







# **GERT SIBANDE DISTRICT ERMELO SUB DISTRICT**

**GRADE 10** 

PHYSICAL SCIENCES **CONTROLLED TEST 15 SEPTEMBER 2022** 

**MARKS: 100** 

TIME: 2:00 HOURS

This question paper consists of 11 pages including the data sheets

#### **INSTRUCTIONS AND INFORMATION**

- This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Start EACH question on a NEW page in the ANSWER BOOK.
- Number the answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable calculator
- 6. You may use appropriate mathematical instruments.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions et cetera where required.
- 11. Write neatly and legibly.

#### **QUESTION 1**

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.8) in the ANSWER BOOK, for example 1.11 D.

- 1.1 The gravitational potential energy of an object relative to the ground is dependent on the object's ...
  - A speed.
  - B position.
  - C velocity.
  - D change in velocity.

(2)

1.2 An object is released from the top of the platform, and moves down ward along a frictionless inclined plane **Y-Z** as shown in the diagram below.



Which one of the following statements regarding the energy of the ball is correct?

- A Total mechanical energy at **Y** is greater than total mechanical energy at **Z**.
- B Total mechanical energy at **Y** is less than total mechanical energy at **Z**.
- C Total mechanical energy at  $\mathbf{Y}$  is equal to total mechanical energy at  $\mathbf{Z}$ .
- D Total mechanical energy at **Y** is not equal to total mechanical energy at **Z**. (2)
- 1.3 The number of wave pulses per second is called ....
  - A Wave length
  - B Amplitude
  - C Frequency
  - D Period (2)

1.4 Which one of the combinations below concerning longitudinal waves is correct?

|   | Compression                          | Rarefaction                          |  |
|---|--------------------------------------|--------------------------------------|--|
| Α | Is region of high pressure           | Is region of low pressure            |  |
| В | Is region of low pressure            | Is region of high pressure           |  |
| С | Is minimum displacement of particles | Is maximum displacement of particles |  |
| D | Is maximum displacement of particles | Is minimum displacement of particles |  |

(2)

- 1.5 A mixture of Salt and water can be separated by boiling the mixture.

  The change which take place during the separation of this mixture components is...........
  - A Chemical change only.
  - B Physical change and chemical change.
  - C Neither physical change nor chemical change.
  - D Physical change only.

(2)

- 1.6 Which type of changes obey the Law of conservation of mass?
  - A Only physical change
  - B Only chemical change
  - C Only phase changes
  - D physical change and chemical change

(2)

1.7 Consider the following incomplete equation for a chemical reaction:



$$\underline{\mathbf{f}} \operatorname{Na}(s) + \operatorname{H}_2 \operatorname{SO}_4 (\operatorname{aq}) \rightarrow \operatorname{Na}_2 \operatorname{SO}_4 (\operatorname{aq}) + \mathbf{Q}$$

Letter  $\mathbf{Q}$  represents one of the products and letter  $\mathbf{f}$  represents a numerical value which make the chemical equation correctly balanced.

Which one of the combinations below concerning the above chemical equation is CORRECT?

|   | Value of f | Formula of Q     |
|---|------------|------------------|
| Α | 1          | Н                |
| В | 0          | H <sub>2</sub> O |
| С | 2          | H <sub>2</sub>   |
| D | 1          | H <sub>2</sub>   |

(2)

(2) **[16]** 

- 1.8 The number of atoms in ONE formula unit of copper(II)nitrate Cu(NO<sub>3</sub>)<sub>2</sub> is......
  - A 9
  - B 3
  - C 8
  - D 5

#### **QUESTION 2**

A 5 kg block is released from rest at a height of 5 m and slides down a frictionless incline **O-P** as shown in the diagram below. It then moves along horizontal portion **PQ** where it experiences friction and stops at point **Q**. Point **P** is 3 m from point **Q**.



- 2.1 State the principle of conservation of mechanical energy in words. (2)
- 2.2 Calculate the:
  - 2.2.1 Gravitational potential energy of the block just before it is released. (3)
  - 2.2.2 Magnitude of the velocity of the block at point **p**, use the principle of conservation of mechanical energy. (4)
  - 2.2.3 Acceleration that the block experiences as it moves from point  ${\bf P}$  to  ${\bf Q}$ .

