

CURRICULUM GRADE 10 -12 DIRECTORATE

PREFACE

This support document serves to assist Physical Sciences learners on how to deal with curriculum gaps and learning losses because of the impact of COVID-19 in 2021. It also addresses the challenging topics in the Grade 11 curriculum in Term 1, 2,3 and Term 4.

Activities serve as a guide on how various topics are assessed at different cognitive levels and preparing learners for informal and formal tasks in Physical Sciences. It covers the following topics:

No.	Topic	Page
1.	Atomic combinations	4 – 6
2.	Intermolecular Forces	7 -11
3.	Vectors and Scalars	12- 16
4.	Newton's Laws	
5.	Electrostatics	17 - 24
6.	Electric Circuits	25 - 32
7.	Electromagnetism	33 – 35
8.	Quantitative Aspects of Chemical Change	36 – 39
9.	Ideal Gases	40 – 43
10.	Energy and Change	44 – 47
11.	Acids and Bases	48 - 49
12.	Redox Reaction	50 - 51

ATO	MIC CC	MBINATIONS	
SOL	UTIONS	3	
1.1	B√√		(2)
1.2	C√√		(2)
1.3	B√√		(2)
1.4	C√√		(2)
1.5	B√√		(2)
			[10]
QUE	STION	2	
2.1	Electro	negativity as a measure of the tendency of an atom in a molecule to	
	attract	bonding electrons√√	(2)
		XX •• XX	
2.2		X F O F O	(3)
		X F X O X F X	
2.2	Λ Γ ΝΙ –		
2.3		$(4,0-3,5) \checkmark = 0,5\checkmark$	(2)
	2.4.1	y polar√ Y hand anargy (and Y hand langth)	(3)
	2.4.1	X-bond energy ✓ and Y- bond length ✓ Rend energy of a compound is the energy needed to break one male.	(2)
	2.4.2	Bond energy of a compound is the energy needed to break one mole of its molecules into separate atoms. 🗸 🗸	(2)
	2.4 3	More bonds ✓, shorter bond length ✓ and higher bond energy ✓	(3)
	2.4 3	More bonds*, shorter bond length * and higher bond energy*	(3) [15]
			1131
QUE	STION	3	
3.1		aring of electrons ✓ between (two) atoms (to form a molecule).✓	(2)
0.1	1110 011	army or olectrone a between (two) atoms (to form a molectro).	(2)
		x x	
	3.2.1	^x O ^o _x H	(2)
		x° H	
		C * * ¬+	
		HXÔXH .	
	3.2.2	H _x O _o XH H	(3)
		$\bigcup H \bigcup III = III $	
	3.2.3	One atom/ion must have an empty valence shell / orbital. ✓	+
	0.2.0	 The other atom must have a lone pair of electrons. ✓ 	(2)
		- The other atom must have a lone pair of electrons.	\-/

	3.3.1	A bond in which the electron density is shared equally between the		
		two atoms√√	(2)	
	3.3.2			
	a)	$\Delta EN = (3.5 - 2.5) \checkmark = 1\checkmark$	(2)	
	b)	$\Delta EN = (3,5-2,1) \checkmark = 1,4\checkmark$	(2)	
3.4	The bo	onds in both molecules are polar ✓ due to the difference in		
	electro	negativities ✓ between C and O and H and O.		
	The sh	ape of the H ₂ O molecule is angular ✓ and therefore the molecule is		
	polar√	because one side of the molecule can be positive and the other		
		egative.		
		shape of the CO₂ molecule is <u>linear</u> ✓ and thus it is non-polar ✓		
	becaus	se the charge distribution is symmetrical.	(6)	
			[21]	
QUE	STION			
4.1	What is	s the relationship between bond energy and bond length? ✓✓	(2)	
4.2	Size of	atom√		
	Bond o	order ✓	(2)	
4.3		absorbed = (4 x 413) ✓ + 2(1x498) ✓ = 2648kj.mol ⁻¹		
	Energy	released = (2x804) ✓ + (2x2x463) ✓ = 3460kj.mol ⁻¹		
	Since I	Energy released > Energy absorbed√		
	Net en	ergy is released in this reaction. ✓	(6)	
4.4	540 kJ	.mol ⁻¹ ✓		
	The C=	=C✓ bond is stronger that C=C , but weaker than C≡ C✓ therefore		
	energy	required is greater than 348 kJ.mol⁻¹ but less than 839 kJ.mol⁻¹✓	(4)	
		Stammaraphysics	[14]	
		Similiforephysics	·	
QUE	STION	5		
5.1				

