

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

JUNE 2022

Stanmorephysics.com

MARKS:

TIME: 2 hours

This question paper consists of 10 pages.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions.
- 2. Read the questions carefully.
- 3. Answer ALL the questions.
- 4. Number your answers exactly as the questions are numbered.
- 5. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- Answers only will NOT necessarily be awarded full marks. 6.
- You may use an approved scientific calculator (non-programmable and non-graphical), 7. unless stated otherwise.
- decim. Lale. Stanning decim. Stanning decim. Stanning decim. Stanning decim. If necessary, round off answers correct to TWO decimal places, unless stated otherwise. 8.
- 9. Diagrams are NOT necessarily drawn to scale.
- Write neatly and legibly. 10.

Simplify the following expression fully: 1.1

$$\frac{1}{3}x^2y\left(6x - \frac{9}{2}x^{-2}y^2\right) \tag{2}$$

Factorise the following expression fully: 1.2

$$(a+1)^2 - 4b^2 (2)$$

Solve for x: 1.3

Stanmore physic 1.3.1
$$(x+m)(x-n)=0$$
 (2)

$$1.3.2 4^x - 4^0 - 255 = 0 (3)$$

Simplify the following: 1.4

Solve for
$$x$$
:

1.3.1 m $(x+m)(x-n)=0$

1.3.2 $4^x-4^0-255=0$

Simplify the following:

$$\frac{2^{x+2}.7}{2^{x+4}-6.2^{x+1}}$$

Consider the general term:

$$T_n = \frac{1}{-2n+5}$$

(2)

(3)

[13]

QUESTION 2

Consider the general term: 2.1

2.1.2 Determine which term in the sequence has a value of
$$-\frac{1}{395}$$
. (2)

2.2 Consider the following sequence: 5; $\frac{7}{4}$; a; b; $\frac{13}{9}$; c

The general term for the sequence is $T_n = \frac{2n+3}{n^2}$.

(3) Determine the values of a, b and c.

2.3 The first four patterns in a sequence are shown below.

Each pattern is made from dots and one-centimetre lines.

The area of each small square is $1 cm^2$.

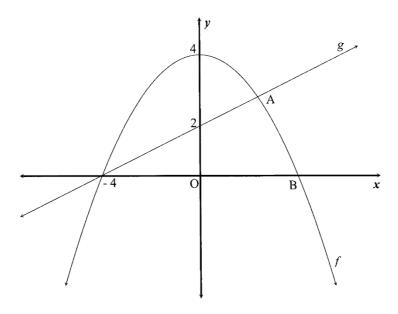
Pattern 1 Pattern 2 Pattern 3 Pattern 4

2.3.1 Use the table below and pattern above to determine the values of a, b, c, and d.

Pattern	1	2	3	4	5
Area (cm ²)	2	6	12	20	а
Number of dots	6	b	20	30	c
Number of one centimetre lines	7	17	31	49	d

(4)

2.3.2 The area of pattern n can be written as $T_n = n(n+1) cm^2$.


Find the area of pattern 50.

(1)

[12]

3.1 The graphs of $f(x) = ax^2 + q$ and g(x) = mx + c are sketched below.

The graph of f intersects the x-axis at (-4; 0) and B, and the y-axis at (0; 4) which is also the turning point of f. One of the points of intersection of f and g is A.

Use the graphs and the information given above to determine:

3.1.1 the equation of
$$g$$
. (2)

3.1.2 the values of
$$a$$
 and q . (3)

3.1.4 the domain and range of
$$f$$
. (3)

3.1.5 the equation of
$$k(x)$$
, if k is the graph of f reflected about the x -axis. (2)

3.1.6 one value of x for which
$$f(x) = 0$$
. (1)

3.1.7 the value(s) of x for which
$$f(x) > g(x)$$
, given that A (2; 3).