2.3 Write down the energy conversion which takes place as the block moves (1) from point **P** to **Q**. [14]

#### **QUESTION 3**

Two pulses are travelling towards each other along a spring, as shown in the diagram below. The centres of the two pulses meet and cross at point X.



- 3.1 Which wave property do the two pulses illustrate at point X? (1)
- 3.2 Name and define the principle used to answer QUESTION 3.1 (3)
- 3.3 When the pulses cross at point **X**, the resulting amplitude is different from the amplitudes of the individual pulses
  - 3.3.1 Define the term amplitude. (2)
  - 3.3.2 Calculate the magnitude of the resulting amplitude. (2) [8]

#### **QUESTION 4**

The sketch below shows a transverse wave in a medium.



- 4.1 Use the diagram above to write down:
  - 4.1.1 The name of the physical quantity represented by the distance of 2 m.
- (1)

(1)

- 4.1.2 Two points that are in phase.
- Statmorephysics.com
  (1)
- 4.1.3 One point that represents a crest.

(1)

4.1.4 One point that represents the rest position.

- 4.2 Write down the number of waves represented in the diagram above.
- (1)

4.3 Determine distance Z in the diagram.

(2)

4.4 Define the term *frequency* of the wave in words.

(2)

- 4.5 Calculate:
  - 4.5.1 The frequency of the wave.

(3)

4.5.2 The speed of the wave.

(3) **[15]** 

#### **QUESTION 5**

The diagram below shows a longitudinal wave produced by a musical instrument.



**5.1** Define the term a longitudinal wave.

(2)

(1)

(2)

- **5.2** Write down the name of the parts marked:

  - 5.2.1 **U**
  - 5.2.2 **V** (1)
- 5.3 Describe the motion of the particle at points **U**, as the wave propagates to the right.
- 5.4 Write down the number of wave lengths shown in the diagram. (1)

| 5.5             | State whether the following points are IN PHASE or OUT OF PHASE.                                          |                                                                                                                   |                    |  |
|-----------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|--|
|                 | 5.5.1                                                                                                     | T and W                                                                                                           | (1)                |  |
|                 | 5.5.2                                                                                                     | V and X                                                                                                           | (1)                |  |
| 5.6             | Give a                                                                                                    | a reason for the answer in question 5.5.2                                                                         |                    |  |
| 5.7             | Wave particles at point <b>U</b> make 410 oscillations in 2 seconds. Calculate the frequency of the wave. |                                                                                                                   |                    |  |
| QUES            | TION 6                                                                                                    |                                                                                                                   |                    |  |
| 6.1             | Ice me                                                                                                    | elts when there is a change in temperature of the environment                                                     |                    |  |
|                 | 6.1.1                                                                                                     | State whether the melting of ice is a PHYSICAL CHANGE or CHEMICAL CHANGE                                          | (1)                |  |
|                 | 6.1.2                                                                                                     | Describe the rearrangement of molecules during the melting of ice.                                                | (2)                |  |
| 6.2             |                                                                                                           | ord equation (i) and the unbalanced equation (ii) for two chemical ons are shown below.                           |                    |  |
|                 | (i) C                                                                                                     | Calcium carbonate + hydrochloric acid → Calcium chloride + carbon dioxide + water                                 |                    |  |
|                 | (ii) 2                                                                                                    | $H_2O_2$ (aq) $\rightarrow$ $O_2$ (g) + $2H_2O$ (l)                                                               |                    |  |
| 7               | 6.2.1                                                                                                     | Give a reason why both reactions (i) and (ii) above represent a chemical change.                                  | (1)                |  |
| nonephysics.com | 6.2.2                                                                                                     | Write down a balanced chemical equation for the word equation (i). Show the phases of ALL reactants and products. | (4)                |  |
|                 | 6.2.3                                                                                                     | Use a calculation to show that the Law of Conservation of Mass is valid during reaction (ii).                     | (3)                |  |
| 6.3             | Which ONE of the above equations (i) or (ii) represents:                                                  |                                                                                                                   |                    |  |
|                 | 6.3.1                                                                                                     | Decomposition reaction?                                                                                           | (1)                |  |
|                 | 6.3.2                                                                                                     | Synthesis reaction?                                                                                               | (1)<br><b>[13]</b> |  |

