term.
 - (e) Which term of the sequence is -59049?
- 2. Determine an expression for the n^{th} term for a geometric sequence whose 3^{th} term is -20 and the 6^{th} term is 160.
- 3. x-4; x+2; 3x+1; ... are the first three terms of a geometric sequence. Determine the general term of the sequence in terms of x.

	TOPIC	: PATTERNS, SE	QUENCES AN	ND SERIES			
		LESSON 4: Cor	nbined sequend	ces			
Term 1 Week 1 Grade 1							
Duration	1HR	Weighting	25	Date			
Sub-topics	Combined sequer	nces	I				
RELATED C	CONCEPTS/ TERM	MS/VOCABULA	RY				
Pattern: aSequenceGeometric	repetitive regular ar (progression): the o :: something that rel	rangement of thing rder in which relat ates to geometric	gs. ed number/thin shapes or figur	ngs follow one anot es.	her.		
PRIOR-KNC	WLEDGE/ BACK	KGROUND KNO	WLEDGE				
 Laws of ex Solving ex 	xponents						
• Solving et	luations						
The teacher	er leads discussion of	of the worked exar	nple:				
Worked ex	xample:						
1. Given k	pelow is the combinat	tion sequence of an	arithmetic and	a geometric pattern:			
				0			
3;8	3;6;5;12;	2;					
1.1	If the pattern contin	ues, write down th	e next two terr	ns.			
1.2	Determine the 15 th	and the 16 th term of	of the given see	quence.			
Solutions:							
1.1	Geometric sequence that the next term in Arithmetic sequence	ce: 3 ; 6 ; 12 is 24. ce: 8 ; 5 ; 2	;, the c	common ratio is 2, v onstant difference is	which implies —3, which		
1.0	implies that the ne	xt term is -1 .	0				
1.2	Geometric sequend	terms belong to the terms	= 2 ne geometric se	quence thus:			
	7 m odd numbered	terms belong to th	le geometrie se	quenee, mus.			
	$T_n = 3(2)^{n-1}$						
	$\Rightarrow T_{15} = 3(2)^{15}$	$^{-1} = 49\ 152$					
	All even-numbered	d terms belong to t	he arithmetic s	equence, hence, fro	m		
	: 8; 5; 2;						
a = 8 and $d = -3$							

 $\therefore T_{16} = a + 15d$

 $\Rightarrow T_{16} = 8 + 15(-3) = -37$

ACTIVITIES/ASSESSMENTS

• Classwork/Homework

- 1. Consider the sequence: 12; 4; 14; 7; 18; 10; ...
 - 1.1 Write down the next TWO terms if the given pattern continues.
 - 1.2 Calculate the value of the 50^{th} term of the sequence.
 - 1.3 Write down the value of 131th term of the sequence.
- 2. The following sequence is a combination of an arithmetic and a geometric sequence:
 - 3;3;9;6;15;12;...
 - 2.1 Write down the next TWO terms.
 - 2.2 Calculate $T_{22} T_{21}$.
 - 2.3 Prove that ALL the terms of this infinite sequence will be divisible by 3.

	ТОРІС	: PATTERNS, S	EOUENCE	S AND SERIES					
		LES	SON 5:						
Term	1 Week 2 Grade 12								
Duration	1 HRWeighting25Date								
Sub-topics	Sub-topics Series and Sigma Notation								
RELATED CO	NCEPTS/ TEF	RMS/VOCABUL	ARY						
• Sum – is	a result on an a	ddition.							
• Series –	is the sum of a s	sequence.			1.0				
• Sigma no series.	Description (Σ) – Is t	he mathematical s	ymbol whic	h is used as the symbol	ol for summing a				
• $\sum_{k=1}^{n} T_{k} - T$	his is read as fo	llows: The sum of	all the term	sT_k (general term) from the term of term o	om $k = 1$ up to and				
$\int_{k=1}^{\infty}$ including	gk = n, where n	$i \in \mathbb{N}$.			-				
				-					
PRIOR-KNOW	/LEDGE/ BAC	KGROUND KN	OWLEDGI	Ľ					
Substitut	de able to.								
 Determine 	the common	difference/ ratio be	etween conse	ecutive terms					
Determin	ne the number o	f terms in a finite s	series.						
• Solving e	exponential equ	ations.							
NOTES	A								
1.1 Calculate: $\sum_{i=1}^{8}$	$\sum_{i=2}^{3} (4i-1)$								
	Last va	alue to be substitut	ed into the g	general term to obtain	the last term.				
$\sum_{i=1}^{8}$	(4i-1)	General	term/ nth te	rm					
			\checkmark	Note! 7 terms not 8	\sum				
First the ge	value to be subseneral term to ob	stituted into otain the	$> \leq$	No. of terms = Top –	bottom				
= [4(2)-1] + [4(3) + (= [4(2)-1] + [4(3)-1] + [4(4)-1] + [4(5)-1] + [4(6)-1] + [4(7)-1] + [4(8)-1] = 7 + 11 + 15 + 19 + 23 + 27 + 31								
=133 Example 2:		Impor	tant! There	are 8 terms not 7.					
2.1 Calculate: $\sum_{k=1}^{7}$	Example 2: 2.1 Calculate: $\sum_{k=0}^{7} 3.2^{1-k}$ Number of terms = 7 - 0+ 1 = 8								
Solution: $= [3.2^{1}]$ = 6 + 3	$\begin{bmatrix} -0 \\ -0 \end{bmatrix} + \begin{bmatrix} 3 \cdot 2^{1-1} \end{bmatrix} + \begin{bmatrix} 3 \\ 3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \frac{3}{4} \end{bmatrix}$	$.2^{1-2}] + [3.2^{1-3}] + [3]$ $\frac{3}{16} + \frac{3}{32} + \frac{3}{64}$	$(.2^{1-4}] + [3.2^{1-4}]$	$[-5] + [3.2^{1-6}] + [3.2^{1-7}]$					

765 = 64 Example 3: 3.1 Write the following series in sigma notation: $-3+1+5+\dots+313$ Solution The above series is arithmetic with the a = -3 and d = 4. Advisable that learners determine the nth term of the series. Note: Use k since n represents the total number of terms! $T_n = a + (n-1)d$ $\therefore T_k = a + (k-1)d$ $T_k = -3 + (k - 1)(4)$ =4k-4-3 $\therefore T_k = 4k - 7$ (general term) Bottom: Top: -3 = 4k - 7313 = 4k - 74 = 4k320 = 4k $\therefore k = 1$ $\therefore k = 80$ $\therefore -3 + 1 + 5 + \dots + 313 = \sum_{k=1}^{80} (4k - 8)$ Example 4: 4.1 Write the series in sigma notation: $3 + 6 + 12 + 2 + \dots + 6$ 144 Solution: The above series is geometric. r = 3 $T_k = 3(2)^{k-1}$ nth term **Bottom:** Top: $3 = 3(2)^{k-1}$ $6 \ 144 = 3(2)^{k-1}$ 2 048 = 2^{k-1} $1 = 2^{k-1}$ $2^{11} = 2^{k-1}$ $2^0 = 2^{k-1}$ $\therefore k = 1$ $\therefore k = 12$ Answer: $3 + 6 + 12 + 2 + \dots + 6 \quad 144 = \sum_{k=1}^{12} 3(2)^{k-1}$ **ACTIVITIES/ASSESSMENTS** 1.1 Expand and then calculate each of the following: c) $\sum_{k=0}^{7} 2\left(\frac{1}{2}\right)^{k}$ a) $\sum_{13}^{13} 3$ b) $\sum_{k=2}^{8} (1-2k)$ 1.2 Write each of the following series in sigma notation: a) 5+1-3+..... -83-87 b) $2 + 6 + 18 + \dots$ to 50 terms c) $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots + \frac{24}{25}$

TOPIC: PATTERNS, SEQUENCES AND SERIES						
		LESS	SON 6:			
Term	1	Week	2	Grade	12	
Duration	1 hour	Weighting		Date		
Sub-topics	Su	imming the terms	of an arithmetic se	eries		
RELATED CO	NCEPTS/ TER	MS/VOCABULA	RY			
• Sum – is	a result of an add	dition				
• Series – i	is the sum of a se	quence.				
• Sigma no	otation (Σ) – Is th	e mathematical sy	mbol which is use	d as the symbol f	or summing a	
series		2		2	C	
n						
$\sum T_k$ - This is re	ead as follows: The	he sum of all the te	$\operatorname{erms} T_k$ (general te	erm) from $k = 1$ up	p to and	
<u>k=1</u>	k=1					
including $k = n$, where $n \in \mathbb{N}$.						
PRIOR-KNOWLEDGE/ BACKGROUND KNOWLEDGE						
Learners should be able to:						
• Substitute						

- Determine the common difference between consecutive terms
- Determine the number of terms in a finite series.

NOTES

We will now look at summing a large number of terms. We can calculate the sum of the first n terms of an arithmetic series by using the following formula.

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

 S_n is the sum of the first *n* terms.

Stanmorephysics.com

- *n* is the number of terms.
- a is the first term.
- d is the constant difference.

How the formula for the sum on an arithmetic series is derived?

<u>Proof</u>

Let the first term of an arithmetic series be *a* and the constant difference *d*. $\therefore S_n = a + (a+d) + (a+2d) + \dots + T_n$, where $T_n = a + (n-1)d$.