3.2 The function $h(x) = k^x + q$, is described with the following properties:

$$k > 0$$
; $k \neq 1$

$$h(0) = -7$$

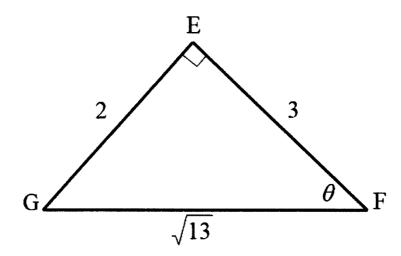
$$h(3) = 0$$

horizontal asymptote: y = -8

Using the information provided, draw a neat sketch graph of $h(x) = k^x + q$ (3)

[17]

Downloaded from Stanmorephysics.comNSC-GRADE 10


QUESTION 4

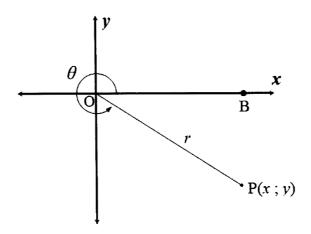
Given: $f(x) = \frac{12}{x} + 3$

- 4.1 Write down the equations of the asymptotes. (2)
- Determine the equation of g, the axes of symmetry of f, with a positive gradient. (2)
- Sketch the graph of f and g on the same system of axes, indicating all intercepts with the axes and asymptotes. (4)

QUESTION 5

In $\triangle EFG$, $\hat{E} = 90^{\circ}$ and $\hat{F} = \theta$. EG = 2 units, EF = 3 units and $FG = \sqrt{13}$ units.

Write down the values of:


5.1.1
$$\tan \theta$$
 (1)

$$5.1.2 \quad \csc\theta$$
 (1)

$$5.1.3 \qquad \cos(90^{\circ} - \theta) \tag{2}$$

Copyright Reserved

5.2 In the diagram below, P(x; y) is a point in the fourth quadrant. $\hat{BOP} = \theta$ and $17\cos\theta - 15 = 0$.

Make use of the information provided and the diagram to:

5.2.2 calculate the value of
$$\tan \theta$$
. (2)

5.2.3 prove that
$$\cos^2 \theta + \sin^2 \theta = 1$$
 (2)

QUESTION 6

6.1 If $x = 15^{\circ}$ and $y = 22,5^{\circ}$, use your calculator and determine (correct to TWO decimal places) the following:

6.1.1
$$\cos^3 x - \sin^2 x$$
 (2)

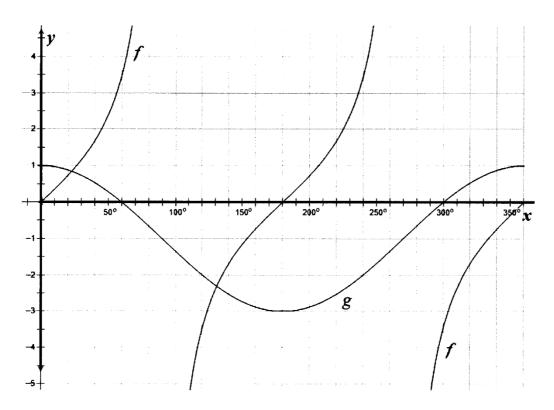
$$6.1.2 \qquad \frac{5\sec 2y}{\cot x} \tag{2}$$

$$6.1.3 \qquad \sqrt{\operatorname{cosec}(y-x)} \tag{2}$$

6.2 Solve for x, correct to **ONE** decimal place, where $0^{\circ} \le x \le 90^{\circ}$:

6.2.1
$$\tan 2x = 1,01$$
 (2)

$$6.2.2 \qquad \frac{\sin(2x - 20^\circ)}{3} = 0,099 \tag{3}$$


6.3 Without the use of a calculator, showing all working, determine the value of:

$$\frac{\sin 60^{\circ}.\sec 30^{\circ} + \tan^{2} 60^{\circ}}{2\tan 45^{\circ}}$$
 (5)

[16]

QUESTION 7

The graphs of $f(x) = a \tan x$ and $g(x) = 2 \cos x + p$ for $x \in [0^\circ; 360^\circ]$ are sketched below.

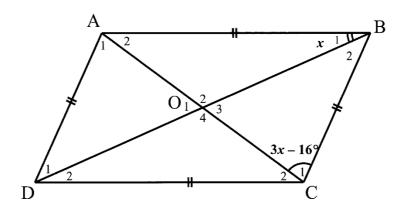
Use the graphs and the information provided to answer the following questions.