#### **QUESTION 7**

Grade 10 learners demonstrated the reaction of a metal with an acid by adding 1,4 g of Zinc to excess hydrochloric acid in the conical flask. X volume of hydrogen gas was produced at STP. The reaction which took place is represented by the balanced chemical equation below.

$$Zn(s) + 2HC\ell(aq) \rightarrow ZnC\ell_2(aq) + H_2(g)$$

- 7.1 Calculate:
  - 7.1.1 The value of  $\mathbf{X}$  (in dm $^3$ ), which is the volume of hydrogen gas produced at STP. (4)
  - 7.1.2 .The mass (in gram) of  $ZnC\ell_2$  (theoretical yield) produced. (3)
  - 7.1.3 The percentage yield of  $ZnCl_2$ , If the actual mass of  $ZnCl_2$  formed is 2,69 g. (3)
- 7.2 The formula of the hydrated sodium carbonate is Na<sub>2</sub>CO<sub>3</sub>.xH<sub>2</sub>O.

  The molar mass of hydrated sodium carbonate is found to be 268 g·mol<sup>-1</sup>.

  Calculate the number of moles water of crystallisation (x) in the compound.
- 7.3 A sample of compound **Q** contains 24,27% C, 4,07% H and 71,65% Cł.
  - 7.3.1 Define the term empirical formula. (2)
  - 7.3.2 Use a calculation to determine the empirical formula of compound **Q**. (6) [21]

**TOTAL: 100** 

#### DATA FOR PHYSICAL SCIENCES GRADE 10

#### **TABLE 1: PHYSICAL CONSTANTS**

| NAME                    | SYMBOL         | VALUE                                     |
|-------------------------|----------------|-------------------------------------------|
| Molar gas volume at STP | V <sub>m</sub> | 22,4 dm <sup>3</sup> ·mol <sup>-1</sup>   |
| Electron Mass           | m <sub>e</sub> | 9,11 x 10 <sup>-31</sup> kg               |
| Charge on electron      | е              | -1,6 x 10 <sup>-19</sup> C                |
| Avogadro's constant     | N <sub>A</sub> | 6,02 x 10 <sup>23</sup> mol <sup>-1</sup> |

#### **TABLE 2: MOTION**

| $v_f = v_i + a \Delta t$     | $\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$   |
|------------------------------|--------------------------------------------------------|
| $v_f^2 = v_i^2 + 2a\Delta x$ | $\Delta x = \left(\frac{v_f + v_i}{2}\right) \Delta t$ |

#### TABLE 3: WEIGHT AND MECHANICAL ENERGY

| $F_g = mg$                   | $U = E_p = mgh$ |
|------------------------------|-----------------|
| $K = E_k = \frac{1}{2} mv^2$ |                 |

#### TABLE 4: WAVES, LIGHT AND SOUND

| $V = f \lambda \text{ or } V = \nu \lambda$ | $T = \frac{1}{f}$ or $T = \frac{1}{v}$ |
|---------------------------------------------|----------------------------------------|
| $n_i \sin \theta_i = n_r \sin \theta_r$     | $n = \frac{C}{V}$                      |

#### TABLE 5: FORMULAE

| $n = \frac{m}{M}$ |                    | $n = \frac{N}{N_A}$ |
|-------------------|--------------------|---------------------|
| $c = \frac{n}{V}$ | $c = \frac{m}{MV}$ | $n = \frac{V}{V_m}$ |

