



**GRADE 10** 

MATHEMATICS
NOVEMBER PAPER 2
2022

**EXAMINER:** PHOENIX CLUSTER

**MARKS**: 75

**DATE:** 16 NOVEMBER 2022

TIME: 1½ HOURS

**MODERATOR: PHOENIX CLUSTER** 

tanmorephysics.com

#### **INSTRUCTION TO LEARNERS:**

- This question paper consists of SEVEN pages and FIVE questions. Answer ALL the questions.
- Number answers correctly according to the numbering system used in this question paper.
- You may use an approved non-programmable calculator
- Round off all answers appropriately according to the given context.
- Show ALL calculations clearly.
- Indicate units of measurement, where applicable.
- Write neatly and legibly.

#### Downloaded from Stanmorephysics.com QUESTION 1 [ 11 MARKS ]

1.1 The number of absent learners in grade 10 in Amandlethu High School for the first term was recorded and is shown in the table below:

| Days absent     | Frequency             |
|-----------------|-----------------------|
| $0 \le x < 4$   | 37                    |
| 4 ≤ x < 8       | 23                    |
| 8 ≤ x < 12      | 9                     |
| 12 ≤ x < 16     | 17                    |
| $16 \le x < 20$ | 5                     |
| 20 ≤ x < 24     | 1 Starmorephysics.com |

- 1.1.1. How many grade 10's are at Amandlethu High? (1)
- 1.1.2. Calculate the estimated mean of the number of days during which the grade 10's were absent during the first term. (3)
- 1.1.3 Give the modal interval. (1)
- 1.1.4 In which interval is the 70<sup>th</sup> percentile? (2)
- 1.2 A second-hand car dealer's sales per month for March 2013 to February 2014 is given by the box and whiskers diagram below.





- 1.2.1 If the range of the sales is 25, calculate the value of a. (1)
- 1.2.2 If he sells less than 9 cars per month, his profit is not enough to cover all his expenses. How many months was his profit not enough? (2)

a

1.2.3 Approximately what percentage of the year did he sell more than 19 cars a month? (1)

## Downloaded from Stanmorephysics.com QUESTION 2 [ 12 MARKS ]

In the diagram below, A(-4;-3) and B(-2;5) are two points in a Cartesian plane



Determine:

2.4. The value of p if line OC is parallel to AB, where O is the origin and C is the point (2; p).
(4)

### **QUESTION 3** [ 21 MARKS ]

3.1. If  $A = 129^{\circ}$  and  $B = 51^{\circ}$ , determine:

3.1.1. 
$$\sin(2A + B)$$
 (2)

3.1.2. 
$$tan^2(A - B)$$
 (2)

3.2. Determine  $\theta$  if:  $0^{\circ} \le \theta \le 90^{\circ}$ 

3.2.1. 
$$\cos(3\theta + 10^\circ) = \tan 23^\circ$$
 (3)

**Downloaded from Stanmorephysics.com** 3.3. In the diagram below,  $\triangle$  ACD is right-angled at C. E lies on AD such that CE is



- (1) 3.3.1. Write down the ratio for  $\cos D$  in  $\triangle ACD$
- 3.3.2. Write down the ratio for  $\cos D$  in  $\triangle CED$ (1)
- (2)3.3.3. If AD = 13 units and DC = 5 units, calculate the length of ED.

3.4. With the aid of the diagram below and WITHOUT using a calculator, answer



Calculate the value of the following:

$$3.4.2. 5\sin\theta + 9\tan^2\theta (3)$$

Simplify WITHOUT using a calculator: 3.5.

$$\cos^2 45^\circ \cdot \sin 90^\circ + \tan 60^\circ \cdot \cos 30^\circ$$
 (5)

# Downloaded from Stanmorephysics.com QUESTION 4 [ 9 MARKS ]

4. The graph of f is drawn below: y = acosx



- 4.1. Determine the equation of f (1)
- 4.2. Write down the co-ordinates of A and B (2)
- 4.3. State the range of f (1)
- 4.4. Write down the period of f (1)
- 4.5. Determine the value(s) of x for which  $f(x) \le 0$  (2)

(2)

4.5. Determine the equation of g(x) if g is the graph of f reflected across the x – axis and shifted 2 units down.

# Downloaded from Stanmorephysics.com QUESTION 5 [ 22 MARKS ]

5.1. Complete the statement so that it is TRUEThe line drawn from the midpoint of the one side of a triangle, parallel to the second side, .................................(1)

5.2. In the figure below  $\triangle$  *ABC* is right-angled at B. F and G are the midpoints of AC and BC respectively. H is the midpoint of AG. E lies on AB such that FHE is a straight line.