7.1 Write down the values of
$$a$$
 and p . (2)

7.2 Write down the following:

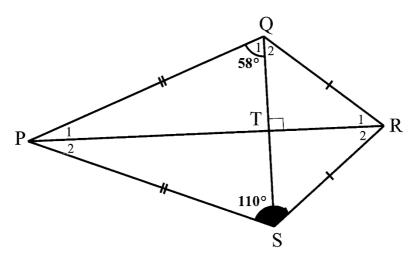
7.2.1 the amplitude of
$$g$$
. (1)

7.2.2 the range of
$$f$$
. (1)


7.2.3 the period of
$$f$$
. (1)

7.3 Use the graphs to determine the number of solutions to
$$f(x) = g(x)$$
 in the interval $x \in [0^{\circ}; 180^{\circ}]$ [6]

Give reasons for ALL geometry statements in QUESTIONS 8 and 9.

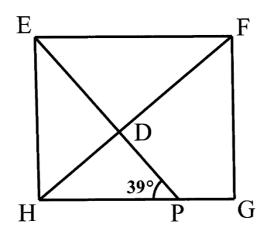

QUESTION 8

8.1 In the diagram below, the diagonals of a rhombus ABCD intersect at O. $\hat{B}_1 = x$ and $\hat{C}_1 = 3x - 16^{\circ}$.

- 8.1.1 State the value of \hat{O}_3 . (1)
- 8.1.2 Calculate the value of x. (3)
- 8.1.3 Hence, find the value of \hat{A}_1 . (2)

8.2 In the quadrilateral PQRS below, $\hat{Q}_1 = 58^{\circ}$ and $P\hat{S}R = 110^{\circ}$. $QS \perp PR$, QR = RS and PQ = PS.

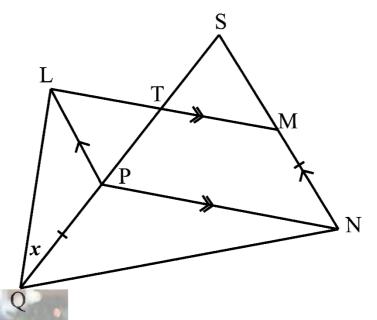
Use the diagram to calculate, with reasons, the size of:


8.2.1
$$\hat{P}_1$$
 (2)

8.2.2
$$\hat{R}_2$$
 (3)

[11]

QUESTION 9


In the diagram below, EFGH is a square and P is a point on HG such that $E\hat{P}H = 39^{\circ}$. EP and FH intersect at D.

(4)

Calculate the size of \hat{EDF} .

9.2 In the diagram below LP //SN, LM //PN and PQ = MN. Let $L\hat{Q}S = x$.

Use the diagram to prove, with reasons, that $\hat{QSN} = 2\hat{LQS}$

(5) [9]

TOTAL: 100

Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

JUNE 2022

MARKING GUIDELINE

MARKS: 100

TIME: 2 hours

NOTE:

- If a candidate answered a QUESTION TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answer in order to solve a problem is unacceptable.

This marking guideline consists of 9 pages.

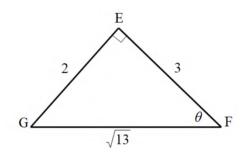
1.1	$\frac{1}{3}x^{2}y\left(6x-\frac{9}{2}x^{-2}y^{2}\right)$		
	$=2x^{3}y-\frac{3}{2}y^{3}$	$\checkmark 2x^3y \checkmark -\frac{3}{2}y^3$	(2)
1.2	$(a+1)^2 - 4b^2$		
	$= \left[(a+1) - 2b \right] \left[(a+1) + 2b \right]$	$\checkmark (a+1-2b)$	
	=(a+1-2b)(a+1+2b)	$\checkmark (a+1+2b)$	(2)
1.3.1	(x+m)(x-n)=0		(2)
	$ \begin{vmatrix} x + m \\ x = -m & or & x = n \end{vmatrix} $	$\checkmark x = -m \checkmark x = n$	(2)
1.3.2	$4^{x} - 4^{0} - 255 = 0$		(-)
1.5.2		✓ simplification	
	$4^x - 1 - 255 = 0$		
	$4^x = 256$	✓ prime base	
	$2^{2x} = 2^8$	✓ answer	
	$\therefore 2x = 8$	v answer	(3)
	$\therefore x = 4$		(3)
1.4	$\frac{2^{x+2}.7}{}$		
	$\overline{2^{x+4}-6.2^{x+1}}$	(ar a? =	
	$2^{x}.2^{2}.7$	$\checkmark 2^{x}.2^{2}.7$	
	$=\frac{2^{x}.2^{2}.7}{2^{x}.2^{4}-6.2^{x}.2^{1}}$	$\checkmark 2^x.2^4 - 6.2^x.2^1$	
	$2^{x}.2^{2}.7$		
	$=\frac{2^x \cdot 2^2 \cdot 7}{2^x (2^4 - 6.2)}$	\checkmark common factor: 2^x	
	$=\frac{28}{4}$		
	4	✓ answer	(4)
	= 7		
			[13]