71 Lu 175 103 **Lr** 17 **C2** 35,5 35 **Br** 80 85 **A** € 5 7**b** 73 102 N 8,2 5'2 3'0 5'2 0'<del>p</del> 16 S 32 34 34 79 79 52 52 128 8 ∞ O ≈ 69 169 101 **Md** <u>Ş</u> 2 TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE **5**'7 2,0 N 415 U E E 68 **Er** 167 를 <mark>표</mark> <del>5</del> S 1,2 6'۱ 2,0 6'ı 82 Pb 207 2 C e 67 **ዜ** 165 8 **% ₹**§ 8,1 8'ı 5'2 8'ı 8'ı **Ga** Ae 드 7 2 **B** 5 66 163 163 ₽ 8 <del>5</del> Ľ ۱'9 g'l 8'I 2,0 30 Zn 65 48 Cd 8 **£** 8 65 **Tb** 159 <sup>6</sup> **\*** 12 ا'9 29 ₽ Cu 63,5 ₽ Ag 108 64 **Gd** 157 96 C. Ξ В 2 <del>Z</del> 2 **≈** ± 63 **Eu** 152 95 Am Approximate relative atomic mass 9 Benaderde relatiewe atoommassa Simbool Symbol 2'2 1,8 Co 59 Es 103 **Sm** 150 Atomic number 94 Pu Atoomgetal 63,5 ೯೮ <u>લ</u> Pn 93 **Np** œ 6'l 4,6 Mn 75 **Re** 186 Elektronegatiwiteit → 43 6 <mark>S</mark> 4 23 ∪ 22 6'L **Electronegativity** ê <u>ئ</u> 3 59 7 141 2 **a** KEYISLEUTEL 8,r 41 Nb 92 73 **Ta ≈** < 3 58 Ce 140 8 **1** 23 2 4'9 40 **72** 31 **14** 8 1 2 ۹'۱ g'l がし 39 57 57 139 139 21 Sc 45 E'L <mark>в</mark>е Mg 24 20 Ca 40 40 88 **Sr** 56 88 437 7 🗐 g'l Z'ı 1,0 6'0 6'0 1,0 87 Fr <del>-</del>€ 0'١ 6'0 8'0 8'0 **Ľ**0 **Ľ**0





GERT SIBANDE DISTRICT
ERMELO SUB DISTRICT

**GRADE 10** 

PHYSICAL SCIENCES
SEPTEMBER 2022
MARKING GUIDELINES

**MARKS: 100** 

#### **QUESTION 1**

1.1 
$$B\checkmark\checkmark$$
 (2)

1.1 
$$C\checkmark\checkmark$$
 (2)

1.3 
$$C\checkmark\checkmark$$
 (2)

1.4 
$$A\checkmark\checkmark$$
 (2)

1.5 
$$\mathsf{D}\checkmark\checkmark$$
 (2)

1.7 
$$C\checkmark\checkmark$$
 (2)

#### **QUESTION 2**

2.2.1 Ep = mgh 
$$\checkmark$$
  
= (5)(9,8)(5)  $\checkmark$   
= 24,5 J  $\checkmark$  (3)

2.2.2 
$$EM_{(O)} = EM_{(P)} / \checkmark (Ep + Ek)O = (Ep + Ek)P$$

$$OR: mgh(_{O}) + \frac{1}{2}mv_{2(O)} = mgh(_{P)} + \frac{1}{2}mv_{2(P)}$$

$$(5)(9,8)(5) + 0 = \checkmark 0 + \frac{1}{2}(5) V_{2} \checkmark$$

$$V = 9.90 \text{ m.s}^{-1} \checkmark$$

$$(4)$$

### 2.2.3 **POSITIVE MARKING FROM Q 2.2.2**

#### **QUESTION 3**

- 3.1 (Destructive) interference. ✓ (1)
- 3.2 Principle of superposition.

  The algebraic sum of the amplitudes of two pulses that occupy the same space at the same time. ✓ ✓ [2 or 0 mk] (3)
- 3.3.1 The <u>maximum</u> disturbance of the particle from its rest (equilibrium) position. ✓ ✓ [2 or 0 mk] (2)
- 3.3.2  $8-6\checkmark = 2cm\checkmark$  (2)

#### **QUESTION 4**

- 4.1.1 Wave length. ✓ (1)
- 4.1.2 A and  $C\checkmark$  (1)
- 4.1.3 B√/D (1)
- 4.1.4 A√/C/E (1)
- 4.2 2**√** (1)
- 4.3 3,5 m**√** ✓ (2)
- 4.4 The number of wave pulses per second.  $\checkmark$  (2)
- 4.5.1  $f = \frac{1}{T} \checkmark$   $f = \frac{1}{3} \checkmark$   $f = 0,333 \text{ Hz} \checkmark$ (3)
- 4.5.2 **OPTION 1 OPTION 2**  $V = f\lambda \checkmark \qquad \Delta x = V\Delta t \checkmark$   $V = 0.333x2 \checkmark \qquad 2 = VX3 \checkmark$   $V = 0,67 \text{ m.s}^{-1} \checkmark \qquad V = 0,67 \text{ m.s}^{-1} \checkmark$ (3) [15]