S_n	=	а	÷	(a+d)	+	(a+2d)	+	 +	$(T_n - 2d)$	+	$(T_n - d)$	+	T_n
S_n	=	T_n	÷	$(T_n - d)$	+	$(T_n - 2d)$	+	 +	(a+2d)	+	(a+d)	+	а
$\therefore 2S_n$	=	$(a+T_n)$	÷	$(a+T_n)$	+	$(a+T_n)$	+	 +	$(a+T_n)$	+	$(a+T_n)$	+	$(a+T_n)$

$$\therefore 2S_n = n(a+T_n)$$

$$\therefore S_n = \frac{n}{2}(a+T_n)$$

But $T_n = a + (n-1)d$
$$\therefore S_n = \frac{n}{2}[a+a+(n-1)d]$$

$$\therefore S_n = \frac{n}{2}[2a+(n-1)d]$$

Worked example:

- 1.1 Calculate the sum of the first 30 terms of the sequence: 3; 11; 19; 27;...
- 1.2 Calculate the sum of the following finite series: $-14 11 8 + \dots + 103$
- 1.3 Calculate $\sum_{k=1}^{251} (7k-5)$

1.4 Given: $2 + 5 + 8 + \dots + n$ terms = 72710. Calculate the number of terms in the series.

1.5 Determine *m* if $\sum_{i=0}^{m} (1-3i) = -671$

Suggested solutions:

1.1 In this particular question, the number of terms to be added are specified. The sequence is arithmetic with d = 8, a = 3 and $S_{30} = ?$

 $S_{n} = \frac{n}{2} [2a + (n-1)d] \longrightarrow$ Encourage learners to copy their formula from the information sheet. $S_{n} = \frac{20}{2} [2(3) + (20 - 1)(8)]$

1.2 The number of terms to be added are not known at this stage. It is necessary to first determine the number of terms in the series before calculating the sum.

a = -14, d = 3 and $T_n = 103$ $T_n = a + (n-1)d$ (from the information sheet) 103 = -14 + (n-1)(3) 103 = -14 + 3n - 3 $\therefore n = 40$ There are 40 terms in the series.

$$S_{n} = \frac{n}{2} [2a + (n-1)d] \quad \text{or} \quad S_{n} = \frac{n}{2} [a+l] \quad \text{(where } l \text{ is the last term)}$$

$$S_{40} = \frac{40}{2} [2(-14) + (40-1)(3)] \quad S_{40} = \frac{40}{2} [-14 + 103]$$

$$\therefore S_{40} = 1780 \quad \therefore S_{40} = 1780$$

1.4 1.3 Generate at least the first three terms to identify the type of the series. 2+9+16+...+1752The series is arithmetic since d = 7

a = 2, n = 251 $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ or $S_n = \frac{n}{2}[a+l]$ $S_{251} = \frac{251}{2} [2(2) + (251 - 1)(7)]$ $S_{251} = \frac{251}{2} [2 + 1752]$ $\therefore S_{251} = 220127$ $\therefore S_{251} = 220127$ 1.5 72 710 is a sum of certain number of terms not the value of a term. a = 2, d = 3 and $S_n = 72710$ $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ $72710 = \frac{n}{2} [2(2) + (n-1)(3)]$ 145420 = n[4 + 3n - 3]145420 = n[3n+1] $3n^2 + n - 145420 = 0$ (n-660)(n+661)=0A quadratic formula maybe used. $n = 660 \text{ or } n \neq -661$ 1.6 Generate at least the first three terms to identify the type of the series. $1 - 2 - 5 + \dots$ the series is arithmetic $a = 1; d = -3; S_n = -671$ n = m - 0 + 1 = m + 1.....calculate the number of terms ALWAYS. Do not assume any value $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ $-671 = \frac{m+1}{2} [2(1) + (m+1-1)(-3)]$ $-671 = \frac{m+1}{2} [2-3m]$ -1342 = (m+1)(2-3m) $-1342 = -3m^2 - m + 2$ $3m^2 + m - 1344 = 0$ (3m+64)(m-21)=0-----A quadratic formula maybe used. $m = -\frac{64}{3}$ or m = 21 $\therefore m = 21$ **ACTIVITIES/ASSESSMENTS** 1.1 Calculate the sum of the series: $10 + 7 + 4 + \dots$ to 32 terms. 1.2 Calculate $\sum_{n=0}^{30} (5-2m)$ 1.3 Given the following series: $-5-1+3+7+\dots+35$. Calculate the sum of the series. 1.4 A job was advertised at a starting salary of R90 000 pa with an increase of R4 500. Determine: The employee's salary in the sixth year. 1.4.1 The total earnings after 10 years. 1.4.2

1.5 Calculate *m* if : $\sum_{k=1}^{m} (7k+5) = 1287$ 1.6 Determine the value of *k* for which : $\sum_{r=5}^{60} (3r-4) = \sum_{p=2}^{5} k$

TOPIC: SEQUENCES, SERIES AND SIGMA NOTATION						
LESSON 7:						
Term	1	Week		Grade	12	
Duration	1 hour	Weighting		Date		

Sub-topics	Sui	mming the terms of	of a geometric ser	ies	

RELATED CONCEPTS/ TERMS/VOCABULARY

- Sum is a result of an addition.
- Series is the sum of a sequence.
- Sigma notation (Σ) Is the mathematical symbol which is used as the symbol for summing a series.

 $\sum_{k=1}^{k} T_k$ - This is read as follows: The sum of all the terms T_k (general term) from k = 1 up to and

including k = n, where $n \in \mathbb{N}$.

PRIOR-KNOWLEDGE/ BACKGROUND KNOWLEDGE

- Intuitive understanding and application of Laws of exponents.
- Determining the number of terms in a finite series.
- Determining the nth term of a geometric sequence.

NOTES

• A geometric series is the sum of a geometric sequence.

Educator will now facilitate the discussion on how to sum the large number of terms in a geometric series using one of the following formulae.

$$S_n = \frac{a(r^n - 1)}{r - 1}; r \neq 1$$
 or $S_n = \frac{a(1 - r^n)}{1 - r}; r \neq 1$

 S_n is the sum of the first *n* terms.

n is the number of terms.

a is the first term.

r is the constant ratio.

Note: The second formula is normally easier to use when r < 1.

The derivation of the said above formulae is as follows.

Proof

Let the first term of a geometric series be a and the constant ratio r. $\therefore S_n = a + ar + ar^2 + ... + ar^{n-1}$ $\therefore rS_n = ar + ar^2 + ... + ar^{n-1} + ar^n$ $rS_n = ar + ar^2 + ... + ar^{n-2} + ar^{n-1} + ar^n$ $\frac{S_n = a + ar + ar^2 + ... + ar^{n-2} + ar^{n-1}}{\therefore rS_n - S_n} = -a + 0 + 0 + ... + 0 + 0 + ar^n$ $\therefore rS_n - S_n = ar^n - a$ $\therefore S_n(r-1) = a(r^n - 1)$ $\therefore S_n = \frac{a(r^n - 1)}{r - 1}$

Educator will now facilitate the application of the above formula using the suggested examples below.

Worked examples:

- 1. Calculate the sum of the first 12 terms of the series: $\frac{2}{3}$ + 2 + 6 +
- 2. Calculate the sum of the following finite series $1 + 4 + 16 + 64 + \dots + 1073741824$
- 3. Calculate $\sum_{i=0}^{19} 3.(-2)^{i-1}$
- 4. How many terms of the geometric sequence -1; 2; -4; 8;.......... will add up to 349525?
- 5. Given: $\sum_{k=1}^{n} 3(2)^{1-k} = 5,8125$. Calculate the value of *n*.

6. The Constant ration of a geometric sequence is $-\frac{1}{2}$. The 8th term of the same sequence is

 $-\frac{5}{32}$. Determine the sum of the first 8 terms.

Suggested solutions:

1. This is a geometric series with $a = \frac{2}{3}$; r = 3; $S_{12} = ?$

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1}$$
.....state the formula
$$S_{12} = \frac{3(3)^{12} - 1}{3 - 1}$$
$$\therefore S_{12} = 177146.6$$

2. The series is geometric with a = 1; r = 4; $T_n = 1073741824$

$$T_{n} = ar^{n-1}$$

$$1073741824 = 1.(4)^{n-1}$$

$$2^{30} = (2^{2})^{n-1}$$

$$2^{30} = 2^{2n-2}$$

$$30 = 2n-2$$

$$2n = 32$$

$$\therefore n = 16$$
3.
$$\sum_{i=0}^{19} 3 \cdot (-2)^{i-1} = -\frac{3}{2} + 3 - 6 + \dots + 786432$$
The series is geometric with:

$$a = -\frac{3}{2}, r = -2, n = 19 - 0 + 1 = 20$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \dots \text{ state the formula}$$

$$S_{20} = \frac{-\frac{2}{3}[(-2)^{20} - 1]}{(-2) - 1} = 524287,5$$

4. The series is geometric with a = -1; r = -2 and $S_n = 349525$ Important! Emphasize that 349 525 should not be confused with the value of the term.

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1}$$

$$349525 = \frac{(-1)[(-2)^{n} - 1]}{(-2) - 1}$$

$$349525 = \frac{(-1)[(-2)^{n} - 1]}{-3}$$

$$-1048575 = (-1)((-2)^{n} - 1)$$

$$1048576 = (-2)^{n}$$

$$(-2)^{20} = (-2)^{n}$$

$$n = 20$$
The first 20 terms such the edu

The first 20 terms must be added to give 349 525.

5.
$$\sum_{k=1}^{n} 3(2)^{1-k} = 5,8125$$
$$3 + \frac{3}{2} + \frac{3}{4} + 24 + \dots = 5,8125$$

In this case a sum of the series is given. You are required to find the number of terms to be added to give a sum of 5,8125

The series is geometric with
$$a = 3$$
; $r = \frac{1}{2}$; $S_n = 5,8125$; $n = n - 1 + 1 = n$

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1}$$

$$5,8125 = \frac{3\left[\left(\frac{1}{2}\right)^{n} - 1\right]}{\frac{1}{2} - 1}$$

$$5,8125 \times -0,5 = 3\left[\left(\frac{1}{2}\right)^{n} - 1\right]$$

$$-\frac{93}{32} = 3\left[\left(\frac{1}{2}\right)^{n} - 1\right]$$

 $-\frac{31}{32} = \left(\frac{1}{2}\right)^n - 1$ $\left(\frac{1}{32}\right) = \left(\frac{1}{2}\right)^n$ $\left(\frac{1}{2}\right)^5 = \left(\frac{1}{2}\right)^n$ $\therefore n = 5$ 6. ...;...;...;...;...;...; $-\frac{5}{32}$;..... $r = -\frac{1}{2}$; n = 8. It is important to first calculate the value of a. $T_8 = ar^7 \dots$ refer to the general term discussed earlier. $-\frac{5}{32} = a\left(-\frac{1}{2}\right)^7 \dots \div \left(-\frac{1}{2}\right)^7$ on both sides $\therefore a = 20$ $S_n = \frac{a(r^n - 1)}{1}$ $S_8 = \frac{20\left[\left(-\frac{1}{2}\right)^8 - 1\right]}{\left(-\frac{1}{2}\right) - 1} = \frac{425}{32} / 13,28125$ **ACTIVITIES/ASSESSMENTS** 1.1 Calculate the sum of the first 12 terms of the geometric sequence $\frac{1}{4}$; $-\frac{1}{2}$; 1;..... 1.2 Evaluate $-9-6-4-\ldots -1\frac{5}{27}$ 1.3 Calculate $\sum_{m=3}^{11} 8 \left(\frac{1}{2}\right)^{m-4}$ 1.4 Determine *m* if: $\sum_{r=1}^{m} (-8) \left(\frac{1}{2}\right)^{p-1} = -15 \frac{3}{4}$ 1.5 What is the least value of p for which the series $\sum_{k=1}^{p} \frac{1}{16} (2)^{k-2} > 31?$

 $1 + 2 + 4 + 8 + 16 + 32 + \dots$

$S_1 = 1$	$\therefore S_1 = 1$
$S_2 = 1 + 2 = 3$	$\therefore S_2 = 3$
$S_3 = 1 + 2 + 4 = 7$	$\therefore S_3 = 7$
$S_4 = 1 + 2 + 4 + 8 = 15$	$\therefore S_4 = 15$
$S_5 = 1 + 2 + 4 + 8 + 16 = 31$	$\therefore S_5 = 31$
$S_6 = 1 + 2 + 4 + 8 + 16 + 32 = 63$	$\therefore S_6 = 63$

As *n* increases, S_n becomes very large. Mathematically we say that: if $n \to \infty$ then $S_n \to \infty$. \therefore This series **diverges**.