INTE	RMOLECULAR FORCES ACTIVITIES		
	JTIONS		
QUES	STION 1		
1.1	Dipole-dipole forces ✓		(1)
1.2	Induced Dipole Forces✓		(1)
1.3	Ion dipole forces√		(1)
1.4	Induced dipole forces√		(1)
QUES	STION 2		
Given	the following diagram:		
	Intermolecular force		
/	K		
н—	-ClHCl		
	Interatomic force		
2.1	Hydrogen chloride√		(2)
2.2	(In sketch)✓		(1)
2.3	(In sketch✓		(1)
			[4]
	STION 3		
3.1	Complete the table below by placing type of intermolecular force.	each molecule next to the correct	
	Type of force Molecules	Type of force Molecules	
	Ion-dipole Ion-induced-dipole	KI, NaCl, HF✓✓✓	
	Dipole-dipole (no hydrogen	HCI, NO✓✓	
	bonding)		
	Dipole-dipole (hydrogen bonding)	H ₂ O, NH ₃ ✓✓	
	Induced dipole	CO ₂ , I ₂ , Ar✓✓✓	
	Dipole-induced-dipole	SiO₂ in water✓	
3.2.1	Water and Ammonia ✓ ✓		(2)
3.2.2	Argon, Iodine and Carbon dioxide✓✓	√ [000]	(3)
Ston	norephysics.com		[16]
1			[]
	1		

QUES	STION 4		
4.1	NH ₃ has I forces in and if the	hydrogen bonds which are much stronger than the induced dipole F2. In order for a liquid to boil the intermolecular forces must be broken intermolecular forces are very strong then it will take a lot of energy to e these forces and so the boiling point will be higher.	(2)
4.2	tetrachlor non-polar	s strong intermolecular forces (hydrogen bonds) while carbon ide only has weaker induced dipole forces. (Carbon tetrachloride is c). Substances with stronger intermolecular forces take longer to than substances with weaker intermolecular forces.	(2)
4.3	Sodium c can exist formation	hloride is likely to dissolve in methanol (CH ₃ OH) hloride is ionic. Methanol is polar. The type of intermolecular force that when sodium chloride dissolves in methanol is ion-dipole forces. The of these forces helps to disrupt the ionic bonds in sodium chloride and a chloride can dissolve in methanol.	(2)
			[6]
QUES	STION 5		
5.1	С	HI and NH₃ only✓✓	(2)
5.2		raph to show the melting points of the hydrides. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
	////		(4)
5.3		decrease in the temperature from the first hydride (number 4 on the the last one (number 1 on the graph). ✓The shape of the graph shows	(2)