QUESTION 2

2.1.1	$\frac{1}{3}$; 1	$\checkmark \frac{1}{3} \checkmark 1$	(2)
2.1.2	$\frac{1}{-2n+5} = -\frac{1}{395}$ $-2n+5 = -395$	✓ substitution	
	-2n = -400 $n = 200$	✓ answer	(2)

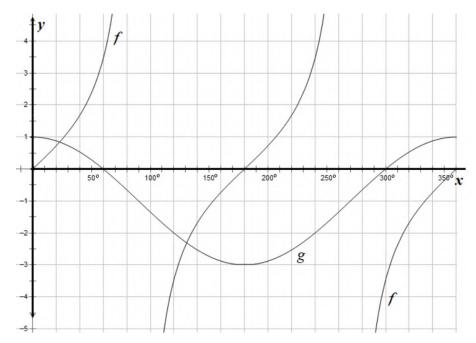
Mathen a cwnloaded from Stanmorephysics.com NSC – Grade 10 Marking Guideline

Common Test June 2022

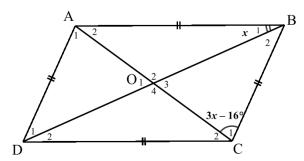

2.2	$T_3 = \frac{2(3)+3}{(3)^2} = a = 1$	✓ a=1	
	$T_{3} = \frac{2(3) + 3}{(3)^{2}} = a = 1$ $T_{4} = \frac{2(4) + 3}{(4)^{2}} = b = \frac{11}{16}$	$\checkmark b = \frac{11}{16}$	
	$T_6 = \frac{2(5)+3}{(5)^2} = c = \frac{13}{25}$	$\checkmark c = \frac{13}{25}$	(3)
2.3.1	2;6;12;20;30	✓ a=30	
	6;12;20;30;42	$ \checkmark b = 12 \checkmark c = 42 $ $ \checkmark d = 71 $	
	7;17;31;49;71		(4)
2.3.2	$T_n = n(n+1)$		
	$T_{50} = 50(50+1)$		
	$T_{50} = 2550 cm^2$	✓ answer	(1)
			[12]

QUESTION 3

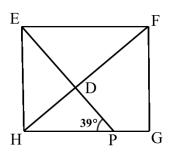
3.1	2 A A B	x x	
3.1.1	$g(x) = \frac{1}{2}x + 2$		2)
3.1.2	$q = 4$ $y = ax^{2} + 4$ $sub (-4;0) \rightarrow 0 = a(-4)^{2} + 4$ $a = \frac{-4}{16} = -\frac{1}{4}$	1	3)
3.1.3	B(4;0)	✓ answer (1)
3.1.4	$y \le 4$ or $y \in (-\infty, 4]$	✓ values ✓ notation (2	2)
3.1.5	$k(x) = \frac{1}{4}x^2 - 4$	$\checkmark \frac{1}{4} \checkmark -4$	2)
3.1.6	x = 4 or $x = -4$	✓ either value (1)
Converight		Dlagge turn ove	—


3.1.7	-4 < x < 2	✓ values ✓ notation	
	or	• notation	(2)
3.2	$x \in (-4;2)$		
5.2	$y \qquad h$ $x \qquad y = -8$	✓ shape: increasing✓ intercepts✓ asymptote	(3)
			[16]

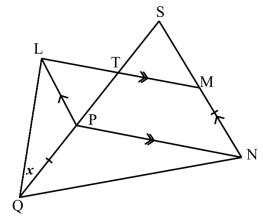
4.1	x = 0 $y = 3$	✓ answer ✓ answer	(2)
4.2	$y = x + c$ $sub (0;3) \rightarrow y = x + 3$	✓ gradient = +1 ✓ y-intercept: $(0;3)$	(2)
4.3	y f	f: ✓ shape: increasing	
	g	✓ x-intercept	
	y = 3	✓ asymptote $y = 3$	
	-4 -3 O	\checkmark g: x- and y- intercepts	
			(4)
	1 +		[8]