A geometric series will converge (the sum will approach a specific value), if the constant ratio is a number between -1 and 1.

Convergent geometric series : -1 < r < 1

The value approached by a convergent geometric series is called the sum to infinity (S_{∞}) of the geometric series. We can calculate the sum to infinity of a convergent geometric series by using the following formula:

$$S_{\infty} = \frac{a}{1-r}$$
 where $-1 < r < 1$

.....

Where does this formula come from? For *r*-values between -1 and 1: If $n \to \infty$ then $r^n \to 0$ $\therefore S_n = \frac{a(1-r^n)}{1-r} \to \frac{a(1-0)}{1-r} = \frac{a}{1-r}$

Worked examples:

- 1. Consider the geometric series: $36 18 + 9 + \dots$ 1.1 Why does the sum to infinity exists for this series? 1.2 Calculate the S_{∞} .
- 2. Calculate : $\sum_{m=1}^{\infty} 8(2)^{-2m}$
- 3. Consider the series $3x + 3x(x-2) + 3x(x-2)^2 + ...$
 - (a) For which values of x will the series converge?
 - (b) If x is a value for which the series converges, calculate the sum to infinity of the series in terms of x.
- 4. The first term of a geometric series is 124. The sum to infinity is 64. Determine the common ratio.

Suggested solutions:

1.1 The series is convergent (sum to infinity exist), because the common ration is between -1 and 1. -1 < r < 1

$$-1 < -\frac{1}{2} < 1 \qquad \text{......the common ratio } (r) = -\frac{1}{2}$$

$$1.2 \ S_{\infty} = \frac{a}{1-r}$$

$$= \frac{36}{1-\left(-\frac{1}{2}\right)}$$

$$= 24$$

$$2. \ \sum_{m=1}^{\infty} 8(2)^{-2m} = 2 + \frac{1}{2} + \frac{1}{8} + \text{.......} \text{ Emphasize generating the terms of a series}$$

$$r = \frac{1}{4}; a = 2; S_{\infty} = ?$$

$$S_{\infty} = \frac{a}{1-r}$$

$$= \frac{2}{1-\frac{1}{4}}$$

$$= \frac{8}{3}$$
3.a) Geometric series ONLY converges when $-1 < r < 1$

$$r = \frac{3x(x-2)^2}{3x(x-2)} = \frac{3x(x-2)}{3x} = (x-2)$$

$$\therefore -1 < x - 2 < 1$$

$$\therefore 1 < x < 3$$

 $S_{\infty} = \frac{a}{1-r}$ b) $= \frac{3x}{1-(x-2)}$ $= \frac{3x}{-x+3}$ 4. $a = 124; S_{\infty} = 64$ $S_{\infty} = \frac{a}{1-r}$ $64 = \frac{124}{1-r}$ 64 - 64r = 124- 64r = 60 $\therefore r = -\frac{15}{16}$

ACTIVITIES/ASSESSMENTS

1.1 Consider the geometric series: $5(3x+1)+5(3x+1)^2+5(3x+1)^3+...$

- a) For which value(s) of x will the series converge?
- b) Calculate the sum to infinity of the series if $x = -\frac{1}{6}$.

1.2 Write the series in sigma notation: $2 + 0, 2 + 0, 02 + \dots$

1.3 Given: $\sum_{k=1}^{\infty} 5(3^{2-k})$

a) Write down the value of the first TWO terms of the infinite geometric series.

b) Calculate the sum to infinity of the series.

1.4 In a geometric sequence, the second term is $-\frac{2}{3}$ and the sum to infinity of the sequence is $\frac{3}{5}$. Determine the common ratio.

		TOPIC: SEC	QUENCES, SERIE	S AND SIG	MA NOTATION		
			LESSO	N 9:			
Term		1	Week		Grade	12	
Durati	ion	1 hour	Weighting	25	Date		
Sub-to	ppics	 T	Determining terms fro	om the sum f	formula		
	Pres				omuna		
RELA	TED CONCE	PTS/ TERMS	S/VOCABULARY				
•	Sum – is a resu	ult on an addit	tion.				
•	Sequence - the	e order in whic	in related number/th	ings tonow o	one another.		
PRIO	R-KNOWLED	GE/ BACKG	ROUND KNOWL	EDGE			
•	Substitute valu	ues in a given	formula				
•	Determining th	he sum					
RESO	URCES						
•	Grade 12 text	books (Mind)	Action Series)				
•	Previous paper	rs from differe	ent provinces includi	ng national p	papers.		
	~						
NOTE	<u>.</u> S	-t in	ting on an oak in food	litating diago		towns of the	
sequen	ce may be calc	ulated using the	he sum formula	intating discu	ussions on now the	terms of the	
sequen	iee may be earer	uluted using t	ie sum formulu.				
Worke	d out examples	•					
Consid	ler the arithmeti	ic series $2+5$	+8+11+14+17+2	20 + and	l answer the questi	ons that follow.	
					_		
		_ ~ .	Term 1 is eq	ual to the su	m of the 1 st		
In this	series, we defin	he $T_1 = S_1 = 2$		term			
1.	Determine the	values of:					
	a) T_2 ; S_2 ; an	nd S_1					
	b) T_3 ; S_3 ; S_4 ;	2					
	c) T_{i} : S_{i} : at	rd Sa					
	What can you	conclude?					
	What can you	conclude.					
2.	Identify a relat	tionship betwe	een T_n, S_n and S_{n-1}	where $n > 1$	and $n \in \mathbb{N}$.		
3.	Determine the	values of:					
	a) T_5						
	b) T_6						
4.	In an arithmeti	ic sequence S	$n_n = n^2 - 2n.$				
	Use your form	ula in 2 to det	ermine the value of	:			
	a) T_{7}		b) <i>T</i> ₅₀				
Sugges	sted solutions:						
1.	a) $T_2 = 5$	from the g	iven series.				
	$S_2 = 2 + 5 =$	= 7sum	of the first two terms	s of the series	5.		

 $S_1 = 2$ adding only the first term. $S_2 - S_1 = 7 - 2 = 5 = T_2$ b) $T_3 = 8$ from the given series. $S_3 = 2 + 5 + 8 = 15$ sum of the first 3 terms of the series. $S_2 = 7$ sm of the first two terms of the series. $S_3 - S_2 = 15 - 7 = 8 = T_3$ c) $T_4 = 11$ from the given series. $S_4 = 2 + 5 + 8 + 11 = 26$ sum of the first 4 terms of the series. $S_{2} = 15$ $S_4 - S_3 = 26 - 15 = 11 = T_4$ Value of the term is equal to the difference between sums of two consecutive terms. 2. $T_n = S_n - S_{n-1}$ 3. a) $T_5 = S_5 - S_4 = 40 - 26 = 14$ b) $T_6 = S_6 - S_5 = 57 - 40 = 17$ 4. $T_7 = S_7 - S_6 = 35 - 24 = 11$ b) $T_{50} = S_{50} - S_{49} = 2400 - 2303 = 97$ **ACTIVITIES/ASSESSMENTS** 1.1 The sum of the first terms in an arithmetic series is given by: $S_n = n^2 - 2n$ Calculate: the sum of the first 13 terms. a) the 13th term. b) 1.2 Given: $S_n = \frac{5(1-3^n)}{-2}$ Calculate S_4 a) Calculate T_5 b) 1.3 Prove that: $\sum_{k=2}^{n} (2k-1)n = n^3 - 4n$ **REVISION EXERCISES/EXPANDED OPPORTUNITIES** 1. The sixth term of a geometric sequence is 80 more than the fifth term.

Show that
$$a = \frac{80}{r^5 - r^4}$$
.

1.1

1.2 If it is further given that sum of the fifth and sixth terms is 240, determine the value of the common ratio.

	KZN March 2019
2.	The following sequence represents a geometric progression:
	<i>x</i> ; <i>x</i> + 2 ;
	2.1 Write down the third term in terms of x .
	2.2 Calculate the value of x if it is given that $S_{\infty} = -8$.
	EC Sept 2016
3.	-
	Consider $4; \frac{3}{4}; 4; \frac{1}{4}; 4; \frac{1}{12};$
	which is a combination of 2 geometric patterns.
	3.1 If the pattern continues in the same way, write down the next TWO terms in the sequence.
	3.2 Calculate the sum of the first 25 terms of the sequence. Show all calculations.
	North West 2016
4.	
	Given the finite arithmetic sequence: 5 ; 1 ; -3 ;; -83 ; -87
	4.1 Write down the fourth term (T_4) of the sequence.
	4.2 Calculate the number of terms in the sequence.
	4.3 Calculate the sum of all the negative numbers in the sequence.
	4.4 Consider the sequence: 5 ; 1 ; -3 ;; -83 ; -87 ;; -4 187 Determine the number of terms in this sequence that will be exactly divisible by 5.
	Nsc Nov 2016
5.	Prove that the sum to <i>n</i> terms of the arithmetic series whose first is " <i>a</i> " and its
	common difference is "d" is given by
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$
	KZN Jun 2017
6.	Consider an arithmetic sequence which has the second term equal to 8 and the fifth equal 10.
	6.1 Determine the common difference of this sequence.
	6.2 Write down the sum of the first 50 terms of this sequence, using sigma notation.6.3 Determine the sum of the first 50 terms of this sequence.
	Feb/March 2016

7.	The first term of a geometric sequence is 9. The ratio of the sum of the first eight terms to the sum of the first four terms is 97 : 81.						
	Determine the first THREE terms of the sequence, if all terms are positive.						
	GP Sep2018						
8.							
	The first 24 terms of an arithmetic series are: $35 + 42 + 49 + + 196$.						
	Calculate the sum of ALL natural numbers from 35 to 196 that are NOT divisible by 7.						
	Nsc June 2018						
9.							
	The sum of the first 3 terms of geometric series is $1\frac{8}{49}$. If the first term is 1, then calculate						
	the value of the common ratio, $r(r > 0)$.						
	KZN Jun 2019						
10.	10.1 Prove that $\sum_{k=1}^{\infty} 4.3^{2-k}$ is a convergent geometric series. Show All your calculations						
	10.2 If $\sum_{k=p}^{\infty} 4.3^{2-k} = \frac{2}{9}$, determine the value of p						
11	Nsc Nov 2020						
11.	The first two terms of a geometric sequence and an arithmetic sequence are the						
	same. The first term is 12. The sum of the first three terms of the geometric						
	sequence is 3 more than the sum of the first three terms of the arithmetic sequence.						
	Determine TWO possible values for the common ratio, r, of the geometric						
	sequence.						
	Feb/March 2011						
12.	Without using a calculator, determine the value of: $\sum_{y=3}^{10} \frac{1}{y-2} - \sum_{y=3}^{10} \frac{1}{y-1}$						
	Nsc Nov 2019						

