Ľ		from Stanmorephysics.com
		The second se
		GRADE 11
/		MATHEMATICS
ł		NOVEMBER PAPER 1
l		2022
•		
EX	AMINER: P	HOENIX CENTRAL CLUSTER
MO	DERATOR: PI	HOENIX CENTRAL CLUSTER
MA	ARKS: 10	
DA	TE: 8 N	NOVEMBER 2022
TIN		IOURS
	TRUCTION TO	
1.		paper consists of 7 pages and 8 questions.
2.	Answer ALL q	
3.	Number the que question paper.	estions correctly according to the numbering system used in this
4.	Clearly show A determining yo	LL calculations, diagrams, graphs et cetera that you have used in ur answers.
5.	Answers only v	vill not necessarily be awarded full marks.
5.	You may use ar graphical), unle	n approved scientific calculator (non-programmable and non- ess otherwise stated.
		und off answers to TWO docimetations and the standard
7.	If necessary, rou	and on answers to 1 w 0 decimal places, unless otherwise stated.
7. 3.		und off answers to TWO decimal places, unless otherwise stated. OT necessarily drawn to scale.

QUESTION 1

1.1 Solve for x in each of the following;

1.1.1 $(2x - 1)(x + 2) =$	= 0	(2)
---------------------------	-----	-----

1.1.2
$$4x^2 - 3x - 5 = 0$$
 (correct to TWO decimal places.) (3)

 $1.1.3 \quad x^2 - 8x \le 0 \tag{3}$

$$1.1.4 \quad \sqrt{14 - x} + 2 = x \tag{4}$$

1.2 Solve for x and y simultaneously: y + 4 = 2x and $x^2 - xy + 21 = 0$

If the roots of a quadratric equation are given by $\frac{-2 \pm \sqrt{4-20m}}{2}$, calculate the	
value/s of m, for which the equation will have real roots.	(3)
	[21]

QUESTION 2

2.1 Simplify fully, without using a calculator:

$$\frac{5^{2015} + 5^{2013}}{25^{1006}} \tag{3}$$

2.2 Solve for x without using a calculator:

 $2.2.1 \quad 5^{10-3x} = 1 \tag{3}$

$$2.2.2 \quad 2x^{-\frac{2}{3}} = 50 \tag{3}$$

1

.

(6)

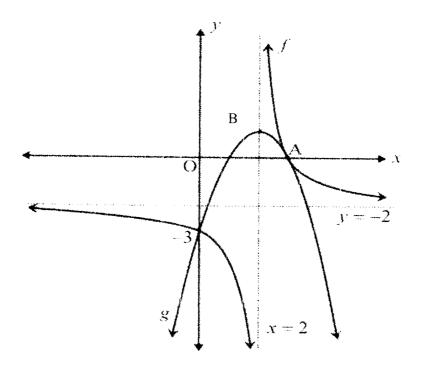
QUESTION 3

3.1	Given the finite linear pattern:	9; 4; -1;; -311	
3.1.1	Determine the formula for the generation	al term of the pattern.	(2)
3.1.2	Calculate the number of terms in the	pattern.	(2)

3.2	The first 3 terms of a linear pattern are: $t + 1$; $2t - 1$; $t + 5$	
	Show that the terms generated by this pattern are odd.	(3)
		[7]
QUES	STION 4	
Given	the quadratic pattern: -4; 0; 10; 26;	
4.1	Write down the value of T ₅ .	(1)
4.2	Show that the general term of the quadratic pattern is given by	
	$T_n = 3n^2 - 5n - 2.$	(3)
4.3	Between which 2 consecutive terms in the pattern will the first difference be 520°	? (3)
4.4	Does this pattern have a minimum or maximum value? Justify the answer.	(2)
		[9]

QUESTION 5

.


