

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS

COMMON TEST

JUNE 2022

tanmorephysics.com

MARKS: 100

TIME:

2 hours

This question paper consists of 6 pages and 2 DIAGRAM SHEETS.

Copyright Reserved

Please Turn Over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. TWO DIAGRAM SHEETS for QUESTION 3.2, QUESTION 4, and QUESTION 5 are attached at the end of this question paper.

 Detach the DIAGRAM SHEETS and hand in together with your ANSWER BOOK.
- 10. Write neatly and legibly.

Copyright Reserved Please Turn Over

QUESTION 1

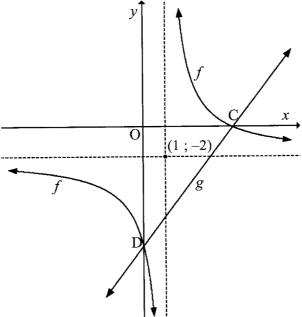
1.1 Consider the following linear number pattern: 11; 17; 23; 29;; 299.

- Determine T_n , the general term of this pattern, in the form $T_n = an + b$. 1.1.1 (2)
- Calculate the value of the 20th term in this pattern. 1.1.2 (2)
- 1.1.3 Calculate the number of terms in this pattern. (2)
- 1.1.4 The terms of this linear number pattern is the sequence of 1st differences of a quadratic number pattern, i.e. the 1st differences of the quadratic number pattern are 11; 17; 23; ... If the fifth term of this quadratic number pattern is 100, what will be the value of the second term? (2)
- 1.2 Consider the following quadratic number pattern: -16;
 - 1.2.1 Write down the next two terms in the pattern. (2)
 - Determine T_n , the general term of this pattern, in the form $T_n = an^2 + bn + c$. 1.2.2 (4)
 - Show that all the terms of this number pattern are even numbers. 1.2.3 (2)
 - 1.2.4 A new pattern with general term P_n is formed such that $P_n = T_n - 128$. How many negative terms will there be in this new pattern? Jed Fron (4)

QUESTION 2

- 2.1 Calculate the coordinates of the turning point of f. (3)
- 2.2 Write down the range of f. (1)
- 2.3 Calculate the x-intercepts of f. (3)
- Sketch the graph of f, clearly indicating all the intercepts with the axes and the coordinates of 2.4 the turning point. (4)
- For which values of k will $-x^2 + 3x + 10 = k$ have two positive, unequal real roots? 2.5 (2)
- The graph of f is translated 2 units to the right and 3 units down to obtain the graph 2.6 of g. Write down the equation of g in the form $g(x) = a(x+p)^2 + q$. (3)

[16]

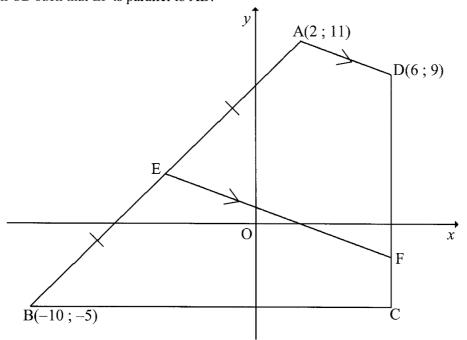

[20]

QUESTION 3

3.1 Given:
$$h(x) = \left(\frac{1}{3}\right)^x + 4$$

- 3.1.1 Write down the equation of the asymptote of h. (1)
- Draw a sketch graph of h, clearly indicating the asymptote and any intercepts with the axes. (3)
- 3.1.3 Two transformations are applied to h to obtain the graph of $m(x) = -3^x 4$.

 Write down the two transformations. (2)
- 3.2 The diagram below shows the graphs of $f(x) = \frac{a}{x+p} + q$ and g(x) = mx 8.
 - The asymptotes of f intersect at (1;-2).
 - Graphs f and g intersect the x-axis and y-axis at C and D respectively.


- 3.2.1 Write down the values of p and q. (2)
- 3.2.2 Write down the domain of f. (1)
- 3.2.3 Calculate the value of a. (3)
- 3.2.4 Calculate the value of m. (4)
- 3.2.5 Determine the equation of the axis of symmetry of g that has a positive gradient.
- 3.2.6 For which values of x will $f(x) \le g(x)$? (3)

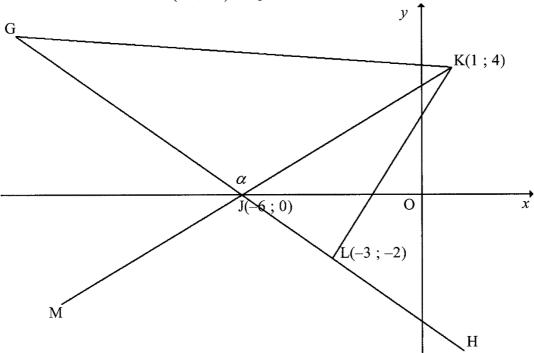
[21]

(2)

QUESTION 4

In the diagram below, A(2; 11), B(-10; -5), C and D(6; 9) are the vertices of a quadrilateral in the Cartesian plane. BC is a horizontal line and CD a vertical line. E is the midpoint of AB. F is a point on CD such that EF is parallel to AD.