TOPIC 2 : EUCLIDEAN GEOMETRY								
LESSON 1:				1	Crada	12		
Term	1		Week	3	Grade	12		
Duration	2HR		Weighting	27% (40/150)	Date			
Sub-topics		Rev	vision of previous	sion of previous Grades Euclidean Geometry				
RELATED CONCEPTS/ TERMS/VOCABULARY								
 Tangents, Secants, Segments, Circles, Arcs. Theorems, Corollaries, Converses, Axioms. 								
 Knowledge of all Grade 10 & 11 theorems & converses Grade 9 parallel lines and triangle geometry. Formal proofs of the 5 examinable Gr11 proofs. RESOURCES KZN Provincial Euclidean Geometry document 2015 Past Grade 11 Examination questions papers. 								
Mind Action Series GR 12								
Parallel lines $E \qquad B$	$\begin{array}{c} A \\ 1/2 \\ 3/4 \\ 1/2 \\ 4 \end{array}$	F	<u>D</u>	Correspondin $\hat{A}_1 = \hat{B}_1$ $\hat{A}_2 = \hat{B}_2$ $\hat{A}_3 = \hat{B}_3$ $\hat{A}_4 = \hat{B}_4$ Alternate ang $\hat{A}_3 = \hat{B}_2$ $\hat{A}_4 = \hat{B}_1$ Co-interior and $\hat{A}_3 + \hat{B}_1 = 1$ $\hat{A}_4 + \hat{B}_2 = 1$	g angles are ed les are equal gles are suppl 80° 80°	qual		

8.	The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment. (tan chord theorem)
9.	The tangent to a circle is perpendicular to the radius/diameter of the circle at the point of contact. (tan ⊥ radius OR tan ⊥ diameter)
10.	Two tangents drawn to a circle from the same point outside the circle are equal in length (Tans from common pt OR Tans from same pt)
11.	Equal chords subtend equal angles at the centre of the circle. (equal chords; equal ∠s)
12.	Equal chords subtend equal angles at the circumference of the circle. (equal chords; equal ∠s)

• Proceed to do this short investigation:

Whenever you use this theorem the reason you must give is: Line divides sides of Δ proportionally OR prop theorem; name || lines

EXAMPLE 2

Question

D and E are points on sides AB and BC respectively of $\triangle ABC$ such that AD: DB = 2:3 and $BE = \frac{4}{3}EC$. If DK||AE and AE and CD intersect at P, find the ratio of CP: PD.

Statement	Reason
$\frac{CP}{PD} = \frac{3p}{EK}$	Line \parallel one side of \triangle CDK
Now	
$\frac{\text{EK}}{4p} = \frac{\text{AD}}{\text{AB}}$	Line one side of $\triangle ABE$
$\therefore \frac{\text{EK}}{4p} = \frac{2k}{5k}$ CP 3p	
$\therefore \text{EK} = \frac{2k}{5k} \times 4p \qquad $	
$\therefore \text{EK} = \frac{2}{5} \times 4p \qquad \qquad \therefore \frac{\text{CP}}{\text{PD}} = 3p \times \frac{5}{8p}$	
$\therefore \text{EK} = \frac{8p}{5} \qquad \qquad \therefore \frac{\text{CP}}{\text{PD}} = \frac{15}{8}$	

DAY 1 Activities 2.2.1 – 2.2.2 DAY 2 Activities 2.2.3 – 2.2.5 DAY 3 Activities 2.2.6 – 2.2.7

TOPIC: EUC	LIDEAN GEOM	ETRY					
LESSON 3:							
Term	1	Week	4	Grade	12		
Duration	3Н	Weighting	27% (40/150)	Date			
Sub-topics	Sub-topics Similarity						
RELATED C	ONCEPTS/ TER	MS/VOCABULARY					
• Similar PRIOR-KNO	, Equiangular, Con WLEDGE/ BACH	gruent and the differe	ence between these ter	ms.			
KnowleGrade 9Formal	edge of all Grade 1 9 parallel lines and proofs of the 5 ex	0 & 11 theorems & c triangle geometry. aminable Gr11 proofs	onverses				
RESOURCES	5						
•	Textbooks (Mind . Provincial Trial Ex	Action Series GR 12) kam Papers					

Discuss concepts of similarity from earlier grades

Two polygons are similar if they have the same shape but not necessarily the same size.

Two conditions must **both** be satisfied for two polygons to be similar:

(a) The corresponding angles must be equal.

(b) The ratio of the corresponding sides must be in the same proportion.

Draw and discuss such examples with learners.

Have a discussion around whether the square and rectangle alongside are similar.

Considering Similar Triangles highlight....

With similar triangles, **only one of the two** conditions needs to be true in order for the two triangles to be similar. This is proved in the theorem below:

THEOREM : Equiangular Triangles are similar

That AX = DE and AY = DF. Construct XYIn $\triangle AXY$ and $\triangle DEF$ 1. AX = DE (construction) 2. AY = DF (construction) 3. $\hat{A} = \hat{D}$ (given) $\therefore \triangle AXY = \triangle DEF$ (SAS) now $A\hat{X}Y = \hat{E}$ but $\hat{E} = \hat{B}$ (given) $\therefore A\hat{X}Y = \hat{B}$ $\Rightarrow XY // BC$ (correponding \angle 's =) now $\frac{AB}{AX} = \frac{AC}{AY}$ (line // one side of \triangle) but AX = DE and AY = DF (construction) $\therefore \frac{AB}{DE} = \frac{AC}{DF}$ similarly by marking off equal lengths on BA and BC it can be shown that $: \frac{AB}{DE} = \frac{BC}{EF}$ $\therefore \frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$

CONVERSE: If the corresponding sides are in the same proportion, then the corresponding angles of the two triangles will be equal

The following Example to be discussed by the Educator in the lesson:

EXAMPLE

In $\triangle PST$, TS \perp PS and RQ \perp PT. Prove:

- (a) $\Delta PRQ \parallel \Delta PST$
- (b) RQ:PQ = ST:PT
- (c) $PR \cdot PT = PQ \cdot PS$

Match the corresponding angles of ΔPRQ and a) ΔPST as follows and then prove the pairs of In $\triangle PRQ$ and $\triangle PST$: angles equal. $\hat{\mathbf{P}} \longrightarrow \hat{\mathbf{P}}$ $\hat{\mathbf{R}}_1 \longrightarrow \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2$ $\hat{\mathbf{Q}}_2 \longrightarrow \hat{\mathbf{T}}$ Draw solid lines for each pair of corresponding angles that are equal. The dotted line indicates that the pair of angles are the $\hat{\mathbf{P}} = \hat{\mathbf{P}}$ (1) $\hat{R}_1 = \hat{S}_1 + \hat{S}_2 = 90^\circ$ (2) $\hat{Q}_2 = \hat{T}$ (3) $\therefore \Delta PRQ \parallel \Delta PST$ equal due to the sum of the angles of a triangle. b) Since $\Delta PRQ \parallel \Delta PST$: $\frac{PR}{PS} = \frac{RQ}{ST} = \frac{PQ}{PT}$ corr sides of Δ 's in proportion $\therefore \frac{RQ}{ST} = \frac{PQ}{PT}$ $\therefore \frac{RQ}{RQ} = \frac{ST}{ST}$ cross multiplication PQ PT \therefore RQ:PQ = ST:PT c) $\frac{PR}{PS} = \frac{PQ}{PT}$ since $\frac{PR}{PS} = \frac{RQ}{ST} = \frac{PQ}{PT}$ cross multiplication \therefore PR . PT = PQ . PS DAY 1 Activities 2.3.1 - 2.3.3DAY 2 Activities 2.3.4 – 2.3.6 DAY 3 Activities 2.3.7 – 2.3.10

2.3.9 In the diagram below, K, M and N respectively are points on sides PQ, PR and QR of Δ PQR. 1,5•, PM = 2; KM = 2,5; MN = 1; MR = 1,25 and NR 0,75. Ρ 1,5 Μ 2,5 1,25 K R Prove that $\Delta KPM /// \Delta RNM$ 2.3.9.2. 2.3.9.3. Determine the length of NQ 2.3.10 In the diagram below NE is a common tangent to the two circles. NCK and NGM are double chords. Chord LM of the larger circle is a tangent to the smaller circle at point C. KL, KM and CG are drawn. Μ G E N Prove that : KC MG 2.3.10.1. KN MN KMGC is a cyclic quadrilateral if CN = NG. 2.3.10.2. 2.3.10.3. $\Delta MCG / / / \Delta MNC$ MC^2 KC 2.3.10.4. MN² KN

TOPIC: EUCLIE	DEAN GEOM	ETRY				
LESSON 4:						
Term	1	Week		5	Grade	12
Duration	1HR	Weigł	ting	27% (40/150)	Date	
Sub-topics	·	Pythagoras	Theorem a	pplication		
RELATED CON	CEPTS/ TER	MS/VOCAI	BULARY			
 Tangents, S Theorems, Square, Hy 	Secants, Segme Corollaries, Corollaries, Adja	ents, Circles, onverses. acent sides	Arcs.			
PRIOR-KNOWL	EDGE/ BAC	KGROUND	KNOWLI	EDGE		
KnowledgeGrade 9 tri	e of all Grade I angle geometr	10 & 11 theo y.	rems & con	verses		
RESOURCES	(Mind Action	Service (C 12)				
• Textbooks	(Mind Action	Series G 12)				
NOTES						
 Discuss the Theorem belowThe Proof is not for Examination purposes The perpendicular drawn from the vertex of the right angle of a right-angled triangle to the hypotenuse, divides the triangle into two triangles that are similar to each other and similar to the original triangle. 						
B D C						
• See if learn	ners can prove	the three tria	ngles simila	ar by inspection	and not long for	nal proofs.
• Develop th	e lesson furthe	r that since 2	ABC ∆D]	BA ΔDAC		
<u>Co</u>	rollaries					
ΔA $\therefore \frac{1}{2}$	$\frac{ABCIII\Delta DBA}{BB} = \frac{BC}{BA} = \frac{AC}{DA}$	ΔA $\therefore \frac{1}{1}$	$\frac{AB}{DA} = \frac{BC}{AC} = \frac{BC}{BC}$	$\frac{AC}{DC} \qquad \therefore \frac{L}{L}$	$BAIII\Delta DAC$ $\frac{DB}{DA} = \frac{BA}{AC} = \frac{DA}{DC}$	

$ \frac{1}{DB} = \frac{1}{BA} = \frac{1}{DA} \qquad \frac{1}{DA} = \frac{1}{AC} = \frac{1}{DC} \qquad \frac{1}{DA} = \frac{1}{AC} = \frac{1}{DC} \qquad \frac{1}{DA} = \frac{1}{AC} = \frac{1}{AC}$	
$AB^2 = BD BC$ $AC^2 = CD CB$ AD^2	AC DC
$\dots AD = DD : DC \qquad \dots AC = CD : CD \qquad \dots AD$	= BD . DC

TOPIC: EUCLIDEA	N GEOMET	RY					
LESSON 5:							
Term1WeekGrade15151							
Duration 3HRS Weighting 27% (40/150) Date							
Sub-topics		Solving Euclidean G	eometry Riders				
RELATED CONCEPTS/ TERMS/VOCABULARY							
All terminolog	y related to Fl	ET Euclidean Geome	try				
PRIOR-KNOWLED	GE/ BACKG	ROUND KNOWLE	CDGE				
 Knowledge of all Grade 10,11 & 12 theorems, converses, corollaries and axioms. Grade 9 parallel lines and triangle geometry. Formal proofs of all the examinable proofs. 							
RESOURCES							
 Textbooks (M KZN Provinci DBE NSC Exa 	ind Action Ser al Euclidean C am Papers 201	ries G 12) Geometry document 2 5 - 2020	015				
ERRORS/MISCON	CEPTIONS/P	PROBLEM AREAS					
• Learners atten and Axioms.	pt to solve Eu	clidean Riders without	ut sound understandin	g of Theorems	, Corollaries		
• Learners do no	ot adopt any st	rategy in answering o	r approaching Euclide	ean riders.			
NOTES							
Discuss the approache	es below with	learners.					
HOW TO GO ABOUT SOLVING A GEOMETRY RIDER							
1. What knowledge must you have?							
 Know all terminology associated with Euclidean Geometry relevant to the School Curriculum. Be able to state ALL Theorems/ Converses of Theorems/ Axioms and Corollaries AND be able to draw a rough diagram to describe every statement. Pages 2 to 5 of this supplement indicate the important theorems and corollaries that must be learnt and illustrations that should be remembered. 							