	the decreasing intermolecular forces between the molecules in the compounds.	
5.4.1	✓ Water✓	(1)
5.4.2	Hydrogen bonding. This force occurs between the hydrogen atoms of one molecule and a high electronegativity atom of another molecule. The relatively positive hydrogen atom is attracted to the relatively negative atom (e.g., oxygen, nitrogen, fluorine). 🗸 \checkmark \checkmark	(3)
5.4.3	Hydrogen sulfide does not have hydrogen bonding since sulfur has a low electronegativity. This reduces the boiling point of hydrogen sulfide since it is easier to break the intermolecular forces between molecules of hydrogen sulfide.	(3)
5.4.4	Thembile is correct. ✓ Van der Waals forces ✓ are the only forces that can exist with covalent molecules ✓ and so including either ion-dipole or ion-induced dipole forces is not correct.	(3)
		[19]
	STION 6	
6.1	Bongani is correct. ✓ NH ₃ is polar. It has one lone pair of electrons and so is trigonal pyramidal. The three polar bonds do not cancel each other out since the molecule is not symmetrical. ✓ This makes ammonia a dipole molecule. So, the type of intermolecular force that exists is dipole-dipole forces. ✓	(3)
6.2	Jason is correct. ✓ Helium is a noble gas ✓ and so exists as single atoms, not as a compound. Helium is non-polar and so has induced-dipole forces. ✓	(3)
6.3	KI(aq) has potassium and iodine ions in water. Water is a polar molecule. ✓ So, the type of force must be ion-dipole. ✓	(2)
6.4	Materials expand on heating and contract on cooling. ✓ If the power lines were strung tightly and did not sag, then every time the weather got cold the power lines would contract and break.✓	(2)
		[10]
QUES	STION 7	
7.1	The temperature at which the vapour pressure of a substance equals atmospheric pressure. ✓ ✓	(2)
7.2	What is the relationship between intermolecular forces and boiling point? ✓✓	(2)
7.3	Glycerine,∏It has the highest boiling point✓✓	(2)
7.4	No, ✓ boiling point is only affected by the atmospheric pressure ✓	(2)
7.5	Avoid direct heating with open flame Work in a well-ventilated room/use a fume cupboard ✓✓	(2)
7.6	Nail polish remover, ✓ lowest boiling point, weakest intermolecular forces, less energy is required to overcome intermolecular forces and can easily change to vapour ✓ ✓	(3)
7 7	Sunflower oil has a large molecular mass ✓	(2)
7.7	Carmetter on the distance made	[15]

QUES	TION 8	
8.1	Both water and ethanol have hydrogen which are the same in relative strength. ✓ ✓	(3)
	Substances with comparable relative strength in intermolecular forces will	
	dissolve.	
8.2	The intermolecular forces between the molecules of iodine and bromine are	(2)
	both London forces (Van der Waals forces/Induced dipole forces). ✓✓	
8.3	The intermolecular forces between phosphine molecules are dipole- dipole	(4)
	forces/Van der Waals forces. ✓	
	• The intermolecular forces between ammonia molecules are hydrogen bonds.	
	✓ • The dipole-dipole forces are weaker than the hydrogen bonds. ✓	
	Weaker forces will cause the molecules to evaporate faster/stronger forces	
	will evaporate slower ✓	
8.4	Bromine ✓	(1)
8.5	The boiling point of bromine is lower than the other two liquids therefore it	(2)
	has weaker intermolecular forces. ✓	` ′
	• If the intermolecular forces are weaker, the vapour pressure will be higher. ✓	
	OR	
	The boiling point of water and ethanol are higher than bromine, therefore it	
	has stronger intermolecular forces.	
	• If the intermolecular forces are stronger, the vapour pressure will be lower	
		[12]
QUES	TION 9	
9.1	• NH₃ has hydrogen bonds between the molecules ✓	(3)
	• N₂ has London forces/induced dipole forces ✓ • NH₃ has stronger	
	intermolecular forces than N₂ and therefore a higher boiling point than N₂ ✓	
	(Accept: more energy requires to overcome stronger forces of NH ₃)	
	OR	
	• N ₂ has weaker intermolecular forces than NH ₃ and therefore a lower boiling	
	point than NH ₃ (Accept: less energy requires to overcome weaker forces of	
	H ₂)	
9.2	H ₂ ✓	(1)
9.3	H₂ and H N₂ both have weak London forces/induced dipole forces/	(3)
	• N ₂ is a larger molecule/has a greater molecular mass/has a larger surface	
	area than H₂✓	
	• and therefore, N₂ has stronger intermolecular forces. ✓	
	OR	
	H ₂ is a smaller molecule/has a smaller molecular mass/has a smaller	
	surface area than N ₂	