Consider the following functions:

f(x)	$= 3^{x+1} - 1$ and $g(x) = -2x + 2$	
5.1	Write down the equation of the horizontal asymptote of f .	(1)
5.2	Determine the coordinates of the x and y intercepts of f .	(4)
5.3	Sketch the graphs of f and g on the same set of axes.	(5)
	Use the graph paper provided on ANNEXURE A.	
5.4	Determine the values of x for which $f(x) - g(x) \le 0$.	(2)
5.5	If the graph of f is reflected about the x-axis and shifted 3 units upwards to form	
	h(x), determine the range of h .	(3)
		[15]

QUESTION 6

In the diagram below, the graphs of $f(x) = \frac{a}{x+b} + c$ and $g(x) = -(x-2)^2 + 1$ both cut the y-axis at -3 and the x-axis at A.

f and g intersect at y = -3 and A. B is the turning point of g(x).

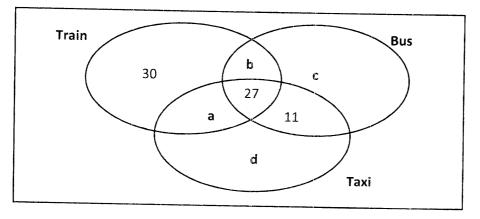
		[15]
6.7	For what value/s of k will $g(x) = k$ have no real roots?	(2)
6.6	Determine the average gradient between B and A.	(2)
6.5	Calculate the length of OA.	(3)
6.4	Determine the coordinates of B.	(2)
6.3	What is the equation of the axis of symmetry of f that has a positive gradient.	(2)
6.2	Hence, determine the equation of f .	(2)
6.1	Write down the values of b and c .	(2)

QUESTION 7

- 7.1 A car rental company bought a fleet of 15 cars for R3000 000. They calculate the depreciation at a rate of 15% p.a on a reducing-balance method. Calculate the value of the fleet of cars at the end of 5 years. (2)
- 7.2 An investment earns 7,5% p.a compounded quarterly. Calculate the effective annual interest rate on this investment. (3)
- 7.3 Amanda deposits R50 000 into a savings account which pays 11% p.a compounded monthly. She wants to buy a car in 5 years time. Calculate how much money is available to her in 5 years time, if a further payment of R10 000 was made exactly 2 years after her initial deposit.

[10]

QUESTION 8


8.1 Given the following: P(A) = 0,2, P(B) = 0,5 and P(A or B) = 0,6Are the events A and B independent? Show all calculations. (3)

8.2 Study the table below and answer the questions based on it.

	LIKE SPORT	DON'T LIKE SPORT	TOTAL
MALES	80	60	b
FEMALES	a	90	210
TOTAL	200	150	350

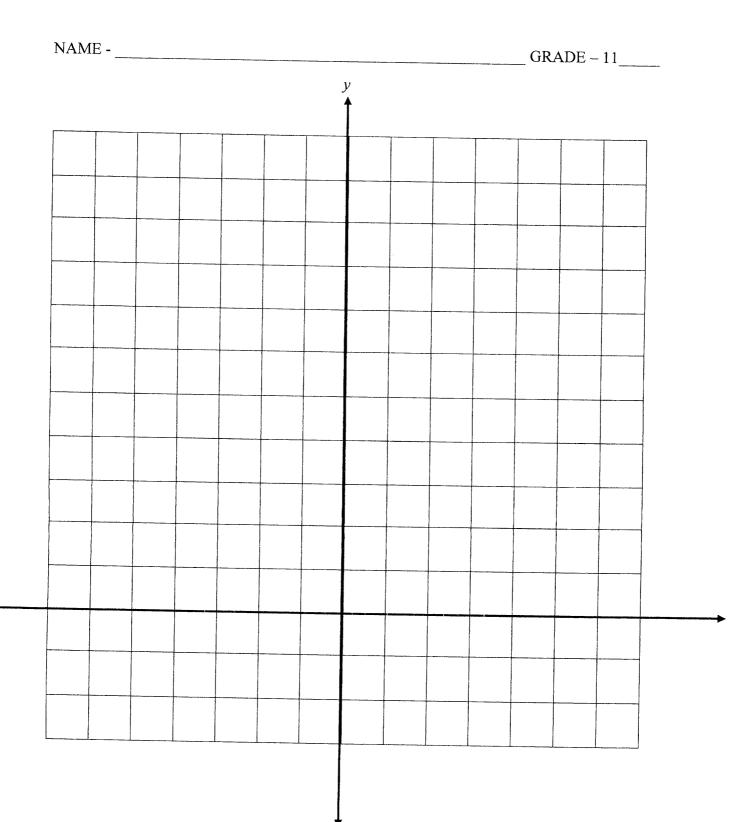
- 8.2.1 Write down the values of \mathbf{a} and \mathbf{b} . (2)
- 8.2.2 Determine the probability of choosing a female that likes sport. (1)