- Know how to write reasons in abbreviated form for the formal writing of proofs. Approved reasons are found in the Examination Guideline
- 2. What approach to use?
 - When you see the Diagram (involving a circle) and see the information provided use what we call the "<u>DOCTOR CAPE TOWN</u>" Method. That is look for Diameter/ Radius/ Cyclic Quadrilaterals/ Parallel Lines/ Tangents in other words DRCPT (Doctor Cape Town ☺) This will help you identify all the key aspects in the diagram and make problem solving easier!

- Use Colour Pencils (Maximum of 3 colours). This is particularly important when proving triangles similar.
- Always remember the order of questions is critical. Invariably what is done in a preceding question is vital to solve following questions.
- Remember correct writing of the solution is as important as solving the question itself.

3. How to Prove

1) That lines are Parallel :

Prove: Alternate angles equal or

Corresponding angles equal **or**

Co-interior angles supplementary.

2) That a quadrilateral is Cyclic :

Prove: That a pair of opposite angles are supplementary **or** The exterior angle is equal to the interior opposite angle **or** The angles in the same segment are equal.

3) That a chord is a diameter:

Prove: That the angle subtended by the chord on the circumference is a right angle. The line between the chord and the tangent is a right angle.

4) That a line is a tangent :

Prove: That the angle between the line and a chord is equal to the angle subtended by the chord in the alternate segment.

or

That the line is perpendicular to the radius at point of contact on circle.

5) That two triangles are congruent:

Prove: A case of(Side/Side) or (Side/Angle/Side) or (Angle/Side/Angle) or (90°/Hypotenuse/Side)

6) That two triangles are similar

Prove: A case of The two triangles are equiangular or The sides are in proportion.

DAY 1 Activities 2.5.1 - 2.5.3

DAY 2 Activities 2.5.4 – 2.5.6

DAY 3 Activities 2.5.7 – 2.5.8

ACTIVITIES/ASSESSMENTS

2.5.5. In the diagram below, \triangle AGH is drawn. F and C are points on AG and AH respectively such that AF = 20 units, FG = 15 units and CH = 21 units. D is a point on FC such that ABCD is a rectangle with AB parallel to GH. The diagonals of ABCD intersect at M, a point on AH.

2.5.5.1 Explain why FC // GH

2.5.5.2 Calculate, with reasons, the length of DM.

2.5.6. In the diagram, ABCD is a cyclic quadrilateral such that AC \perp CB and DC = CB. AD is produced to M such that AM \perp MC. Let $\hat{B} = x$.

2.5.6.1 Prove that:

2.5.6.1.1 MC is a tangent to the circle at C

2.5.6.1.2 ΔACB /// ΔCMD

2.5.6.1 Hence, or otherwise, prove that:

$$2.5.6.2.1 \ \frac{\mathrm{CM}^2}{\mathrm{DC}^2} = \ \frac{\mathrm{AM}}{\mathrm{AB}}$$

$$2.5.6.2.2 \ \frac{\mathrm{AM}}{\mathrm{AB}} = \mathrm{sin}^2 x$$

TOPIC: EUCLIDE	TOPIC: EUCLIDEAN GEOMETRY					
LESSON 6:						
Term	1	Week	5	Grade	12	
Duration 1HR		Weighting	27% (40/150)	Date		
Sub-topics	Sub-topics Short Test (Ratio, Proportionality)					
RELATED CONC	EPTS/ TERMS	S/VOCABULARY				
All terms related to Euclidean Geometry. PRIOR-KNOWLEDGE/ BACKGROUND KNOWLEDGE						
• Grade 9 para	allel lines and tri	angle geometry.				
 Formal proofs of all examinable theorems. 						
NOTES						
• Test will be	written for the f	irst 30 minutes of t	he lesson			
• Learners to interchange the task and mark during the discussion of the solutions.						

TOPIC 3 : Trigonometry							
LESSON 1:							
Term	1	VV EEK		Graue	12		
Duration	1 Hour	Weighting	50	Date			
Sub-topics		Compound Angles					
RELATED CO	NCEPTS/ TE	RMS/VOCABULA	RY				
• Co-funct	ions						
PRIOR-KNOW	LEDGE/ BA	CKGROUND KNO	OWLEDGE				
Reductio	n formulae						
Co-funct	ions						
• Identities	•						
RESOURCES							
Grade 12 Textbo	ooks (Siyavula	and Study &Master)				
NOTES							
NOTES The derivation of $\cos(\alpha + \beta)$, $\sin(\alpha - \beta)$ and $\sin(\alpha + \beta)$ from $\cos(\alpha - \beta)$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ 1. From the formula of $\cos(\alpha - \beta)$ derive the formula of $\cos(\alpha + \beta)$ $\cos(\alpha + \beta) = \cos(\alpha - (-\beta))$ $\therefore \cos[(\alpha - (-\beta)] = \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta))$ $\therefore \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ 2. From the formula of $\cos(\alpha - \beta)$ derive the formula of $\sin(\alpha + \beta)$ $\sin(\alpha + \beta) = \cos[90^\circ - (\alpha + \beta)]$ $= \cos[(90^\circ - \alpha) - \beta]$ $= \cos(90^\circ - \alpha) \cos \beta + \sin(90^\circ - \alpha) \sin \beta$ $= \sin \alpha \cos \beta + \cos \alpha \sin \beta$ 3. From the formula of $\cos(\alpha - \beta)$ derive the formula of $\sin(\alpha - \beta)$							
$= \cos[(90)]$ $= \cos(90)$ $= \sin \alpha \cos(90)$	$(2)^{\circ} - \alpha + \beta$ $(2)^{\circ} - \alpha - \alpha + \beta$ $(2)^{\circ} - \alpha - (-\beta)$ $(2)^{\circ} - \alpha - $	$+\sin(90^\circ - \alpha)\sin(-\beta)$	β)				

ACTIVITIES/ASSESSMENTS

3.1.1 Given that $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$, deduce:

(a) $\sin(90^\circ - \alpha) = \cos \alpha$

(b) $\cos(90^\circ - \alpha) = \sin \alpha$

3.1.2 Expand the following using the compound angle formulae, and simplify using special angles where possible: `

(a) $\cos(x-20^{\circ})$

(b) $sin(A + 45^{\circ})$

(c) cos15°

TOPIC: Trigonometry							
			SON 2:				
Term	1	Week		Grade	12		
Duration	1 Hour	Weighting	50	Date			
Sub-topics		Compound Angle	s				
RELATED CO	NCEPTS/ TE	ERMS/VOCABUL	ARY				
Co-funct	ions						
• Special a	ingles						
PRIOR-KNOW	VI FDCF/ BA	CKCROUND KN	OWLEDGI	r			
Reduction	n formulae		OWLEDGI				
Co-funct	ions						
• Identities	5						
• Special a	ingles						
RESOURCES							
Mind act	ion series						
• Grade 12	2 Textbooks (S	iyavula)					
• Grade 12	2 Study & Mast	ter					
NOTES							
Example I	a formula for	$\cos(A + B)$ in term	s of trigonon	netric ratios of A and F	2		
Solution	a formula for	$\cos(A+D)$ in terms	s of urgonon	lictric ratios of A and I).		
$11 \cos(A)$	$(+ B) = \cos A \cos A$	$\cos B - \sin A \cos B$					
	$(D) = \cos \pi e$						
Example 2 1.2 Simplify the	Example 2						
1.2 Simplify the following.							
$\cos 78^{\circ}\cos 18^{\circ} + \cos 72^{\circ}\cos 12^{\circ}$							
Solution	Solution						
12							
$\cos 78^{\circ} \cos 18^{\circ} +$	- sin18° sin 78°	$c = \cos(78^\circ - 18^\circ)$					
$=\cos 60^{\circ}$	5						

 $=\frac{1}{2}$

ACTIVITIES/ASSESSMENTS 3.2.1Simplify the following: (a) $\sin 80^{\circ}.\sin 20^{\circ} + \cos 20^{\circ}.\cos 80^{\circ}.$ (b) $\cos 20^{\circ}\cos 40^{\circ} - \sin 20^{\circ}\sin 40^{\circ}$ (c) $\cos 340^{\circ}\sin 80^{\circ} - \sin 160^{\circ}\cos 80^{\circ}$ (d) $\cos 35^{\circ}.\sin 25^{\circ} - \cos(-205^{\circ}).\cos 55^{\circ}$ 3.2.2. Derive the formula for $\sin(A + B)$ if you are given that $\cos(A + B) = \cos A \cos B - \sin A \sin B$