	• and therefore, H ₂ has weaker intermolecular forces.	
9.4	H ₂ ✓	(3)
	It has the weakest intermolecular forces/London forces ✓	(-)
	It has the lowest boiling point ✓ OR	
	It has the weakest intermolecular forces/London forces	
	Boiling point is inversely proportional to vapour pressure	
	Deming Harm's inversely proportional to vapour process.	[10]
QUEST	ION 10	[]
10.1	The melting point is the temperature at which the solid and the liquid of a	(2)
	substance are in equilibrium✓✓	(-)
10.2	HF has hydrogen bonds between molecules. ✓	(4)
	HCℓ has dipole-dipole forces✓	(' '
	Hydrogen bonds are stronger than dipole-dipole	
	forces./Intermolecular forces in HF stronger./ Intermolecular	
	forces in HCl weaker. ✓	
	More energy is needed to overcome/break intermolecular forces.	
	✓ Wore energy is needed to overcome/break intermolecular forces.	
10.3	CS₂ ✓	(1)
10.4	CS ₂ has a greater surface area/molecular mass/larger molecules (than CO ₂).	(3)
	✓	
	London forces increase with molecular mass/molecular size. ✓	
	More energy needed to break/overcome intermolecular forces✓	
10.5	HCℓ ✓ Lowest boiling point. ✓	(2)
		[12]
QUEST	ION 11	
11.1	London forces (induced dipole-induced dipole) ✓	(1)
11.2	Although the molecules are non-polar, collisions cause a temporary shift in the	(2)
	electrons resulting in temporary/momentary ✓ dipoles forming in the	` ′
	molecules.	
	A force of attraction will form between the negative pole of one molecule and	
	the positive pole of another molecule. ✓	
11.2.1	Covalent bond (Intramolecular force). ✓	(1)
11.2.2	Van der Waals Forces (Dipole – dipole Intermolecular forces)	(1)
11.3.1	Linear, not symmetrical✓	(1)
11.3.2	HF has a higher boiling point√ than HCl due to the strong hydrogen	(3)
	bonding ✓ present in HF compared to the weaker dipole- dipole forces ✓ in HCl	
11.3.3	HCI, HBr, HI, HF ✓	(1)

[10]

VECTORS IN TWO DIMENSIONS			
SOLU	TIONS 🛅		
QUES	FION 1		
1.1	D 🗸 💮	(2)	
1.2	A ✓ ✓	(2)	
1.3	B√√	(2)	
1.4	C✓✓	(2)	
1.5	A✓✓	(2)	
		[10]	
QUES	TION 2		
2.1	When a body is in equilibrium it will: EITHER be at rest OR move with a constant linear velocity. ✓✓ OR Net force is equal to zero and acceleration is equal to zero. ✓✓	(2)	
	TV 10°V W V	(4)	
	Accepted Labels		
	Fg/Fw Fg/Fw/force of Earth on block/weight/6370N/		
	mg/gravitational force		
	F _T F _T /Force applied by Thabo		
	T T/ tension in the rope		
	ONE angle shown		
	Note		
	One mark for correct arrow and label.		
	If any other forces shown max. $\frac{3}{4}$		
	If force body diagram max $\frac{3}{4}$		
2.3	$\cos 10^\circ = \frac{\text{Fg}}{T} \checkmark$	(3)	
	$\cos 10^{\circ} = \frac{650 \times 9.8}{T} \checkmark$		
	T = 6468.27 N ✓		