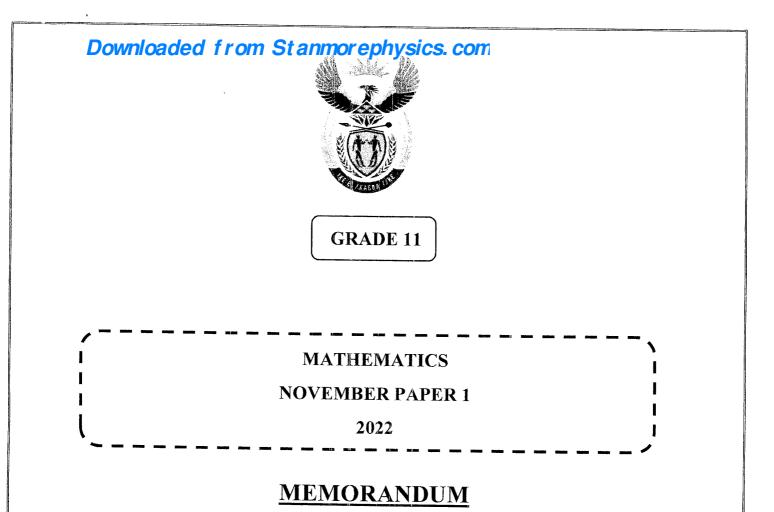
- 8.3 In a survey a group of 283 workers were asked which mode of transport the use to go to work. The results of the survey are summarised below. These are the only forms of transport used by the workers.
 - 27 workers take a train, a bus and a taxi to get to work.
 - 110 workers take a train and a taxi.
 - 38 workers take a taxi and a bus.
 - 32 workers take a train and a bus but not a taxi.
 - 60 get to work by taxi only.
 - 110 workers take a bus.
 - 172 workers take train.
- 8.3.1 Complete the Venn diagram below to represent this information by calculating the values of a, b, c, and d.

(4)

8.3.2 What is the probability that a worker picked at random takes a taxi to work? (2)

8.3.3 What is the probability that a worker picked at random takes a train and a bus to work?


(2)


[14]

TOTAL MARKS - 100

ANNEXURE A

QUESTION 5.3

<u>MARKS:</u> 100 <u>TIME:</u> 2 HOURS

THIS MEMORANDUM CONSISTS OF 6 PAGES

NOVEMBER EXAMINATION 2022

MATHEMATICS PAPER 1 – GRADE 11

MARKING MEMORANDUM

QUI	ESTION 1			
1.1.1	(2x - 1)(x + 2) = 0 $x = \frac{1}{2} \sqrt{or} x = -2\sqrt{2}$	$\sqrt[]{A}$ $\sqrt[]{A}$	L1	2
1.1.2	$4x^{2} - 3x - 5 = 0$ $x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(4)(-5)}}{2(4)}\sqrt{2(4)}$	\sqrt{A} subst. into correct formula \sqrt{CA} \sqrt{CA}	L2	3
1.1.3	$x = -0.80 \sqrt{or} x = 1.55\sqrt{x^2 - 8x} \le 0$ $x(x - 8) \le 0\sqrt{x(x - 8)} \le 0\sqrt{x(x - 8)} \le 0\sqrt{x(x - 8)}$ $0 \le x \le 8\sqrt{x}$	\sqrt{A} factors \sqrt{CA} interval notation \sqrt{CA}		
1.1.4	$ \sqrt{14 - x} + 2 = x $ $ (\sqrt{14 - x})^2 = (x - 2)^2 \sqrt{14 - x} = x^2 - 4x + 4 $ $ x^2 - 3x - 10 = 0 \sqrt{x} $ $ (x - 5)(x + 2) = 0 $ $ x = 5 \sqrt{or} \ x = -2 N/A \sqrt{3} $	\sqrt{A} isolating surd and squaring \sqrt{CA} standard form \sqrt{CA} answer \sqrt{CA} answer and rejection	L2	4
1.2	$y + 4 = 2x \qquad (1)$ $x^{2} - xy + 21 = 0 \qquad (2)$ $y = 2x - 4 \qquad (3)$ Subst. (3) in (2) $x^{2} - x(2x - 4) + 21 = 0$ $x^{2} - 2x^{2} + 4x + 21 = 0$ $x^{2} - 4x - 21 = 0$ (x - 7)(x + 3) = 0	\sqrt{A} changing subject of formula \sqrt{CA} subst \sqrt{CA} standard form \sqrt{CA} factors \sqrt{CA} x values \sqrt{CA} y values	L3	6
	$x = 7 or x = -3\sqrt{y}$ $y = 10 or y = -10\sqrt{y}$	Accept alternate answers for <i>x</i> as subject of equation 2		