3.2.3. Use the compound angles to prove that:

 $2\sin A\cos B = \sin(B+A) - \sin(B-A)$

TOPIC: Trigonometry								
LESSON 3								
10111	1	WEEK		Graue	12			
Derestien	1 11		50	Data				
Duration	1 Hour	weighting	50	Date				
Sub-topics		Double angles			I			
RELATED CO	NCEPTS/ TI	ERMS/VOCABUL	ARY					
Square Io	dentities							
PRIOR-KNOW	VLEDGE/ BA	CKGROUND KN	OWLEDGE	1				
• Identities	8							
Compour	nd angles							
• Double								
RESOURCES								
Grade 12 Textbo	ooks (Siyavula	a)						
NOTES								
Derivation of sir	12α and \cos	2α						
Derivation of si	$\ln 2\alpha$							
It was shown that	at $\sin(\alpha + \beta)$	$=\sin \alpha \cos \beta - \alpha$	$\cos \alpha \sin \beta$.	If $\alpha = \beta$,				
Then, $\sin 2\alpha =$	$\sin(\alpha + \alpha)$)						
=	$\sin \alpha \cos \alpha$	$+\cos \alpha \sin \alpha$						
∴ sir	$12\alpha = 2\sin \alpha$	$\alpha \cos \alpha$						
Derivation of co	$\cos 2\alpha$							
It was shown that	at $\cos(\alpha + \beta)$	$) = \cos \alpha \cos \beta - \beta$	$\sin \alpha \sin \beta$	If $\alpha = \beta$.				
Then, $\cos 2\alpha =$	$\cos(\alpha + \alpha)$)	p	μ,				
=	$\cos \alpha \cos \alpha$	$\alpha - \sin \alpha \sin \alpha$						
∴ co	$s 2\alpha = \cos^2 \alpha$	$\alpha - \sin^2 \alpha$						
$\cos 2\alpha$ can also be written as: $\cos 2\alpha - \cos^2 \alpha - \sin^2 \alpha$								
$\cos 2\alpha$ can also be written as: $\cos 2\alpha - \cos^2 \alpha - \sin^2 \alpha$ = $(1 - \sin^2 \alpha) - \sin^2 \alpha$ (Square Identity)								
	$\therefore \cos 2\alpha = 1 - 2\sin^2 \alpha$							
And,	cos	$2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$^{2} \alpha$					
		$=\cos^2 \alpha - (1 + 1)$	$-\cos^2 \alpha$)					
	∴ co	$\cos 2\alpha = 2\cos^2 \alpha -$	1					

AC	FIVITIES/ASSESSMENTS
3.3.	1 Use Double angle identities to simplify each expression:
(a)	$\frac{\sin 2\theta}{2\sin^2 \theta}$
(b)	$\frac{\sin 2\theta}{2\sin \theta}$
(c)	$2\sin^2\theta + \cos 2\theta$
(d)	$(\sin\theta + \sin\theta)^2$
(e)	$(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)$
(f)	$\frac{\sin 2\theta}{2\tan \theta}$

TOPIC: Trigonometry						
		LESS	ON 4:			
Term	1	Week		Grade	12	
Duration1 HourWeighting50Date						
Sub-topics		Compound and do	ouble angles (CAST DIAGRAM)	
RELATED CON	CEPTS/ TER	MS/VOCABULAR	Y			
CAST diag	ram					
Special ang	les					
PRIOR-KNOWI	FDGF/BAC	KGROUND KNOV	VLEDGE			
Dythagoras	theorem		LEDGE			
Peduction	formulae					
Co-function	ng					
Identities	15					
Compound	angles					
Double	ungres					
RESOURCES						
Grade 12 Textbool	ks (Siyavula)					
METHODOLOGY						
The teacher	r will use the C	CAST diagram to sel	ect the correct	quadrant to draw a	diagram	
Apply pyth	agoras theorer	n to determine the m	nissing side of	a right angled trian	gle	
CAST DIAGRAM	ſ					

- 2. If $\cos 21^\circ = p$, determine the following in terms of *p*:
- 2.1 cos 201°
- 2.2 sin 291°
- 2.3 cos 42°
- 2.4 tan 69°

TOPIC: Trigonometry							
LESSON: 5							
Term	1	Week		Grade	12		
Duration	Duration1 HourWeighting50Date						
Sub-topics	Sub-topics Compound and double angles						
RELATED CONCEPTS/	TERMS/VOC	ABULARY					
 Co-functions Negative angles Cosine rule 							
PRIOR-KNOWLEDGE/	BACKGROUN	ND KNOWLEDGE					
 Reduction formulae Co-functions Identities 							
RESOURCES							
Grade 12 Textbooks (Siyav Grade 12 Platinum Past papers	rula)						
NOTES							
 Verify the fundament Simplify trigonome Choose cos2A correct 	ntal trigonometr tric expressions ectly to avoid tin	ric identities. using algebra and the wasting	he identities				
Example 1:							
Simplify as far as possible:							
$(\sin 15^\circ + \cos 15^\circ)^2$							
Solution:							
$= \sin^{2} 15 + 2 \sin 15^{\circ} \cos 15^{\circ} + \cos^{2} 15^{\circ}$ = 1 + 2 \sin 15^{\circ} \cos 15^{\circ} = 1 + \sin 30^{\circ} $\frac{3}{2}$							
Example 2: Simplify as far as possible:							

```
\frac{\sin 2x - \cos 2x + 1}{\sin 2x + \cos 2x + 1}
```

Solution

$$= \frac{\sin 2x - \cos 2x + 1}{\sin 2x + \cos 2x + 1}$$
$$= \frac{2\sin x \cos - (1 - 2\sin^2 x) + 1}{2\sin x \cos + (2\cos^2 x - 1) + 1}$$
$$= \frac{2\sin^2 x + 2\sin x \cos x}{2\cos^2 x + 2\sin x \cos x}$$
$$= \frac{2\sin x (\sin x + \cos x)}{2\cos x (\cos x + \sin x)}$$
$$= \frac{\sin x}{\cos x}$$
$$= \tan x$$

ACTIVITIES/ASSESSMENTS

3.5.1Simplify the following without using a calculator

(a)
$$\frac{\cos 210^{\circ} \cdot \tan 330^{\circ}}{\sin^2 225^{\circ}}$$

(b) $\frac{\sin (-x)\sin (360^{\circ}-x) \sin 35^{\circ}}{\cos (360^{\circ}+x) \cos (90^{\circ}-x) \cos 55^{\circ}}$
(c) $\frac{\sin (x-90^{\circ}) \sin 70^{\circ} \cdot \tan (x+180^{\circ})}{\cos 35^{\circ} \cdot \cos 55^{\circ} \cdot \cos (450^{\circ}-x)}$
(d) $\cos 112^{\circ} \cdot \sin 22^{\circ} - \frac{\cos 428^{\circ} \cdot \sin (-68^{\circ})}{\tan 202^{\circ}}$
(e) $\sqrt[3]{\frac{\sin 225^{\circ} \cdot \cos 315^{\circ} \cdot \cos^{2} 300^{\circ} \cdot \cos(-60^{\circ})}{\sin 120^{\circ} \cdot \tan 570^{\circ}}}}$
(f) $\frac{2\sin 165^{\circ} \cdot \cos 345^{\circ}}{\cos 45^{\circ} \cos 15^{\circ} + \sin 45^{\circ} \sin 15^{\circ}}}$
(g) $\frac{\cos(-x) \cdot \tan(180^{\circ}-x)}{\sin(180^{\circ}-x)[\sin^{2}(90^{\circ}+x) - \sin x.\cos(90^{\circ}+x)]}}$
(h) $\frac{\sin 2x + \sin x}{\cos 2x + \cos x + 1}$

	TOPIC: Trigonometry					
		1	LESSON	N:6		12
Term		1	Week		Grade	12
Duration		1 Hour	Weighting	15	Date	
Sub-topics		(Compound and do	ouble angles		
RELATED CO	ONCEPTS	/ TERMS/	VOCABULARY			
Co-fund	ctions					
• Negativ	Negative angles					
• Cosine	rule					
PRIOR-KNO	WLEDGE/	BACKGF	ROUND KNOWL	EDGE		
• Reducti	on formula	e				
Co-fund Identitie	ctions					
RESOURCES						
Grade 12 Text	oooks (Siya	vula)				
Grade 12 Platin						
Past papers	x Master					
METHODOL	OGY					
Verify	the fundame	ental trigon	ometric identities.			
Conside	er the LHS of	or RHS as a	an algebraic expres	ssion		
Simplif Choose	y trigonome	etric expres	sions using algebra	a and the identit	ies	
Example 1:	052A 0011		old time wasting			
Show that: 2sin	$hA.\cos B =$	$\sin(B + A)$	$)-\sin(B-A)$			
Solution						
RHS =	$RHS = \sin A \cdot \cos B + \sin B \cdot \cos A - \sin B \cdot \cos A + \sin A \cdot \cos B = 2\sin A \cdot \cos B$					
Example 2:						
Prove that: sin	$(\alpha + \beta)$. sir	$n(\alpha - \beta) =$	$= (\sin \alpha + \sin \beta)(\sin \alpha)$	$\sin \alpha - \sin \beta$)		
Solution						
LHS	$LHS = \sin(\alpha + \beta) \cdot \sin(\alpha - \beta)$					
$= [\sin \alpha \cos \beta + \cos \alpha \sin \beta] [\sin \alpha \cos \beta - \cos \alpha \sin \beta]$						
$=\sin^2\alpha . \cos^2\beta - \cos^2\alpha \sin^2\beta$						
	$=\sin^2\alpha(1-\sin^2\beta)-(1-\sin^2\alpha)\sin^2\beta$					
	$= \sin^2 \alpha - \sin^2 \alpha \sin^2 \beta - \sin^2 \beta + \sin^2 \alpha \sin^2 \beta$					
	$=\sin^2\alpha-\sin^2\beta$					
	$= (\sin \alpha + \sin \beta)(\sin \alpha - \sin \beta)$					
	= RHS					

Example 3:	
Prove that:	
1	
$\frac{1}{1}$ + ta	$n 2x = \frac{\sin x + \cos x}{\sin x + \cos x}$
$\cos 2x$	$\cos x - \sin x$
Solution:	
$LHS = -\frac{1}{2}$	$-+\tan 2x$
$\cos 2$	x
$= \frac{1}{1} + \frac{si}{s}$	n 2x
$\cos 2x$ co	$\cos 2x$
$=\frac{1}{1}+\frac{s_1}{s_2}$	$\frac{n 2x}{2}$
$\cos 2x \cos 2x$	$\cos 2x$
$=\frac{1+2\sin xc}{xc}$	OS X
$\cos 2x$	
$=\frac{\sin^2 x + \cos^2 x}{\sin^2 x + \cos^2 x}$	$s^2 x + 2\sin x \cos x$
cos	$x^2 - \sin^2 x$
$=\frac{\sin^2 x+2s}{\sin^2 x+2s}$	$\frac{\sin x \cdot \cos x + \cos^2 x}{2}$
cos	$x - \sin^2 x$
$=\frac{(\sin x + \cos x)}{(\sin x + \cos x)}$	$sx(\sin x + \cos x)$
$(\cos x - \sin x)$	$(\cos x - \sin x)$
$=\frac{\sin x + \cos x}{\cos x}$	<u>x</u>
$\cos x - \sin x$	x
$\therefore LHS = RH$	S
ACTIVITIE	S/ASSESSMENTS
3.6.1 Prove	that:
	$\sin 2x$
(a) $2\sin x \cos x$	$Sx = \frac{1}{2\cos^2 x - \cos 2x}$
$\cos 2\theta +$	$\sin^2\theta$
(b) $\frac{1+\sin^2 \theta}{1+\sin^2 \theta}$	$\frac{1}{n\theta} = 1 - \sin\theta$
$2-\cos^2 x$	$x - 2\sin x$ $1 - \sin x$
(c) $\frac{-100}{000}$	$\frac{1}{x^2} = \frac{1}{1 + \sin x}$
001	
(d) 1	$\tan 2x = \frac{\sin x + \cos x}{\cos x}$
(d) $\frac{1}{\cos 2x}$	$\tan 2x = \frac{1}{\cos x - \sin x}$
cos?r	$tan x \cos x$
(e) $\frac{\cos 2x}{\sin x}$	$\frac{\tan x}{2x} = \frac{\cos x}{\sin x} - \tan x$
5111	
	$1 \qquad \cos \mathbf{P} + \sin \mathbf{P}$
3.6.2 Give	n the identity: $\tan 2B + \frac{1}{\cos 2B} = \frac{\cos B + \sin B}{\cos B - \sin B}$
	$\cos 2 \mathbf{D} = \cos \mathbf{D} - \sin \mathbf{D}$
(a) Prov	e the identity.
	-
(b) Hend	ce. determine the value of: $\frac{\cos 15^\circ + \sin 15^\circ}{\cos 15^\circ + \sin 15^\circ}$
	$\cos 15^\circ - \sin 15^\circ$