- 4.1 Write down the coordinates of C. (2)
- 4.2 Calculate the coordinates of E. (2)
- 4.3 Determine the equation of EF. (4)
- 4.4 Calculate the coordinates of F. (2)


Stanmorephysics.com

[10]

Downloaded from Stanmorephysics.com NSC - Grade 11

QUESTION 5

In the diagram below, straight line GH cuts the x-axis at J(-6; 0). K is the point (1; 4). KJ is produced to M and GK is drawn. L(-3; -2) is a point on GH and KL is drawn. $G\hat{J}K = \alpha$.

- 5.1 Calculate the gradient of GH. (2)
- 5.2 Calculate the angle of inclination of MK. (4)
- 5.3 Determine the size of angle α . (3)
- 5.4 Prove that $KL \perp JL$. (3)
- 5.5 Calculate the area of ΔKJL . (5)

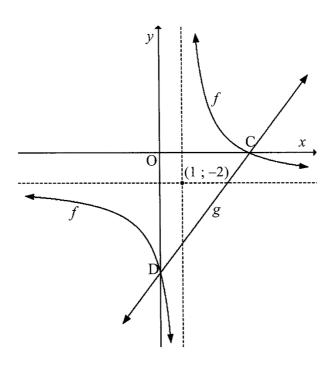
QUESTION 6

6.1 Prove that
$$(1-\sin^2\theta)(1+\tan^2\theta)=1$$
. (3)

6.2 Solve for
$$x$$
 if $\sin(2x + 30^\circ) = -0.4$ and $x \in [-90^\circ; 90^\circ]$ (7)

6.3 Determine the general solution of
$$3\sin x \cos x - 4\cos^2 x = 0$$
. (6)

TOTAL: 100


[17]

[16]

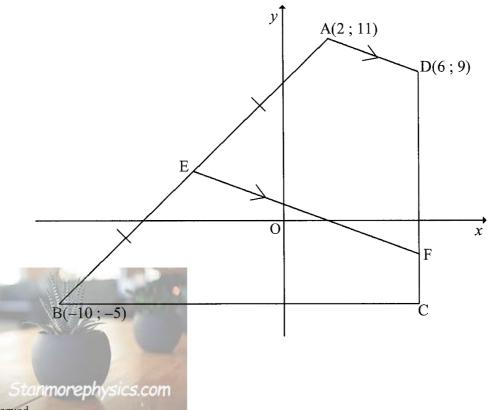
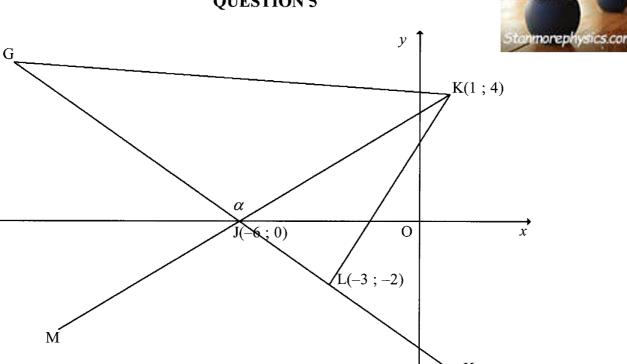

NAME & SURNAME:		
-----------------	--	--

DIAGRAM SHEET 1

QUESTION 3.2

QUESTION 4



Copyright Reserved

Please Turn Over

NAME & SURNAME:

DIAGRAM SHEET 2

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS

COMMON TEST

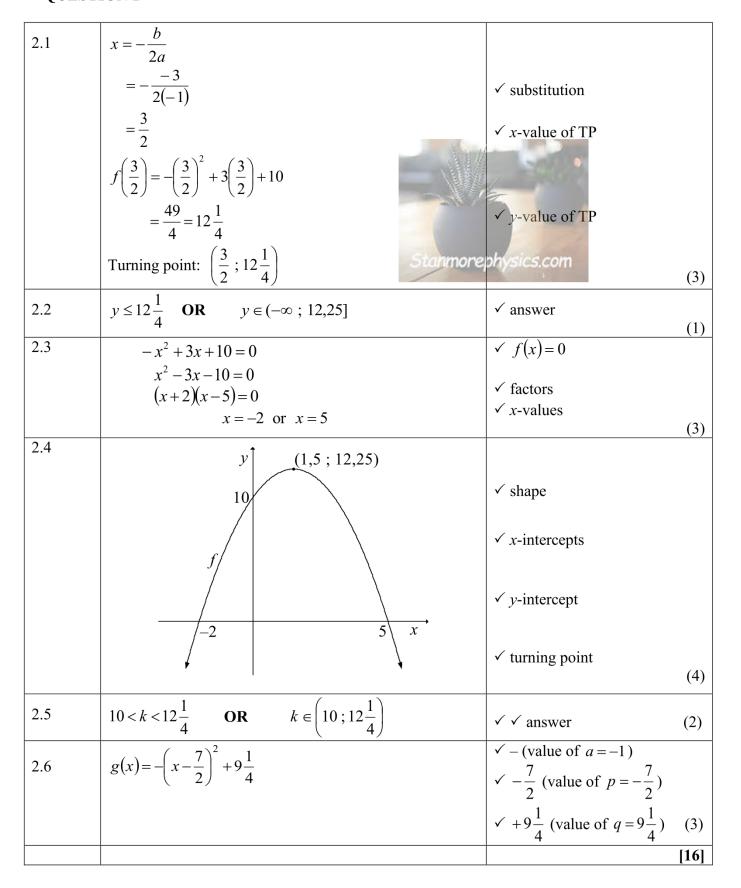
JUNE 2022

MARKING GUIDELINE

tanmorephysics.com

MARKS: 100

These marking guideline consist of 8 pages.


Copyright Reserved Please turn over

1 1 1	T 1	
1.1.1	$T_n = an + b$	
	$T_n = 6n + b$	
	$T_1 = 6(1) + b = 11$	
	b=11-6=5	
	$T_n = 6n + 5$	$\sqrt{6n+5}$
		(2)
1.1.2	$T_n = 6n + 5$	
	$T_{20} = 6(20) + 5$	✓substitution
	=125	✓ answer
		(2)
1.1.3	299 = 6n + 5	✓ substitution
	6n = 294	
	n=49	✓ answer
	There are 49 terms in the pattern.	(2)
1.1.4	Quadratic number pattern:	
	Term 1 Term 2 Term 3 Term 4 100	
	11 17 23 29	
	11 17 23 29	
	Term $2 = 100 - (17 + 23 + 29)$	$\checkmark 100 - (17 + 23 + 29)$
	=31	✓ answer
	-51	(2)
1.2.1	24; 44	√ 24
1.2.1	24, 44	√ 24 ✓ 44
1.2.2	16 12 0 4	(2)
1.2.2	-16 -8 -4	
	8 12	
	4 4	
	Second difference = 4	
	2nd difference	
	$a = \frac{2\pi i a}{2}$	
	= 2 First 1st difference 2 st b 4	\checkmark value of a
	first 1st difference = $3a + b = 4$	
	3(2)+b=4	
	b = -2	\checkmark value of b
	Term $1 = a + b + c = -16$	
	2-2+c=-16	
	c = -16	\checkmark value of c
	Therefore: $T_n = 2n^2 - 2n - 16$	✓ answer
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(4)
		(4)

		T	
1.2.3	$T_n = 2n^2 - 2n - 16$		
	$=2(n^2-n-8)$	$ \sqrt{2(n^2-n-8)}$	
	Because <i>n</i> is a natural number, $n^2 - n - 8$ will also be a natural number.		
	And: 2(a natural number) will always be even.	✓ reasoning: multiples of 2	
			(2)
	OR	OR	` /
	The given terms in the number pattern are even. The 1 st differences between terms are also even. An even	✓ given terms are even	
	number plus an even number will always give an even number. Therefore all terms are even numbers.	✓ reasoning	
	number. Therefore an terms are even numbers.		(2)
1.2.4	$P_n = T_n - 128 = 2n^2 - 2n - 144$	\checkmark expression for P_n	
	Let $P_n < 0$	"	
	$\therefore 2n^2 - 2n - 144 < 0$	$\sqrt{2n^2-2n-144} < 0$	
	$n^2 - n - 72 < 0$		
	(n-9)(n+8)<0		
	$\frac{-8}{\sqrt{n}}$		
	$\therefore -8 < n < 9$	✓ solution for inequality	
	But $n \in \mathbb{N}$, so $n > 0$: $\therefore 0 < n < 9$	- same and quanty	
	:. there are 8 negative terms.	✓ answer	
	Answer only: 1 mark only		(4)