.

1

				9
	$x^{-\frac{2}{3}\times-\frac{3}{2}} = 5^{2} \sqrt{x}$ $x = 5^{-3}$ $x = \frac{1}{125}\sqrt{x}$	\sqrt{A} multiplying powers by $-\frac{3}{2}$ \sqrt{A}		
.2.2	$2x^{-\frac{2}{3}} = 50$ $x^{-\frac{2}{3}} = 25\sqrt{2}$	\sqrt{A} dividing by 2	L2	3
.2.1	$5^{10-3x} = 1$ $5^{10-3x} = 5^{0}\sqrt{x}$ $\therefore 10 - 3x = 0\sqrt{x}$ $-3x = -10$ $x = \frac{10}{3}\sqrt{x}$	\sqrt{A} for 5 [°] \sqrt{A} equating powers \sqrt{A}	L2	3
.2.1	$=\frac{5^{2012}.130}{5^{2012}}$ $=130$			
	$= \frac{5^{2012}(5^3+5)}{(5^2)^{1006}}\sqrt{5^2}$			
2.1	$\frac{5^{2015} + 5^{2013}}{25^{1006}}$	\sqrt{A} common factor \sqrt{A} 5 ²⁰¹² in denominator \sqrt{A}	L3	3
	ESTION 2			
			<u> </u>	21
	$\begin{vmatrix} -20m \ge -4\sqrt{m} \\ m \le \frac{1}{5}\sqrt{m} \end{vmatrix}$	√A		
1.3	For real roots $\Delta \ge 0$ $\therefore 4 - 20m \ge 0$	\sqrt{A} \sqrt{A}		

3.1.1 3.1.2 3.2	$T_{n} = -5n + 14\sqrt{\sqrt{-5n + 14}} = -311\sqrt{-5n} = -325$ n = 65\forall	$\sqrt[]{A \text{ for } -5}} \\ \sqrt[]{A \text{ for } 14} \\ \sqrt[]{CA} \\ \text{equating } T_n \text{ to } 311 \\ \end{bmatrix}$	L2	2
	-5n = -325		12	
3.2		\sqrt{CA} answer		2
	$2t - 1 - (t + 1) = t + 5 - (2t - 1)\sqrt{2t}$ $2t = 8$ $t = 4$	√A equating differences	L4	3
	Sequence : 5; 7; 9; $T_n = 2n + 1\sqrt{2}$	√CA		
	2n is divisible by 2 therefore it is always even. \therefore 2n + 1 is always odd.	√J		
				7
4.1	CSTION 4 48√	√A	L1	1
4.2	2a = 6	√A	L2	3
	a = 2		1.2	5
	3a + b = 4 $3(3) + b = 4\sqrt{b^2 + 5^2}$	√A		
	a + b + c = -4 3 + (-5) + c = -4 c = -2	$\sqrt{\mathbf{A}}$		
	$T_n = 3n^2 - 5n - 2$			
4.3	$3(n+1)^2 - 5(n+1) - 2 - (3n^2 - 5n - 2) = 520\sqrt{2n^2 - 5n - 2} = 520\sqrt{2n^2 - 5n - 5n - 5} = 520\sqrt{2n^2 - 5}$	√A	L3	3
	$3n^2 + 6n + 6 - 5n - 5 - 2 - 3n^2 + 5n + 2 = 520$ 6n = 522	√A		
	n = 87 Between terms 87 and $88.$	√A		
4.4	$\begin{array}{l} \text{Minimum Value} \\ a = 3 > 0 \\ \end{array}$	\sqrt{A} \sqrt{A}	L4	2
		L	1	9