TOPIC: Trigonometry							
LESSON : 7							
Term	1	Week		Grade	12		
Duration	1 Hour	Weighting	50	Date			
Sub-topics	Sub-topics General solution						
RELATED CONCEPTS/ TERMS/VOCABULARY							
Algebraic equ	ations						
Compound an	d double ang	gles					
DDIOD KNOWLEE				1			
PRIOK-KNOWLEL	DGE/ BACK	GROUND KNU	JWLEDGE	1			
Co-functions	mulae						
 Identities 							
DEGOLIDOEG							
RESOURCES	(Sivernle)						
Grade 12 Platinum	(Siyavula)						
Grade 12 Study & Ma	aster						
Past papers							
NOTES							
• Apply the alge	ebraic metho	d to rearrange the	e equation				
 Consider squa 	re identities	to make trig ratio	os to be com	mon			
• The skill of do	ouble and co	mpound angles is	required				
			-				
Example 1:	Example 1:						
Solve for wif $2\tan^2$. 1_0 and	1000 < n < 100	0				
Solve for x if $3 \tan x - 1 = 0$ and $-180^{\circ} \le x \le 180^{\circ}$							
Solution							
$\tan x = \pm \frac{1}{\sqrt{2}}$							
$\sqrt{3}$							
$x = 30^{\circ} + n180^{\circ} (n \in \mathbb{Z})$							
$x = 45^{\circ} + n180^{\circ} (n \in \mathbb{Z})$							
$x = 30^{\circ} orx = 150^{\circ} orx = -30^{\circ} orx = -150^{\circ}$							

Example 2:

Determine the general solution of the following equation: $1 + \sin 2x = 4\sin^2 x$

Solution

 $1 + \sin 2x = 4 \sin^{2} x$ $\sin^{2} x + \cos^{2} x + 2 \sin x \cos x - 4 \sin^{2} x = 0$ $\cos^{2} x + 2 \sin x \cos x - 3 \sin^{2} x = 0$ $(\cos x + 3 \sin x)(\cos x - \sin x) = 0$ $\cos x = -3 \sin x \text{ or } \cos x = \sin x$ $\tan x = -\frac{1}{3} \text{ or } \tan x = 1$ $x = 180^{\circ} - 18,43^{\circ} + n.180(n \in \mathbb{Z}) \text{ or } x = 45^{\circ} + n.180^{\circ} (n \in \mathbb{Z})$ $x = 161.57^{\circ} + n.180^{\circ} (n \in \mathbb{Z})$

Example 3

Solve for x if :

 $\cos 2x \cdot \sin x - \sin 2x \cdot \cos x = \cos (60^\circ - 2x)$ without using a calculator and if $x \in [0^\circ; 360^\circ]$

Solution

```
sin(2x - x) = cos(60^{\circ} - 2x)

sin x = cos(60^{\circ} - 2x)

cos(90^{\circ} - x) = cos(60^{\circ} - 2x)

90^{\circ} - x = 60^{\circ} - 2x + n.360^{\circ} (n \in \mathbb{Z})

x = -30^{\circ} + n.360^{\circ} (n \in \mathbb{Z})

OR

90^{\circ} - x = 360^{\circ} - (60^{\circ} - 2x) + n.360^{\circ} (n \in \mathbb{Z})

x = -70^{\circ} - n.120^{\circ} (n \in \mathbb{Z})

x = 50^{\circ} orx = 170^{\circ} orx = 290^{\circ} orx = 330^{\circ}
```

ACTIVITIES/ASSESSMENTS

- 3.7.1 Determine the general solution of $\sin 60^{\circ} \cos x + \cos 60^{\circ} \sin x = 1$
- 3.7.2 Determine the general solution of $\cos 2x 7\cos x 3 = 0$
- 3.7.3 Determine the general solution of $6\sin^2 x + 7\cos x 3 = 0$
- 3.7.4 Given: $1 + \tan^2 2A = 5\tan 2A 5$, Determine the general solution
- 3.7.5 Solve for $x: \sqrt{3} \sin x + \cos x = 2$

3.7.6 Determine a value for x if $\cos x$; $\sin x$; $\sqrt{3} \sin x$ is a geometric sequence.

TOPIC: Trigonometry						
LESSON : 8						
Term	1	Week		Grade	12	
Duration	1 Hour	Weighting	50	Date		
		8 8				
Sub-topics	G	eneral solution (Re	estrictions)			
DEL ATED CON	CEDTS/TEDM					
KELATED CON	CEPIS/ IERNI	S/VUCABULARY				
Algebraic e	end double and	00				
• Compound	and double align	68				
PRIOR-KNOWL	EDGE/ BACK	GROUND KNOW	LEDGE			
Reduction 1	formulae					
Co-function	ns					
• Identities						
RESOURCES	(0: 1)					
Grade 12 Textbool	ks (Siyavula)					
Grade 12 Platinum	Master					
Past papers	widster					
r use pupers	i asi papers					
NOTES	NOTES					
• Apply the a	algebraic method	to rearrange the equ	uation			
Consider so	quare identities to	o make trig ratios to	be common	1		
• The skill of double and compound angles is required						
Example 1:						
Solve for <i>x</i> if $3\tan^2 x - 1 = 0$ and $-180^\circ \le x \le 180^\circ$						
Solution						
$\tan x = \pm \frac{1}{\sqrt{3}}$						

 $\begin{aligned} x &= 30^{\circ} + n180^{\circ} (n \in \mathbb{Z}) \\ x &= 45^{\circ} + n180^{\circ} (n \in \mathbb{Z}) \\ x &= 30^{\circ} orx = 150^{\circ} orx = -30^{\circ} orx = -150^{\circ} \end{aligned}$

Example 2:

Determine the general solution of the following equation: $1 + \sin 2x = 4 \sin^2 x$

Solution

$$1 + \sin 2x = 4 \sin^{2} x$$

$$\sin^{2} x + \cos^{2} x + 2 \sin x \cos x - 4 \sin^{2} x = 0$$

$$\cos^{2} x + 2 \sin x \cos x - 3 \sin^{2} x = 0$$

$$(\cos x + 3 \sin x)(\cos x - \sin x) = 0$$

$$\cos x = -3 \sin x \text{ or } \cos x = \sin x$$

$$\tan x = -\frac{1}{3} \text{ or } \tan x = 1$$

$$x = 180^{\circ} - 18,43^{\circ} + n.180(n \in \mathbb{Z}) \text{ or } x = 45^{\circ} + n.180^{\circ} (n \in \mathbb{Z})$$

$$x = 161.57^{\circ} + n.180^{\circ} (n \in \mathbb{Z})$$

Example 3

Solve for x if :

 $\cos 2x \cdot \sin x - \sin 2x \cdot \cos x = \cos (60^\circ - 2x)$ without using a calculator and if $x \in [0^\circ; 360^\circ]$

Solution

```
sin(2x - x) = cos(60^{\circ} - 2x)

sin x = cos(60^{\circ} - 2x)

cos(90^{\circ} - x) = cos(60^{\circ} - 2x)

90^{\circ} - x = 60^{\circ} - 2x + n.360^{\circ} (n \in \mathbb{Z})

x = -30^{\circ} + n.360^{\circ} (n \in \mathbb{Z})

OR

90^{\circ} - x = 360^{\circ} - (60^{\circ} - 2x) + n.360^{\circ} (n \in \mathbb{Z})

x = -70^{\circ} - n.120^{\circ} (n \in \mathbb{Z})

x = 50^{\circ} orx = 170^{\circ} orx = 290^{\circ} orx = 330^{\circ}
```

ACTIVITIES/ASSESSMENTS 3.7.4 Determine the general solution of $\sin 60^{\circ} \cos x + \cos 60^{\circ} \sin x = 1$ 3.7.5 Determine the general solution of $\cos 2x - 7\cos x - 3 = 0$ Determine the general solution of $6\sin^2 x + 7\cos x - 3 = 0$ 3.7.6 Given: $1 + \tan^2 2A = 5\tan 2A - 5$, 3.7.4 Determine the general solution 3.7.5 Solve for $x: \sqrt{3} \sin x + \cos x = 2$ 3.7.6 Determine a value for x if $\cos x$; $\sin x$; $\sqrt{3} \sin x$ is a geometric sequence. **ACTIVITIES/ASSESSMENTS** 3.8.1 Prove that $\frac{1 - \cos^2 A + \sin 2A}{\sin 4 + 2\cos 4} = \sin A$ 3.8.2 For what value(s) of A is $\frac{1 - \cos^2 A + \sin 2A}{\sin A + 2\cos A} = \sin A$ not defined? 3.8.3(a) Prove the identity $\frac{\sin 2\theta + \cos \theta + 1}{\cos 2\theta} = \frac{2\cos \theta}{\cos \theta - \sin \theta}$ (b) Write down all the values for θ in the interval [0°;180°] for which the identity is not valid. 3.8.4(a) Prove that $\frac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta} = \tan\theta$ (b) For which values of θ is the identity not valid?

TOPIC: Trigonometry								
		LESSON : 9						
Term	1	Week		Grade	12			
Duration	1 Hour	Weighting 50 Date						
Sub-topics Trigonometric Equations								
RELATED CONCEPT	S/ TERMS/	VOCABULARY						
Algebraic equation	ons							
• Compound and d	louble angles							
1	U							
PRIOR-KNOWLEDG	E/ BACKGE	ROUND KNOWLEDG	E					
Reduction formu	lae							
Co-functions								
 Identities 								
• Trig graphs								
RESOURCES								
Grade 12 Textbooks (Sig	yavula)							
Grade 12 Platinum								
Grade 12 Study & Maste	er							
Past papers								
METHODOLOGY								
• Simplify to the si	• Simplify to the single ration							
Consider the ame	olitude							
 The maximum and the minimum values are the v-values of the turning points 								
				F				
Example								

- 1.1 Given the expression: $\sin 2x \cdot \cos 2x$
 - 1.1.1 Calculate the maximum value of the above expression.
 - 1.1.2 Calculate the first negative value of x for which the expression has this maximum value.

