## Downloaded from Stanmorephysics.com



## **Education**

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA



MARKS: 25

TIME: 30 minutes

N.B. This question paper consists of 5 pages and an information sheet.

Copyright Reserved Please Turn Over

#### INSTRUCTIONS AND INFORMATION

nnn

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 2 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Write neatly and legibly.



Copyright Reserved Please Turn Over

## Downloaded from Stanmarephysics.com

### **QUESTION 1**

1.1 The graphs of  $g(x) = x^3 - ax^2 + 6$  and  $h(x) = 2x^2 + bx + 3$  touch when x = 1. The two graphs also have a common tangent at x=1. Determine the coordinates of the point of contact of the two graphs. (7)

1.2 Given: A function defined by  $f(x) = 3x^3 - 4k^2x + 5$ , where k is a positive number. Determine the value(s) of *x* in terms of *k* for which the function is decreasing. (3)

In the diagram below, the graph of f'(x) is sketched for  $x \in R$ . 1.3



- 1.3.1 Write down the gradient of f at x = 0. (1)
- 1.3.2 Write down the x – coordinate of the turning point of f. (1)
- What is the gradient of f at x = 1? 1.3.3 (3)
- 1.3.4 Calculate the point of inflection of *f*. (1) [16]

Please Turn Over Copyright Reserved

### **QUESTION 2**

The figure below represents the parabola given by  $f(x) = 4 - \frac{x^2}{4}$  with  $0 \le x \le 4$ .

D(x; 0) is a point on the x – axis and B on the graph of f. DB is parallel to the y – axis.



- Show that *A*, the area of  $\triangle OBD$ , is given by  $A = 2x \frac{x^3}{8}$ . 2.1 (3)
- 2.2 Determine how far D should be from O in order that the area of  $\triangle OBD$  is as large as (4) possible.
- 2.3 Hence determine the area of  $\triangle OBD$  when D is on the point calculated in 2.2 above. (2) [09]

**TOTAL: 25 MARKS** 



Please Turn Over Copyright Reserved

## Mathematics 5 Downloaded from Stanmarephysics.com

#### **INFORMATION SHEET: MATHEMATICS**

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)^r$$

$$A = P(1+i)^n$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^{n}$$

$$T_{n} = a + (n-1)d \qquad S_{n} = \frac{n}{2}(2a + (n-1)d)$$

$$S_n = \frac{n}{2} \left( 2a + (n-1)d \right)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
;  $r \neq 1$   $S_{\infty} = \frac{a}{1 - r}$ ;  $-1 < r < 1$ 

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$\mathsf{M}\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
  $m = \frac{y_2 - y_1}{x_2 - x_1}$   $m = \tan \theta$ 

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In 
$$\triangle ABC$$
:  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$   $a^2 = b^2 + c^2 - 2bc \cdot \cos A$   $area \triangle ABC = \frac{1}{2}ab \cdot \sin C$ 

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \triangle ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$
  $\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$ 

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha.\cos\beta - \sin\alpha.\sin\beta$$
  $\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \sin\alpha.\sin\beta$ 

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$



## Downloaded from Stanmorephysics.com



## **Education**

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

**MATHEMATICS** 

**CALCULUS TEST** 

19 MAY 2023

**MARKING GUIDELINE** 

NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

MARKS: 25

TIME: 30 minutes



N.B. This guideline consists of 3 pages.