5.1.1	$\tan \theta = \frac{EG}{EF} = \frac{2}{3}$	✓ answer	(1)
5.1.2	$\csc\theta = \frac{GF}{GE} = \frac{\sqrt{13}}{2}$	✓ answer	(1)
5.1.3	$\cos(90^\circ - \theta) = \cos G = \frac{2}{\sqrt{13}}$	✓ answer	(1)
5.2	θ 15 x 17 P(15; -	8)	
5.2.1	$\cos \theta = \frac{15}{17}$ $\therefore OP = 17 \text{ units}$	✓ answer	(1)
5.2.2	$y^{2} = 17^{2} - 15^{2}$ $y^{2} = 64$ $\therefore y = -8 \qquad (4th \text{ quadrant}).$	✓ y = -8	
	$\therefore \tan \theta = \frac{y}{x} = \frac{-8}{15}$	✓ answer	(2)
5.2.3	LHS: $\cos^2 \theta + \sin^2 \theta$ $= \left(\frac{15}{17}\right)^2 + \left(\frac{-8}{17}\right)^2$ $= \frac{289}{289}$ $= 1$ $= RHS$	✓ substitution $ ✓ \frac{289}{289} = 1 $	
	$\therefore \cos^2 \theta + \sin^2 \theta = 1$		(2)
			[8]

6.1.1	$\cos^3 x - \sin^2 x$			
	$= \cos^3 15^\circ - \sin^2 15^\circ$		✓ substitution	
		Answer only: full marks	✓ answer	
(12	= 0,83			(2)
6.1.2	$\frac{5\sec 2y}{}$			
	$\cot x$			
	$=\frac{5\sec 2(22,5^\circ)}{\cot 15^\circ}$		✓ substitution	
	5 tan 15°			
	$=\frac{3 \tan 75}{\cos 2(22,5^\circ)}$			
	=1,89	Answer only: full marks	✓ answer	(2)
6.1.3				
	$\sqrt{\operatorname{cosec}(y-x)}$			
	$=\sqrt{\frac{1}{\sin(22,5^\circ-15^\circ)}}$		✓ substitution	
	$\sqrt{\sin(22,5^{\circ}-15^{\circ})}$	Answer only: full marks		
	= 2,77		✓ answer	(2)
6.2.1	$\tan 2x = 1,01$	D 1. C 1		
	2x = 45,28505	Penalty for incorrect rounding in this question	✓ 45,28505	
	$x = 22,6^{\circ}$	only.	✓ answer	(2)
6.2.2	$\sin(2x-20^\circ)$			
	$\frac{\sin(2x-20^{\circ})}{3} = 0,099$			
	$\sin(2x-20^{\circ})=0,297$		✓ 0,297	
	$2x-20^{\circ}=17,2775$		✓ 7,2775	
	$x = 18,6^{\circ}$		✓ answer	(3)
6.3	2 (00	100		
	$\frac{\sin 60^\circ \cdot \sec 30^\circ + \tan^\circ 60^\circ}{2\tan 45^\circ}$	sics.com		
	$\sqrt{3} \ 2 \ (\sqrt{5})^2$			
	$\left(-\frac{1}{2} \cdot \sqrt{3} + (\sqrt{3}) \right)$		$\checkmark \frac{\sqrt{3}}{2} \checkmark \frac{2}{\sqrt{3}} \checkmark \sqrt{3}$	
	2.1			
	$=\frac{1+3}{}$		$\checkmark \tan 45^\circ = 1$	
	_ 2	Answer only: max. 1/5	✓ answer	(5)
	= 2			
				[16]



7.1	a=2	✓ answer	
	p = -1	✓ answer	(2)
7.2.1	amplitude of $g = 2$	✓ answer	(1)
7.2.2	$y \in R$	✓ answer	(1)
	$ \begin{array}{c c} or \\ y \in (-\infty, \infty) \end{array} $	✓ answer	(1)
7.2.3	period of $f = 180^{\circ}$	✓ answer	(1)
7.3	2 solutions	✓ answer	(1)
			[6]


	GEOMETRY
S	A mark for a correct statement (A statement mark is independent of a reason.)
R	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)
S/R	Award a mark if the statement AND reason are both correct.