[20]

GRADE 11 Marking Guideline

3.1.1	y=4	✓ answer	
			(1)
3.1.2	\ y \		
		✓ shape	
	$h \setminus$		
		✓ asymptote	
	5		
	4	✓ y-intercept	(2)
	\overline{x}		(3)
3.1.3	reflection in x-axis	\checkmark reflection in <i>x</i> -axis	
	reflection in <i>y</i> -axis	✓ reflection in <i>y</i> -axis	(2)
3.2.1	p = -1	$\sqrt{p} = -1$	
	q = -2	$\sqrt{q} = -2$	(2)
3.2.2	$x \in R$, but $x \neq 1$	$\checkmark x \in R$, but $x \neq 1$	
	OR		(1)
	$x \in (-\infty; 1)$ or $(1; \infty)$	OR	(1)
2 2 2		$\checkmark x \in (-\infty; 1) \text{ or } (1; \infty)$	(1)
3.2.3	Coordinates of D: $(0; -8)$	$\sqrt{D(0; -8)}$	
	Equation of f : $y = \frac{a}{x-1} - 2$		
	Substitute $(0; -8)$: $-8 = \frac{a}{0-1} - 2$	✓ substitution	
	a=8-2	√ answer	(3)
3.2.4	a = 6 C is the x-intercept of f.		(-)
3.2.4		✓ substitution	
	Substitute $y = 0$: $0 = \frac{6}{x - 1} - 2$	Substitution	
	2 6		
	$2 = \frac{6}{x - 1}$		
	2x-2=6		
	x = 4	\checkmark x-coordinate of C	
	$m = \frac{y_2 - y_1}{y_2 - y_1} = \frac{-8 - 0}{2}$	✓ substitution	
	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-8 - 0}{0 - 4}$	Substitution	
	= 2	✓ answer	
			(4)
3.2.5	y = x + c		
	Substitute $(1;-2)$: $-2=1+c$		
	c = -3		
	y = x - 3	$\sqrt{\sqrt{x-3}}$	
			(2)

3.2.6	$0 \le x < 1 \text{ or } x \ge 4$	$\checkmark \checkmark 0 \le x < 1$	
		$\checkmark x \ge 4$	(3)
	OR	OR	
	$x \in [0; 1) \text{ or } [4; \infty)$	$\checkmark \checkmark x \in [0;1)$ $\checkmark [4;\infty)$	(3)
	1		[21]

4.1	C(6; -5)	√ 6 √ -5
		$\begin{array}{c c} & & & \\ & & & \\ & & & \end{array} $
4.2	$E\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	
	$= \left(\frac{-10+2}{2}; \frac{-5+11}{2}\right)$	✓ substitution
	=(-4;3)	✓ answer (2)
	Answer only: full marks	
4.3	$m_{\rm AD} = \frac{y_2 - y_1}{x_2 - x_1}$	
	$=\frac{9-11}{6-2}$	✓ substitution in gradient formula
	$=-\frac{1}{2}$	Tormula
	$m_{EF} = m_{AD} = -\frac{1}{2}$	✓ m _{EF}
	Substitute m_{EF} and coordinates of E: y = mx + c	
	$3 = \left(-\frac{1}{2}\right)\left(-4\right) + c$	✓ substitution in formula for equation of line
	3 = 2 + c Stanmorephysics.com $c = 1$	
	$y = -\frac{1}{2}x + 1$	✓ answer (4)
4.4	At F: $x = 6$	
	$y = -\frac{1}{2}(6) + 1$	\checkmark substitution of $x = 6$ in
	y = -2	equation for EF. $\checkmark y = -2$
	y = -2 F(6; -2)	$\begin{array}{c c} y = -2 \end{array} \tag{2}$
[10]		