5.2.1. Prove that E is the midpoint of AB.

(3)

5.2.2. If EH = 5 cm and the area of  $\Delta$  AEH = 15  $cm^2$ , calculate the length of AB (3)

**Downloaded from Stanmorephysics.com** 5.3. Use Rhombus ABCD below to determine with reasons the values of x and y

in the following figure: (3)



5.4. In the diagram below ABCD is a parallelogram. The bisector BQ, of  $\angle B$  meets AD in Q and the bisector AP of  $\angle A$ , meets BC in P.

AP and BQ intersect at O.



Prove that:

$$5.4.1 \text{ AO} \perp \text{BQ} \tag{4}$$

5.4.3 If AQ = 
$$2\sqrt{10}$$
, determine the length of DC. (2)

**END OF PAPER** 





**GRADE 10** 

#### **MATHEMATICS**

#### **NOVEMBER PAPER 2**

2022

### **MEMORANDUM**

**MARKS:** 75

TIME: 1½ HOURS

#### THIS MEMORANDUM CONSISTS OF FIVE PAGES

#### NOTE:

- If a candidate answered a QUESTION TWICE, mark only the first attempt
- If a candidate crossed out an answer and did not redo it, mark the crossed-out attempt
- Consistent accuracy applies to all aspects of the marking guidelines.
- Assuming values/answer in order to solve a problem is unacceptable.

### QUESTION 1

| 1.1.1. | Number of learners at Amandlethu = 92                                                                                                                        | ✓A 92                            | (1) |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|
| 1.1.2. | $\bar{x} = \frac{\sum x}{n} = \frac{(2\times37) + (6\times23) + (10\times9) + (14\times17) + (18\times5) + (22\times1)}{92}$ $= \frac{652}{92}$ $= 7.09 (7)$ | ✓A 652<br>✓CA 92<br>✓CA 7.09 NPR | (3) |
| 1.1.3. | $0 \le x < 4$                                                                                                                                                | ✓A                               | (1) |
| 1.1.4. | $8 \le x < 12$                                                                                                                                               | √√AA                             | (2) |
| 1.2.1. | A = 25                                                                                                                                                       | ✓A 25                            | (1) |
| 1.2.2. | 25% of 12 = 3 months                                                                                                                                         | ✓M<br>✓A                         | (2) |
| 1.2.3. | 25%                                                                                                                                                          | ✓A                               | (1) |

#### QUESTION 2

| 2.1. | dAB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$<br>= $\sqrt{(-2 - (-4))^2 + (5 - (-3))^2}$<br>= $2\sqrt{17}$ | ✓Formula<br>✓SF<br>✓CA | (3) |
|------|-----------------------------------------------------------------------------------------------------------|------------------------|-----|
| 2.2. | $mAB = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{5 - (-3)}{-2 - (-4)}$ $= 4$                                  | ✓Formula<br>✓SF<br>✓CA | (3) |
| 2.3. | M (-3;1)                                                                                                  | ✓A<br>✓A               | (2) |

| 2.4. | mAB = mOC (AB  OC)<br>Equation OC $\rightarrow y = 4x + C$<br>Sub (0; 0) $\rightarrow 0 = 4(0) + C$<br>C = 0<br>y = 4x | ✓CA mAB = mOC = 4<br>✓CA Equation of OC<br>✓SF Sub (p;2)<br>✓CA | (4) |
|------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----|
|      | Sub (2; p) $\rightarrow$ p = 4(2)<br>P = 8                                                                             | V CA                                                            |     |

#### **QUESTION 3**

| 3.1.1. | $\sin(2(129) + (51)) = -0.78$                                                                                                   | ✓ S<br>✓ A NPR                                                                                                                                                                                                                          | (2) |
|--------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.1.2. | $(\tan(129 - 51))^2 = 2.56$                                                                                                     | Stormore physics com  ✓ A NPR                                                                                                                                                                                                           | (2) |
| 3.2.1. | $cos(3\theta + 10^{\circ}) = 0.42$<br>$(3\theta + 10^{\circ}) = 64.88^{\circ}$<br>$3\theta = 54.88^{\circ}$<br>$\theta = 18.29$ | ✓ A tan23 = 0.42<br>✓ CA<br>✓ CA                                                                                                                                                                                                        | (3) |
| 3.3.1. | $\cos D = \frac{CD}{AD}$                                                                                                        | ✓A                                                                                                                                                                                                                                      | (1) |
| 3.3.2. | $\cos D = \frac{DE}{CD}$                                                                                                        | ✓A                                                                                                                                                                                                                                      | (1) |
| 3.3.3. | $\frac{CD}{AD} = \frac{DE}{CD}$ $ED = \frac{25}{13} = 1.92$                                                                     | ✓ equating<br>✓ CA                                                                                                                                                                                                                      | (2) |
| 3.4.1. | $y^2 = 15^2 - 9^2$ (Pyth)<br>y = -12                                                                                            | ✓ Pyth or Sketch ✓ y (negative)                                                                                                                                                                                                         | (2) |
| 3.4.2  | $5\left(\frac{-12}{15}\right) + 9\left(\frac{-12}{9}\right)^2$ $-4 + 16 = 12$                                                   | ✓✓Sub<br>✓ CA                                                                                                                                                                                                                           | (3) |
| 3.5.   | $\left(\frac{1}{\sqrt{2}}\right)^2 (1) + \sqrt{3} \left(\frac{\sqrt{3}}{2}\right)$ $= \frac{1}{2} + \frac{3}{2} = 2$            | $\begin{array}{ccc} \checkmark & \frac{1}{\sqrt{2}} \\ \checkmark & 1 \\ \checkmark & \sqrt{3} \\ \checkmark & \frac{\sqrt{3}}{2} \end{array}$ $\begin{array}{cccc} \checkmark & \frac{\sqrt{3}}{2} \\ \checkmark & CA & 2 \end{array}$ | (5) |