Solution				
1.1.1	$\sin 2x \cdot \cos 2x$			
	$=\frac{1}{2}.2\sin 2x.\cos 2x$			
	$=\frac{1}{2}\sin 4x$			
	$=\frac{1}{2}.1$			
	$=\frac{1}{2}$			
1.1.2	$\sin 4x = 1$			
	$4x = 90^{\circ} + k.360^{\circ} k \in \mathbb{Z}$			
	$x = 22,5^{\circ} + k.90^{\circ} k \in \mathbb{Z}$			
	$x = -67,5^{\circ}$			
ACTIVITI	ES/ASSESSMENTS			
3.9.1(a) Pr	ove that $\sin 3A = 3\sin A - 4\sin^3 A$			
(a) Hen	ce determine the minimum value of $\frac{\sin 3A}{\sin A}$			
3.9.2 Consider the expression $\sin x + \cos x$				
(a) Prov	we that $(\sin x + \cos x)^2 = \sin 2x + 1$.			
(b) Hene	ce determine the maximum value of $\sin x + \cos x$			

TOPIC: TRIGONOMETRY					
LESSSON: 10					
Term	One	Week			
Duration	120 minutes	Weighting	50		
Sub-topic	2D/3D shape				
RELATED CONCEPTS/ TERMS/VOCABULARY	 Algebraic equations Perpendicular Heights Distance 				
	• Angle of El	levation			
	• Angle of D	epression	····		
	• Types of Ti	riangles: scalene; e	quilateral, isosceles etc.		
	• Horizontal	plane			
PRIOR-KNOWLEDGE/ B	ACKGROUND KI	NOWLEDGE			
Knowledge of polyge	ons and their propert	ties			
• Sine rule, cosine rule	and area rule				
• Pythagoras theorem	Pythagoras theorem				
Trigonometric ratios					
Reduction formulae					
RESOURCES.					
Chalkboard and other related teaching aids					
Modelling					
• Grade 11/12 textboo	ks (Mind Action Ser	ries and Maths Han	nd book and study guide)		
• NSC Past exam pape	rs				
NOTES					
SUMMARY Solving Two-Dimensional Problems using the Sine, Cosine and Area Rules.					
 The sine-rule can be used when the following in known in the triangle: more than 1 angle and side two sides and an angle(not included) 					
sinA sinB sinC					

- $\frac{\sin a}{a} = \frac{\sin b}{b} = \frac{\sin c}{C}$
- The cosine rule can be used when the following is known of the triangle •
 - three sides and one included angle
 a² = b² + c² 2bc cosA
 b² = a² + c² 2ac cosB

 - $c^2 = a^2 + b^2 2ac CosC$
- If the lengths of the three sides are given, the formula can be written in the following form. ٠ To find \widehat{A}, \widehat{B} OR \widehat{C} respectively:

Cos A =
$$\frac{b^2 + c^2 - a^2}{2bc}$$
 CosB= $\frac{a^2 + c^2 - b^2}{2ac}$ CosC= $\frac{a^2 + b^2 - c^2}{2ab}$

- The area of a triangle can be found when at least two sides an included angle known
 - Area of a triangle ABC = $\frac{1}{2}$ absinA
 - Area of a triangle ABC = $\frac{1}{2}$ bcsinB
 - Area of a triangle ABC = $\frac{1}{2}$ absinC
 - The area rule is half the product of any two sides and an included angle

Study Tips:

Sin Rule

In a solution of triangles question, use the sin rule to find a missing side or angle **only** if you have either two angles and one side, **or** two sides and an angle that is opposite one of the known sides. (Note: if the side opposite the given angle is the smaller of the 2 sides, there are 2 solutions)

Area Rule

To use the area rule you need to know 3 things: 2 sides and an included angle.

area rule

$$\leftarrow$$
 missing side

Cos Rule

- In a solution of triangle questions use the cos rule
 - To find the side opposite a given angle when we have 2 sides and an included angle

 $\sqrt{\leftarrow}$ missing side

- To find an angle when we have 3 sides given

cos rule

• Overview of the triangles

-Right angled triangle

• For you to be able to get the length of PR you will need to know \hat{Q} . Now you know two angles in ΔPQR then you can get the 3rd one by applying sum of angles in a triangle.

(b)
$$\hat{Q} = 44,85^{\circ}$$

 $\frac{q}{\sin Q} = \frac{r}{\sin R}$
 $\frac{q}{\sin 44,85^{\circ}} = \frac{12}{\sin 80^{\circ}}$
 $q = \frac{12\sin 44,85^{\circ}}{\sin 80^{\circ}}$
 $q = 8,59^{\circ}$

• Sine rule is also applicable when given two angles and a side, then you will be able to use it to calculate the other sides as well as the 3rd angle.

2. Cosine rule:

Worked out example: In $\triangle DEF$, DE = 7cm, FE = 9cm and $\hat{E} = 55^{\circ}$ D Determine the: (a) Length of DF f = 7cm(b) Size \hat{F} F Solution: d = 9cm $DE^2 = EF^2 + DF^2 - 2.EF.DF\cos{\hat{F}}$ E $7^2 = 9^2 + 7.60^2 - 2,9.60\cos{\hat{F}}$ $\cos \hat{F} = \frac{9^2 + (7,60)^2 - 7^2}{(2)(9)(7,60)}$ $\hat{F} = \cos^{-1} \left(\frac{9^2 + (7,60)^2 - 7^2}{(2)(9)(7,60)} \right)$ $\hat{F} = 48,99^{\circ}$ 3. Area rule: Worked example. C In $\triangle ABC$, $A = 50^{\circ}$, AC = 9,34 and AB = 5 cm (a) Determine area of $\triangle ABC$ Area of $\triangle ABC = \frac{1}{2}AC.AB\sin{\hat{A}}$ b = 9.34a $\Delta ABC = \frac{1}{2}9.34.5\sin 50^\circ$ в 50° $=17.89 cm^{2}$

c = 5 cm

ACTIVITIES/ASSESMENT

- 3.10.1 A piece of land has the form of a quadrilateral ABCD with AB= 20m, BC = 12m, CD = 7m and AD = 28m. $\hat{B} = 110^{\circ}$. The owner decides to divide the land into two plots by erecting a fence from A to C
 - (a) Calculate the length of the fence AC correct to one decimal place.
 - (b) Calculate the size of $B\hat{A}C$ correct to the nearest degree.
 - (c) Calculate the size \hat{D} , correct to the nearest degree.
 - (d) Calculate the area of the entire piece of land ABCD, correct to one decimal place.
- 3.10.2 The figure shows an open birthday card. The length of the card is 145mm and the breadth is 103mm. The card is placed such that the angle formed between the two sides is 120⁰
 - (a) Calculate the length of NP
 - (b) Calculate the length of PQ
 - (c) Determine the size of $N\hat{P}Q$

3.10.3 Triangle PQS represents a certain area of a park. R is a point on line PS such that QR divides the area of the park into two triangular parts, as shown below. PQ = PR = x units,

$$RS = \frac{3x}{2}$$
 units and $RQ = \sqrt{3}x$ units

- (a) Calculate the size of \hat{P}
- (b) Determine the area of triangle QRS in terms of *x*

3.10.4 In the diagram below, ABCD is a cyclic quadrilateral with DC= 6 units, AD 10 units, $A\hat{D}C=100^{\circ}$ and $C\hat{A}B=40^{\circ}$.

Calculate the following, correct to ONE decimal place:

- (a) The length of BC
- (b) The area of $\triangle ABC$

TOPIC: TRIGONOMETRY					
LESSSON: 11					
Term	One	Week			
Duration	2HR	Weighting	50		
Sub-topics	3D Shapes				
RELATED	 Fractions 				
CONCEPTS/	• Heights				
TERMS/VOCABU	• Distance				
LARY	Elevation				
	Depression				
	• Masts				
PRIOR-KNOWLEDGE/ BACKGROUND KNOWLEDGE					
Knowledge of polygons and their properties					
• Sine rule, cosir	ne and area rule				
• Pythagoras the	• Pythagoras theorem				
• Trig ratios	• Trig ratios				
RESOURCES					
• Modelling using strings and poles to demonstrate 2D shapes					

- Grade 12 textbooks (Mind Action Series and Hand book study guide)
- NSC Past exam papers

NOTES

AB is a vertical flag pole with the points B, C and D in the same horizontal plane. There are two people looking at the flag points D and C. DA=35m, AC=50m. The angle of elevation of A from D is 50° . Angle $D\hat{A}C = 35^{\circ}$ and $B\hat{D}C = 40^{\circ}$.

- (a) How far is observer D standing from the flag pole?
- (b) How far are the observers from each other?
- (c) Calculate the area that the observers form with the flag pole.

NB: With the majority of 3D trig problems, you will have to solve a right angled triangle first (whether or not it is asked in the question.

 $\cos\theta = \frac{adj}{hyp}$

 $\therefore \cos \theta = \frac{\overline{DB}}{2\pi}$ $\therefore DB = 35 \cos 50^\circ$ $\therefore DB = 22,50m$ (a) Using the cosine rule: $DC^{2} = AD^{2} + AC^{2} - 2(35)(50)\cos(D\hat{A}C)$ $\therefore DC^2 = 35^2 + 50^2 - 2(35)(50)\cos 35^0$ $\therefore DC = \sqrt{857,97}$ $\therefore DC = 29,29m$ (b) Using the area rule: Area $\Delta BCD = \frac{1}{2}(DB)(DC)\sin(B\hat{D}C)$ Area $\Delta BCD = \frac{1}{2}(22,50)(29.29)\sin(40^{\circ})$ Area $\Delta BCD = 211.81 m^2$ **ACTIVITIES/ASSESSMENT** 1. In the diagram below, PQ is a vertical mast. R and S are two points in the same horizontal plane as Q, such that: R (8-2x) units x units S

(a) Show that : $PQ = \frac{x \sin \beta . \tan \theta}{\sin(\alpha)}$

(c) Determine the value of x for which the area of $\triangle QSR$ will maximum

5.

A mouse on the ground is looking up to an owl in a tree and a cat to his right (angle of elevation from the mouse to the owl is $(90^\circ - 2\theta)$. AM = k units, GC= 8 units, MGC= 150° and MCG = θ

- 5.1 Give the size of MÂG in terms of θ .
- 5.2 Show that MG= $k \sin 2\theta$
- 5.3 Show that $MC = k \cos \theta$
- 5.4 Show that the area of $\Delta MGC = 2k \sin 2\theta$
- 6. In the diagram QS is a vertical pole. P and R are points in the same horizontal plane as Q such that QP = QR. The angle of elevation of the top of the pole S from P is y. Also SQ = h and PRQ = 2y.