8.1.1	$\hat{O}_3 = 90^{\circ}$	(diags of rhombus)	✓ S	(1)
8.1.2	In ΔBOC:			
	$\hat{O}_3 = 90^{\circ}$	(diags of rhombus)		
	$\hat{B}_1 = \hat{B}_2 = x$	(diags of rhombus)	✓ S/R	
	$\hat{C}_1 = 3x - 16^{\circ}$	(given)	✓ S/R	
	$\therefore 3x - 16^{\circ} + x + 90^{\circ} = 180^{\circ}$	$(\operatorname{sum} \angle \operatorname{s} \Delta)$	✓ S	(3)
	$\therefore x = 26,5^{\circ}$			
8.1.3	$\hat{A}_1 = \hat{C}_1 = 3x - 16^{\circ}$	(alt ∠s; AD // BC)	✓ S/R	
	$\therefore \hat{A}_1 = 3(26.5^\circ) - 16^\circ = 63$	5,5°	✓ S	(2)
921	P 1	T 110° S	$\frac{1}{2}$ R	
8.2.1	$In \Delta PQT:$ $O\hat{T}P = 90^{\circ}$	(diags of kite)	✓ S/R	
0.2.1	$Q\hat{T}P = 90^{\circ}$	(diags of kite)		
0.2.1	$Q\hat{T}P = 90^{\circ}$ $\therefore \hat{P}_1 = 180^{\circ} - 58^{\circ} - 90^{\circ}$	(diags of kite) (sum \angle s Δ)	✓ S/R ✓ S/R	(2)
8.2.1	$Q\hat{T}P = 90^{\circ}$			(2)
	$Q\hat{T}P = 90^{\circ}$ $\therefore \hat{P}_1 = 180^{\circ} - 58^{\circ} - 90^{\circ}$ $\therefore \hat{P}_1 = 32^{\circ}$		✓ S/R	(2)
	$Q\hat{T}P = 90^{\circ}$ $\therefore \hat{P}_{1} = 180^{\circ} - 58^{\circ} - 90^{\circ}$ $\therefore \hat{P}_{1} = 32^{\circ}$ $In \Delta PRS:$ $P\hat{S}R = 110^{\circ}$	(sum ∠s Δ)		(2)
	$Q\hat{T}P = 90^{\circ}$ $\therefore \hat{P}_{1} = 180^{\circ} - 58^{\circ} - 90^{\circ}$ $\therefore \hat{P}_{1} = 32^{\circ}$ $In \Delta PRS:$ $P\hat{S}R = 110^{\circ}$ $\therefore \hat{P}_{1} = \hat{P}_{2} = 32^{\circ}$	$(\text{sum } \angle \text{s } \Delta)$ (given) (diags of kite)	✓ S/R ✓ S ✓ R	(2)
	$Q\hat{T}P = 90^{\circ}$ $\therefore \hat{P}_{1} = 180^{\circ} - 58^{\circ} - 90^{\circ}$ $\therefore \hat{P}_{1} = 32^{\circ}$ $In \Delta PRS:$ $P\hat{S}R = 110^{\circ}$ $\therefore \hat{P}_{1} = \hat{P}_{2} = 32^{\circ}$	(sum ∠s Δ) (given)	✓ S/R	(2)

9.1	In \triangle EDF: $F\hat{E}P = 39^{\circ}$ $E\hat{F}H = 45^{\circ}$	(alt ∠s; EF // HG) (diags of square)	✓ S ✓ R ✓ S/R	
	$\therefore \hat{EDF} = 180^{\circ} - 45^{\circ} - 39^{\circ} \text{ (sum } \angle \text{s } \Delta\text{)}$		✓ S/R	
	$\therefore \hat{EDF} = 96^{\circ}$			(4)

			TOTAL:	100
				[9]
	$\therefore Q\hat{S}N = 2L\hat{Q}S$			(5)
	and $L\hat{Q}S = x$	(given)		
	$L\hat{P}S = Q\hat{S}N = 2x$	(alt ∠s; LP// Mn		
			✓ S ✓ R	
	$\therefore L\hat{P}S = 2x$	$(ext \angle \Delta LPQ)$	V 5/10	
	$\therefore Q\hat{L}P = x$		✓ S/R	
	$\therefore LP = PQ$			
	but PQ = MN		✓ S	
	MN = LP	(opp sides of parm	✓ S/R	
9.2	n paralle log ram LMI	VP		