2.4	$\cos 32^\circ = \frac{Fg}{T} \checkmark$	(4)
	$\cos 32^{\circ} = \frac{{}^{1}_{650 \times 9.8}}{T} \checkmark$	
	T = 7511.37 N ✓	
	Yes, the cable will snap. ✓	
		[13]
QUES	TION 3	
3.1	It is a single vector that can represent a number of vectors acting on	(2)
	an object in both magnitude and direction ✓✓	
3.2	X : component: 8 N ✓	(2)
	Y : component: -10 N ✓	
3.3	$R_x = F_{1x} + F_{2x} + F_{3x} = 0 + 8 + (-6) = 2 \text{ N } \checkmark$	(1)
3.4	$R_y = F_{1y} + F_{2y} + F_{3y} = 5 + (-10) + 0 = -5 \text{ N} \checkmark$	(1)
3.5	$(R_{net})^2 = (R_x)^2 + (R_y)^2$	(4)
	$= (2)^2 + (-5)^2 \checkmark$	
	$R_{NET} = \sqrt{29} = 5,39 \text{ N} \checkmark$	
	$\tan\Theta = \frac{5}{2} \checkmark$	
	Θ = 68,20° with respect to the positive x-axis ✓ or	
	Θ = 21,80° with respect to the negative y-axis ✓	
		[10]
	TION 4	
4.1	sum of two or more vectors ✓ ✓ or	(2)
	a single vector having the same effect as two or more vectors	
4.0	together 🗸 🗸	(4)
4.2	F _x F _y	(4)
	F _z ✓	
	Fz Y	
	60° F _Y F _X 36°	
	Marking Rubric : Diagram	
	Criteria Mark allocation	
	Forces F _x , F _y , and F _z (W) correctly	
	drawn and labelled in a closed triangle 3 × 1 = 3	
	Any two angles shown correctly 1	
	If no arrows shown, penalise once (max $\frac{3}{4}$)	
	•	

4.3	Z / F _z . ✓ The lengths of the sides of a triangle represent the	(2)
	magnitude of the forces. Z is (the largest force) opposite the largest	
	angle ✓ in the vector diagram. OR Z is the hypotenuse ✓ (of the	
	triangle)/ it represents the weight)	
4.4	$F_z = W = mg = 0.25 \times 9.8 = 2.45 \text{ N} \checkmark$	(4)
	Sin $60^{\circ} = \frac{Fx}{F}$ OR $\cos 30^{\circ} = \frac{Fx}{F}$	
	Sin $60^{\circ} = \frac{Fx}{Fz}$ OR $\cos 30^{\circ} = \frac{Fx}{Fz}$ Sin $60^{\circ} = \frac{Fx}{2.45}$ OR $\cos 30^{\circ} = \frac{Fx}{2.45}$ $F_x = 2.122 \text{ N } \checkmark$	
	2.45 F = 2.422 N (
	$\cos 60^{\circ} = \frac{Fy}{Fz} \qquad \text{OR sin } 30^{\circ} = \frac{Fy}{Fz}$	
	$\cos 60^{\circ} = \frac{\text{Fy}}{2.45}$ OR $\sin 30^{\circ} = \frac{\text{Fy}}{2.45}$	
	F _y = 1,225 N ✓	
	CRITERIA:	
	Correctly calculating FZ / W. ✓	
	 Any correct formula involving a trigonometric ratio. ✓ 	
	FX correctly computed. ✓	
	FY correctly computed. ✓	
		[12]
QUES		T
5.1	The <u>resultant of the forces is zero.</u> ✓	(1)
5.2		(3)
	T √ 20° 45° F _U F _B √	
	<u> </u>	
	F _g ✓	
	↓	
	ACCEPTED LABELS	
	F _g Fw/W/Weight/mg/gravitational force/force due to gravity	
	T F _T /Tension/Tension in rope	
	F _L /F _B F _{legs} /Force of legs on wall	
5.3	$F_g = mg = (50)(9.8) = 490 \text{ N} \checkmark$	
	SCALE 10 mm = 50 N	(8)
	F _g = 490 N = 98 mm (Accept 97 – 99 mm)	
1		

T = $76.5 \times 5 = 382.5 \text{ N} \checkmark \text{(Accept } 76.4 - 76.6 \text{ mm)}$ F_L = $37.0 \times 5 = 185 \text{ N} \checkmark \text{(Accept } 184.5 - 186.5 \text{ mm)}$