#### **QUESTION 4**

| 4.1. | $y = \cos x$                       | ✓A       | (1) |
|------|------------------------------------|----------|-----|
| 4.2. | A (0;90°) B (0;270°)               | ✓A<br>✓A | (2) |
| 4.3. | $-1 \le y \le 1$                   | ✓A       | (1) |
| 4.4. | $Period = 360^{\circ}$             | ✓A       | (1) |
| 4.5. | $90^{\circ} \le x \le 270^{\circ}$ | ✓✓CA CA  | (2) |
| 4.6. | $y = -\cos x - 2$                  | ✓✓CA CA  | (2) |

#### **QUESTION 5**

| 5.1.   | bisects the third side                                                                                                                                                                                                                                                                                         | ✓A                                           | (1) |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----|
| 5.2.1. | In $\triangle$ $ACG$ , $F$ and $H$ are midpoints $ \therefore FH \parallel CG \ (midpoint \ theoreom) $ In $\triangle$ $AGB$ , $H$ are midpoints $ \therefore HE \parallel BG \ (Proved) $ $ \therefore E \ is \ the \ midpoint $ $(Line \ drawn \ from \ midpoint \ of \ one \ side \ \ to \ second \ side) $ | ✓ FH    CG<br>✓ Midpoint theorem<br>✓ reason | (3) |
| 5.2.2. | $A\widehat{E}H = A\widehat{B}C = 90^{\circ} (corresp \ angles \ , BC    EF)$ $Area = \frac{1}{2}(EH) \times AE$ $15 = \frac{1}{2}(5) \times AE$ $AE = 6$ $AB = 2 \times 6 = 12$                                                                                                                                | ✓ sub<br>✓ AE<br>✓ AB                        | (3) |
| 5.3.   | $x = 56^{\circ} (Co - int \ angles, AB \  CD)$ $y = 180^{\circ} - (56^{\circ} + 62^{\circ}) = 62^{\circ} (sum \ of \ angles \ in \ a \ \Delta)$                                                                                                                                                                | ✓A<br>✓M<br>✓CA                              | (3) |

| 5.4.1. | In $\triangle$ $BAO$ and $\triangle QAO$ 1. AO is common  2. $\widehat{A}_1 = \widehat{A}_2$ (given)  3. $\widehat{B}_1 = \widehat{B}_2$ (given) = $\widehat{Q}_1$ (alt angles BC  AD) $\therefore \triangle$ $\triangle$ $\triangle$ $\triangle$ $\triangle$ $\triangle$ $\triangle$ $\triangle$ $\triangle$ $\triangle$ | ✓S/R<br>✓S/R<br>✓S/R<br>✓S/R<br>Stallmorephysics.com | (4) |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|
| 5.4.2. | In $\triangle$ BOP and $\triangle$ AOQ<br>1. $\widehat{O_2} = O_4(\widehat{vert} \ opp)$<br>2. BO = QO (Proved)<br>3. $\widehat{Q_1} = \widehat{B_2}$ (alt angles BC  AD)<br>$\therefore \triangle BOP \equiv \triangle AOQ \ (AAS)$<br>AO = OP and BO = OQ and AO $\perp$ BQ<br>$\therefore ABPQ$ is a rhombus           | ✓S ✓R<br>✓S/R<br>✓S<br>✓S<br>✓S/R                    | (6) |
| 5.4.3. | AB = $2\sqrt{10}$ (Rhombus)<br>CD = $2\sqrt{10}$ (opposite sides or a parm)                                                                                                                                                                                                                                               | ✓S/R<br>✓S/R                                         | (2) |