# Downloaded from Stanssorephysics.com QUESTION 1

| 1.    | g(1) = h(1)                                                       |                                        |
|-------|-------------------------------------------------------------------|----------------------------------------|
|       | $(1)^3 - a(1)^2 + 6 = 2(1)^2 + b(1) + 3$                          | $\checkmark$ $g(1)$ and $h(1)$         |
|       | 1-a+6=2+b+3                                                       | 9 (2) 4444 11(2)                       |
|       | $g'(x) = 3x^2 - 2ax$ $h'(x) = 4x + b$                             | $\checkmark g'(x)$                     |
|       | $g'(1) = h'(1)$ $3(1)^{2} - 2a(1) = 4(1) + b$ $3 - 2a = 4 + b(2)$ | $\checkmark g'(1) = h'(1)$             |
|       | (1) in (2): $3-2(2-b) = 4+4$<br>b=5                               | ✓Value of <i>b</i>                     |
|       | a = -3                                                            | ✓Value of <i>a</i>                     |
|       | $\therefore h(x) = 2x^2 + 5x + 3$                                 |                                        |
|       | $\therefore h(1) = 10$                                            | <b>√</b> 10                            |
|       | ∴ Point of contact is: (1; 10)                                    | ✓ Answer                               |
| 1.2   | A function decreases when $g'(x) < 0$                             | (7)                                    |
|       | $g'(x) = 9x^2 - 4k^2$                                             | (C. wie zo da i con litera             |
|       | $\therefore 9x^2 - 4k^2 < 0$                                      | ✓ Setting up the inequality            |
|       | (3x-2k)(3x+2k)<0                                                  | ✓Factors                               |
|       | CV's: $\pm \frac{2k}{3}$                                          |                                        |
|       | $\therefore -\frac{2k}{3} < x < \frac{2k}{3}$                     | ✓Solution                              |
|       | 3 3                                                               | (3)                                    |
| 1.2.1 | f'(0) 1F                                                          | ✓ Answer                               |
| 1.3.1 | f'(0) = 15                                                        | (1)                                    |
| 1.3.2 | x=10                                                              | ✓ Answer (1)                           |
| 1.3.3 | $m = \frac{15 - 0}{0 - 10} = -\frac{3}{2}$                        | $\checkmark m = -\frac{3}{2}$          |
|       | $\therefore f'(x) = -\frac{3}{2}x + 15$                           |                                        |
|       | $f'(1) = -\frac{3}{2}(1) + 15$                                    | $\checkmark f(x) = -\frac{3}{2}x + 15$ |
|       | $=\frac{27}{2}$                                                   | ✓ Answer                               |
| 1.3.4 | There is no point of inflection, $f(x)$ is a parabola.            | (3)<br>✓ Answer/ Any logical reasoning |
| 1.0.4 | There is no point of infection, f (n) is a parabola.              | (1)                                    |
|       |                                                                   | [16]                                   |

Copyright Reserved

# Mathematics Downloaded from Stanssorephysics.com QUESTION 2

| 2.1 | Coordinates of B:                                                           |                                   |
|-----|-----------------------------------------------------------------------------|-----------------------------------|
|     | $\mathbf{p}(\dots, \mathbf{x}^2)$                                           | $\checkmark x$ – co-ord of B      |
|     | $B\left(x;4-\frac{x^2}{4}\right)$                                           | ✓ y – co-ord of B                 |
|     | $\mathbf{x}^2$                                                              |                                   |
|     | $\therefore DB = 4 - \frac{x^2}{4} \text{ units and } OD = x \text{ units}$ |                                   |
|     | 1 000 1                                                                     |                                   |
|     | $\therefore \text{ Area } \Delta OBD = \frac{1}{2} \times OD \times DB$     |                                   |
|     | $1 (x^2)$                                                                   |                                   |
|     | $= \frac{1}{2} \times x \times \left(4 - \frac{x^2}{4}\right)$              | ✓ Substitution in correct formula |
|     |                                                                             |                                   |
|     | $=2x-\frac{x^3}{8}$                                                         |                                   |
| 2.2 | For maximum:                                                                | (3)                               |
| 2.2 |                                                                             |                                   |
|     | $\frac{dA}{dx} = 0$                                                         |                                   |
|     | $3x^2$                                                                      |                                   |
|     | $\therefore 2 - \frac{3x^2}{8} = 0$                                         | ✓Equating derivative to 0         |
|     | $\frac{3x^2}{8} = 2$                                                        |                                   |
|     | $\frac{1}{8} = 2$                                                           |                                   |
|     | $3x^2 = 16$                                                                 | ✓Standard form                    |
|     | 16                                                                          |                                   |
|     | $x^2 = \frac{16}{3}$                                                        | ✓x – values                       |
|     | $x = \pm 2.31$                                                              |                                   |
|     | ∴ D must be 2.31 <i>units</i> away from O.                                  | ✓ Answer/Reasoning                |
| 2.3 | V <sup>3</sup>                                                              | (4)                               |
| 2.0 | $A = 2x - \frac{x^3}{8}$                                                    |                                   |
|     | S .                                                                         |                                   |
|     | $A(2.31) = 2(2.31) - \frac{(2,31)^3}{8}$ $= 3,08 \text{ units}^2$           | ✓ Substitution                    |
|     | $=3.08 \text{ units}^2$                                                     | ✓Answer                           |
|     | 5,00 ants                                                                   | (2)                               |
|     |                                                                             | [09]                              |

**TOTAL: 25 MARKS** 



Copyright Reserved Please Turn Over