. ,

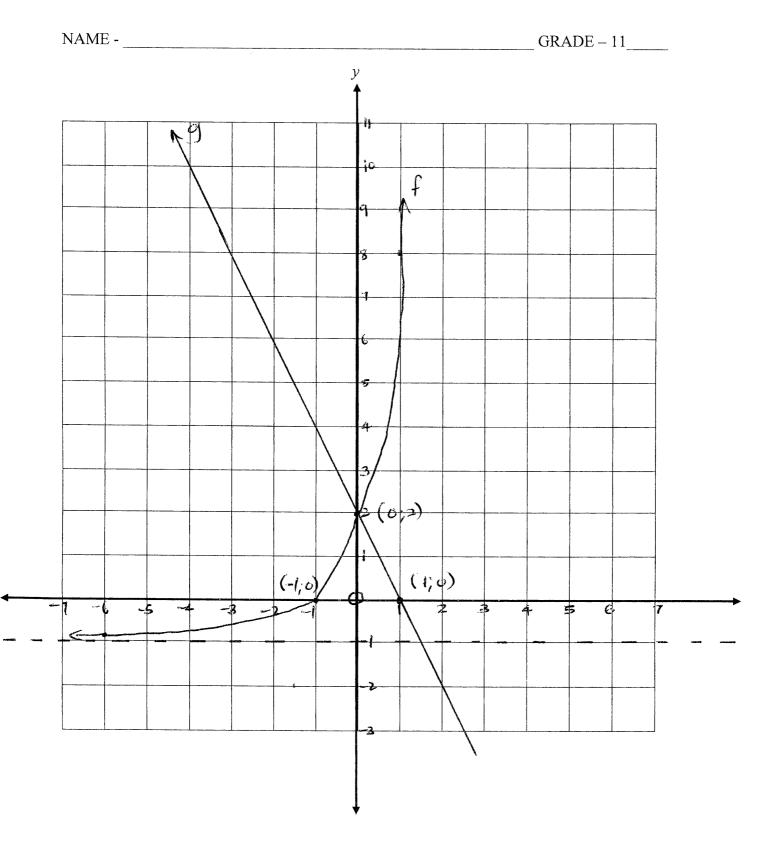
QU	ESTION 5			
5.1	y = -1	\sqrt{A}	L1	1
5.2	x - int: let y = 0 $3^{x+1} - 1 = 0\sqrt{3^{x+1} = 1}$ $3^{x+1} = 3^{0}$	√A	L.2	4
	$\therefore x = -1$ (-1;0) $$	√A		
	y- int: let x = 0 $y = 3^{0+1} - 1\sqrt{y}$ y = 2 (0;2) \sqrt{y}	√A √A		
5.3	Refer to Annexure A	$\sqrt{CA x-int of f} \sqrt{CA y-int of f} \sqrt{CA asymptote y} = -1 \sqrt{Shape of f} \sqrt{x and y-int of g} $	L3	5
5.4	$x < 0$ or $x \in (-\infty; 0) \sqrt{\sqrt{1-2}}$	$\sqrt{\sqrt{CA}}$ for each endpoint	L3	2
5.5	$h(x) = -3^{x+1} + 4\sqrt{\sqrt{1+1}}$ range of h: y < 4\frac{1}{2}	$\sqrt[]{A \text{ for } -3^{x+1}} \\ \sqrt[]{A \text{ for } 4} \\ \sqrt[]{A \text{ range}}$	L4	3
				15