5.1	$m_{\rm GH} = \frac{0 - (-2)}{-6 - (-3)}$	✓ substitution
	$=-\frac{2}{3}$	✓ answer (2)
5.2	$m_{\rm MK} = \frac{y_2 - y_1}{x_2 - x_1}$	
	$=\frac{4-0}{1-(-6)}$	✓ substitution
	$=\frac{4}{7}$	✓ answer
	$\tan \mathbf{K} \hat{\mathbf{J}} \mathbf{O} = m_{\mathbf{M}\mathbf{K}} = \frac{4}{7}$	$\checkmark \tan K \hat{J}O = \frac{4}{7}$
	$\hat{\text{KJO}} = 29,74^{\circ}$	✓ answer (4)
5.3	$\tan G\hat{J}O = m_{GH} = -\frac{2}{3}$	
	$\hat{GJO} = 180^{\circ} - 33,69^{\circ}$	
	= 146,31°	✓ size of GĴO
	$\alpha = G\hat{J}O - K\hat{J}O$ = 146,31° - 29,74°	✓ subtracting
	$= 140,51 - 29,74$ $= 116,57^{\circ}$	✓ answer (3)
5.4	$m_{KL} = \frac{4 - (-2)}{1 - (-3)}$	✓ substitution in gradient formula for KL
	$=\frac{3}{2}$	✓ gradient of KL
	$m_{\mathrm{KL}} \times m_{\mathrm{JL}} = -\frac{2}{3} \times \frac{3}{2} = -1$	✓ multiplying gradients and getting a
	Therefore $KL \perp JL$.	$\begin{array}{c c} product of -1 & (3) \end{array}$
5.5	$JL = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(-2 - 0)^2 + [-3 - (-6)]^2}$	✓ substitution in distance formula for
	$=\sqrt{13}$ units	JL ✓ length of JL
	$KL = \sqrt{(-2-4)^2 + (-3-1)^2}$	
	$=\sqrt{52}$ OR $2\sqrt{13}$ units	✓ length of KL
	Area of $\Delta KJL = \frac{1}{2} \times base \times height$	
	$= \frac{1}{2} \times JL \times KL$	
	$= \frac{1}{2} \times \sqrt{13} \times 2\sqrt{13}$	✓ substitution in formula for area of triangle
	= 13 square units	✓ answer (5)
		[17]

QUESTION 6

6.1	$LHS = (1 - \sin^2 \theta)(1 + \tan^2 \theta)$	
	$(2 \circ (1 + \sin^2 \theta))$	$\checkmark 1 - \sin^2 \theta = \cos^2 \theta$
	$= \left(\cos^2\theta\right) \left(1 + \frac{\sin^2\theta}{\cos^2\theta}\right)$	$\checkmark \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}$
	$=\cos^2\theta + \sin^2\theta$	$\int \cos^2 \theta \cos^2 \theta + \sin^2 \theta$
	=1 Stanmorephysics.com	$\sqrt{\cos^2\theta + \sin^2\theta} \tag{3}$
	= RHS	(3)
6.2	$\sin(2x+30^\circ)=-0.4$	
	reference $\angle = 23,58^{\circ}$	\checkmark reference ∠ = 23,58°
	$2x+30^{\circ}=180^{\circ}+23,58^{\circ}+k.360^{\circ}, k \in \mathbb{Z}$	$\checkmark 2x + 30^{\circ} = 180^{\circ} + 23,58^{\circ} + k.360^{\circ}$
	$2x = 173,58^{\circ} + k.360^{\circ}$	
	$x = 86,79^{\circ} + k.180^{\circ}$	$\checkmark x = 86,79^{\circ} + k.180^{\circ}$
	or $2x + 30^{\circ} = 360^{\circ} - 23,58^{\circ} + k.360^{\circ}, \ k \in \mathbb{Z}$	
	$2x + 30^{\circ} - 300^{\circ} - 25,38^{\circ} + k.300^{\circ}, \ k \in \mathbb{Z}$ $2x = 306,42^{\circ} + k.360^{\circ}$	$\checkmark 2x + 30^{\circ} = 360^{\circ} - 23,58^{\circ} + k.360^{\circ}$
	$x = 153,21^{\circ} + k.180^{\circ}$	$\sqrt{x} = 153,21^{\circ} + k.180^{\circ}$
	In the interval $[-90^\circ; 90^\circ]$: $x = 86,79^\circ \text{ or } -26,79^\circ$	$\checkmark x = 155,21 + k.180$ $\checkmark 86,79^{\circ}$
	In the interval [30 ,30]. W 60,73 61 20,73	✓ -26,79°
		(7)
6.3	$3\sin x \cos x - 4\cos^2 x = 0$	
	$\cos x(3\sin x - 4\cos x) = 0$	✓ factorisation
	$\cos x = 0 \text{or} 3\sin x - 4\cos x = 0$	✓ both equations
	$x = 90^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$ or $3\sin x = 4\cos x$	$\checkmark x = 90^{\circ} + k.180^{\circ}$
	$\frac{\sin x}{\cos x} = \frac{4}{2}$	
	$\cos x = 3$	4
	$\tan x = \frac{4}{3}$	$\sqrt{\tan x} = \frac{4}{3}$
		$\checkmark x = 53,13^{\circ}$
	$x = 53,13^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$	$\checkmark + k.180^{\circ}; k \in \mathbb{Z}$
		(6)
		[16]

Stanmorephysics.com

TOTAL: 100