Alexandra High School

Aim: to understand and analyse the motion of a trolley accelerating down an inclined slope

Method: The accelerating trolley pulled a ticker tape through a timer set at 50Hz.

- 10 dot intervals were marked off and labelled A F. The time interval is thus 0,2 s.
- The total distance (position, x) values to these points were measured and appear as column 3 in the table below.

- Analyse the tape to determine its displacement, velocity and acceleration at each time.
- Complete the table showing the working out of one of each of the calculations.
- Plot the displacement and velocity versus time graphs overleaf.
- Answer the questions about the graphs that follow overleaf. Do these on a separate page and staple to the back of this worksheet if you run out of space.

Results:

Nesuits.						
1	2	3	4	5	6	7
	Time	Position	intervals	V_{ave}	Time for	Accel
	(s)	x (m)	Δx (m)	(m.s ⁻¹)	V _{inst} (s)	(m.s ⁻²)
А	0,0	0,0	>		0,1	
В	0,2	0.028 /				*
В	0,2		*	*	0,3	
С	0,4	0.074 /			0,5	
	0,4				0,5	
D	0,6	0.137			0,5	
	0,6	\			0,7	
Е	0,8	0.219			0,7	
	0,8	`			/	
F	1,0	0.317			0,9	
	1,0	0.317				Ave
		total	interval	$v = \frac{\Delta x}{}$		$a = \frac{\Delta v}{v}$
		distances	distances	$v = \frac{1}{\Delta t}$		$a = \frac{1}{\Delta t}$

* Show the calculations (with formula) for of the values in the blocks with the *

(15)

Downloaded from Stanmorephysics.com Position vs Time (column 3 vs 2) Draw the best curve

- Label the y-axis, plot the points using a suitable scale & draw best curve fit. (6)
- 2.1 Draw a tangent to the curve at time 0.5 seconds. (1)
- 2.2 Determine the gradient of the tangent. Show working out and points used. (2)
- 2.3 What does this gradient represent? (1)
- 2.4 Compare it to the appropriate point on the velocity vs time graph (1)

Velocity vs time (column 5 vs 6) Draw best straight line

- Label the y-axis, plot the points using a suitable scale & draw best straight line. (6)
- 4.1 Does it extrapolate through the origin? (1)
- 4.2 If not, what is the value of the y-intercept? (1)
- 4.3 What does the y-intercept represent? (1)
- 5.1 Determine the gradient of the straight line. Show the points used & the calculation. (3)
- 5.2 What does the gradient represent? (1)
- 5.3 Compare it to the appropriate value(s) in the table. (1)