	ESTION 6			
6.1	$b = -2\sqrt{c}$ $c = -2\sqrt{c}$	$\sqrt{\mathbf{A}}$ $\sqrt{\mathbf{A}}$	L1	2
6.2	$f(x) = \frac{a}{x-2} - 2$ Subst. (0;-3) $-3 = \frac{a}{0-2} - 2\sqrt{d}$ d = 2 $f(x) = \frac{2}{x-2} - 2\sqrt{d}$	\sqrt{A} subst. point \sqrt{A}	L2	2
	y = x - 2 - 2 $y = x - 4\sqrt{\sqrt{1-2}}$	\sqrt{A} for positive x \sqrt{A} for -4	L2	2
6.4	B(2;1)	\sqrt{A} \sqrt{A}	L1	2

				15
6.7	$k > 1 \sqrt{\sqrt{2}}$	\sqrt{A} inequality \sqrt{A} for 1	L4	2
		√CA		-
6.6	Average gradient = $\frac{0-1}{3-2}\sqrt{=-1}$	√CA	L2	2
	\therefore OA = 3 units $$	$\sqrt{\mathbf{A}}$		
	x = 3 or x = 1			
	$(x - 3)(x - 1) = 0\sqrt{x - 1}$	\sqrt{A}		
	$\begin{aligned} -x^2 + 4x - 4 + 1 &= 0 \\ x^2 - 4x + 3 &= 0 \end{aligned}$			
6.5	$-(x-2)^2 + 1 = 0\sqrt{2}$	\sqrt{A}	L3	3

QUE	ESTION 7			
7.1	$A = P(1 - i)^{n}$ $A = 3\ 000\ 000(1 - 0.15)^{5}\sqrt{2}$ $A = R1\ 331\ 115.94\sqrt{2}$	√A subst. into correct formula √CA	L2	2
7.2	$1 + i_{eff} = (1 + \frac{i}{n})^n \sqrt{1 + i_{eff}} = (1 + \frac{0.075}{4})^4 \sqrt{1 + i_{eff}} = (1 + \frac{0.075}{4})^4 - 1$ $i_{eff} = 7,71\% \sqrt{1 + 1}$	√A formula √A subst. into formula √CA answer	L2	3
7.3	$A = [R50\ 000\left(1\ +\ \frac{0,11}{12}\right)^{24} + R10\ 000](1\ +\ \frac{0,11}{12})^{36}$ $A = R100\ 334,57$	$\sqrt{A} \frac{0.11}{12}$ $\sqrt{n} = 24$ $\sqrt{A} \text{ adding } R10 \ 000$ $\sqrt{A} \ n = 36$ $\sqrt{CA} \text{ answer}$	L3	5
				10

. .


,

	ESTION 8			
8.1	P(A or B) = P(A) + P(B) - P(A and B) $0,6 = 0,2 + 0,5 - P(A \text{ and } B)\sqrt{P(A \text{ and } B)} = 0,1$ P(A and B) = 0,1 $P(A) \times P(B) = 0,2 \times 0,5 = 0,1\sqrt{P(A \text{ and } B)} = 0,1\sqrt{P(A \text{ and } B)} = P(A) \times P(B) = 0,1$ $\therefore \text{ events } A \text{ and } B \text{ are independent.} \sqrt{P(A \text{ and } B)} = 0,1\sqrt{P(A \text{ and } B)} = 0,1P(A \text{ and $	\sqrt{A} subst. into formula \sqrt{A} value of P(A) × P(B) \sqrt{J}	L3	3
8.2.1	$a = 120\sqrt{b}$ $b = 140\sqrt{c}$	\sqrt{A} \sqrt{A}	L1	2
8.2.2	P(Female and Sport) = $\frac{120}{350}$ = $\frac{12}{35}$	√CA √CA	L2	1
8.3.1	a = 83 b = 32 c = 40 d =60	√A √A √A √A All values correct	L2	4
8.3.2	$P(taxi) = \frac{172}{283}$	√CA numerator √CA denominator	L2	2
3.3.3	P(train and bus) = $\frac{32+27}{283}$ = $\frac{51}{283}$	√CA √CA	L2	2
				14

TOTAL MARKS - 100

ANNEXURE A

QUESTION 5.3

3 i i