# **QUESTION 5**

|       | Correct reactants                                                                                                                 |                    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------|
|       | Criteria for marking Q 6.2.2                                                                                                      |                    |
| 6.2.2 | $CaCO_3$ (s) + 2HCl (aq) $\rightarrow$ $CaCl_2$ (aq) + $CO_2$ (g) + $H_2O$ (l)                                                    |                    |
| 6.2.1 | New chemical substances are formed. ✓ OR: Mass and atoms are conserved , but the number of molecules is not.                      |                    |
| 6.1.2 | Molecules become disorderly arranged ✓ due to breaking of intermolecular forces. ✓                                                |                    |
| 6.1.1 | PHYSICAL CHANGE✓                                                                                                                  | (1)                |
| QUEST | ION 6                                                                                                                             |                    |
| 5.7   | f = number of oscillations per second<br>f = 410 ÷ 2√<br>f = 205 Hz√                                                              | (2)<br><b>[13]</b> |
| 5.6   | They are separated by a whole number of (complete) wavelengths. ✓ ✓                                                               |                    |
| 5.5.2 | IN PHASE✓                                                                                                                         | (1)                |
| 5.5.1 | OUT OF PHASE✓                                                                                                                     | (1)                |
| 5.4   | 2✔                                                                                                                                | (1)                |
| 5.3   | The particle moves to the left and right ✓✓ OR; The particle moves backwards and forwards (then return to its original position). | (2)                |
| 5.2.2 | compression✓                                                                                                                      | (1)                |
| 5.2.1 | Rarefaction   Starmorephysics.com                                                                                                 | (1)                |
| 5.1   | A wave in which the particle sof the medium vibrate parallel to the direction of motion of the wave. $\checkmark \checkmark$      | (2)                |

(4)

Correct product

All states are correct

Balancing

6.2.3 
$$2H_2O_2 \text{ (aq)} \rightarrow O_2 \text{ (g)} + 2H_2O \text{ (l)}$$
  
 $2(1x2+16x2)\checkmark = (16x2) + 2(1x2+16)\checkmark$   
 $68 = 68\checkmark$  (3)

#### **QUESTION 7**

7.1.1 
$$n(Zn) = \frac{m}{M} \checkmark$$

$$n(Zn) = \frac{1,4}{65} \checkmark = 0,022 \text{ mol}$$

$$n(Zn) = nH_2 = 1:1$$

$$nH_2 = 0,022 \text{ mol}$$

$$n(H_2) = \frac{v}{Vm}$$

$$0,022 = \frac{v}{22,4} \checkmark$$

$$V(H_2) = 0.493 \text{ dm}^3 \checkmark$$
 (4)

7.1.2 
$$n(Zn) = nZnCl_2 = 1:1$$
  
 $nZnCl_2 = 0,022 \text{ mol} \checkmark$   
 $m(ZnCl_2) = nM$   
 $m(ZnCl_2) = 0,022 \times 136 \checkmark$   
 $m(ZnCl_2) = 2,99 \text{ g} \checkmark$ 

7.1.3 % yield = 
$$\frac{\text{actual yield}}{\text{theoretical yield}} x \ 100$$
 % yield =  $\frac{2,69}{2,99} \text{x} 100$ 

7.2 
$$Na_2CO_3.xH_2O = 268$$
  
 $23x2+12+16x3+18x\checkmark = 268\checkmark$   
 $106+18X=268$   
 $X=9\checkmark$  (3)

7.3.1 The simplest whole-number ratio of atoms in a compound.  $\checkmark$   $\checkmark$  (2)

7.3.2

| Element            | С                             | Н                                                         | Cl                          |
|--------------------|-------------------------------|-----------------------------------------------------------|-----------------------------|
| $n = \frac{m}{M}$  | $\frac{24,27}{12}$            | $\frac{4,07}{1}$                                          | $71,65$ $\checkmark$ $35,5$ |
|                    | = 2,0225                      | = 4,07                                                    | = 2,0183 <b>√</b>           |
| Divide by smallest | $ \frac{2,0225}{2,0185} = 1 $ | $\begin{array}{c} \frac{4,07}{2,0183} \\ = 2 \end{array}$ | $\frac{2,0183}{2,0183}$ = 1 |
| Empirical formu    | la:                           | CH₂CI <b>√</b>                                            |                             |

(6) **[21]** 

**TOTAL: 100**