NOTES

- Mark awarded for correct label and direction. ✓
- ANY TWO angles indicated. ✓✓

CALCULATE instead of CONSTRUCTIONS max $\frac{5}{8}$

$$\frac{\text{Fg}}{\sin 115^{\circ}} = \frac{\text{FL}}{\sin 115^{\circ}} \; \text{F}_{\text{T}} = \frac{490\checkmark \sin 45^{\circ}\checkmark}{\sin 115^{\circ}} = 382,50 \; \text{N} \; \checkmark$$

$$\frac{Fr}{\sin 20^{\circ}} = \frac{Fg}{\sin 115^{\circ}} F_{R} = \frac{490 \sin 20^{\circ}}{\sin 115^{\circ}} \checkmark = 184,91 \text{ N} \checkmark$$

[12]

QUESTION 6

6.1	F _{net} = 0 N/ Object in equilibrium/Resultant is zero ✓ ✓	(2)
6.2	$w = mq = (15)(9.8) \checkmark = 147.01$	(2)

6.3

	Accepted Labels	
W/F _g	weight/F _g /F	✓
F/F _A	Applied force/F/F _A	✓

	Т	Tension/T		✓	
		Any angle correctly shown (40° or 50° or 90°)		✓	
		Triangle not closed		3	
				$\overline{4}$	(4)
6.4					
	OPTIO	ON	OPTION 2		
	= -	w m	$T = \frac{W}{W}$		
	 	ı 40 47	cos 50 - 147		
	_ = —	1 40 V	$={\cos 50}$		
	= 22	28,69 N ✓	= 228,69 N ✓		
					(2)
6.5	The tw	o forces act on the same o	bject (the billboard). ✓		(1)
	(For the	e Newton's third law, the forces act on different objects.)			
					[11]

ELEC	ECTROSTATICS				
SOLU	TIONS				
QUES	STION 1 (MULTIPLE CHOICE QUESTIONS)				
1.1	B√√	(2)			
1.2	CVV	(2)			
1.3	A//	(2)			
		[6]			
QUES	TION 2				
2.1	The magnitude of the electrostatic force exerted by one point charge (Q_1) on another point charge (Q_2) is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the				
	distance (r) between them √√	(2)			
2.2	$F = \frac{kQ_{J}Q_{L}}{r^{2}}$ $J \qquad r^{2}$ $F_{J} = \frac{(9 \times 10^{9})(3 \times 10^{-6})(2 \times 10^{-6})}{(0.2)^{2}}$				
	$F_J = 1,35 \text{ N right } \checkmark$	(4)			
2.3.1	$QL = -3 \times 10^{-6} \checkmark$	(1)			
2.3.2	OPTION 1 $n_{e} = \frac{Q_{f} - Q_{i}}{q_{e}} \checkmark$ $n_{e} = \frac{-3 \times 10^{-6} - 2 \times 10^{-6}}{1.6 \times 10^{-19}} \checkmark$ $n_{e} = 3.125 \times 10^{13} \checkmark$ OPTION 2 $n_{e} = \frac{Q_{f} - Q_{i}}{q_{e}} \checkmark$ $n_{e} = \frac{-3 \times 10^{-6} + 8 \times 10^{-6}}{1.6 \times 10^{-19}} \checkmark$ $n_{e} = 3,125 \times 10^{13} \checkmark$	(3)			

3.1	An Electric field as a region of space in which an electric charge experiences a force. 🗸 🗸	(2)
3.2	$Q = nq_e \checkmark$	
	$n = \frac{(-80 \times 10^{-9})}{(-1.6 \times 10^{-19})} \checkmark$	
	$n = 5 \times 10^{11}$ electrons \checkmark	(3)
3.3		
	✓ shape between charges	
	✓ shape outside charges	
	✓ direction	
		(3)
3.4		, ,
	↑ F _E ✓	
	Charge B	
	↓ F _q ✓	(2)
3.5	$F_g = F_E$	
	$mg = \frac{kQ_AQ_B}{r^2} \checkmark$ any formula	
	$(0,01)(9,8) \checkmark = \frac{(9\times10^9)(80\times10^{-9})(120\times10^{-9})}{r^2} \checkmark$	
	·	
	$r = 0.0296 \text{ m}$ \checkmark ACCEPT: $r = 0.03 \text{ m}$	(4)
3.6	✓ P	(4)
0.0	EA +	
	E _B	(2)
3.7		(2)
	(a) $E_A = kQ/r^2 \checkmark$	
	$= (9x10^9)(80x10^{-9}) / (x - 0.05)^2 \checkmark$	
	(b) $E_B = kQ/r^2$	
	$= (9x10^{9})(120x10^{-9})/(0,05)^{2} \checkmark$	
	= 432 000 N·C ⁻¹	
	(c) $E_{NET} = E_A + E_B$	(6)
		\(\cupsilon\)

	$54,45 \times 10^4 \checkmark = 720/(x - 0.05)^2 + \checkmark 432\ 000$	
	x = 0,13 m ✓	
01150		(22)
	STION 4	1
4.1.1	Distance (between the point charges)/medium/air ✓	(1)
4.1.2	The electrostatic force is directly proportional to the product of charges. ✓	(1)
4.1.3	gradient $= \frac{\Delta F}{\Delta Q^2}$ $(4-3)\times 10^{12}$	
	$= \frac{(4-3)\times 10^{12}}{\Delta Q^2} \checkmark \qquad \text{NOTE:} \qquad \text{acceptany value from the graph}$ $= \frac{1\times 10^{12}}{1} \checkmark$	
	$= 1 \times 10^{12} \mathrm{N} \cdot \mathrm{C}^{-2} \checkmark$	(3)
4.1.4	$F = \frac{KQ_1Q_2}{r^2} \checkmark$	
	$\frac{F}{Q^2} = \frac{K}{r^2}$	
	$1 \times 10^{12} \checkmark = \frac{9 \times 10^9}{r^2} \checkmark$	
	$r^2 = 9 \times 10^{-3}$	
	$r = 0.09487 \text{ m } (0.095 \text{ m}) \checkmark$	
	NOTE: If $F = \frac{KQ^2}{r^2}$ is used, then maximum: $\frac{3}{4}$	(4)
4.2.1	A region in space in which an electric charge experiences a force.	(2)
4.2.2	$E = \frac{KQ}{r^2} \checkmark$ $E_{\text{net}}, p = 0$ $\frac{KQ_1}{r^2} \checkmark = \frac{KQ_2}{r^2}$ $\frac{(9 \times 10^9)(8 \times 10^{-6})}{(0.4 - d)^2} = \frac{(9 \times 10^9)(2 \times 10^{-6})}{d^2} \checkmark$	
	ACCEPT: If 10 ⁻⁶ is omitted since it appears on both sides.	
	$\frac{d^2}{(0,4-d)^2} = \frac{(2 \times 10^{-6})}{(8 \times 10^{-6})}$ $= 0,25$ $\frac{d}{(0,4-d)} = 0,5$ $d = 0,1333 \text{ m}$	
	∴ the distance is 0,1333 m ✓	(4)

		1
OPTION 1	OPTION 2	
$Q_{new} = \frac{Q_1 + Q_2}{2}$	$Q_{new} = \frac{Q_1 + Q_2}{2}$	
2 8×10 ⁻⁶ +2×10 ⁻⁶	2	
= =		
$=5\times10^{-6}\mathrm{C}$	$=5\times10^{-6}\mathrm{C}$	
	0 ,	
$n = \frac{1}{e}$	$n = \frac{1}{e}$	
$n = \frac{5 \times 10^{-3} - 8 \times 10^{-3}}{-1.6 \times 10^{-19}} \checkmark$	$n = \frac{5 \times 10^{-3} - 2 \times 10^{-3}}{1.6 \times 10^{-19}} \checkmark$	
$n = 1,875 \times 10^{13}$ electrons \checkmark	$n = 1,875 \times 10^{13}$ electrons ✓	(4)
		(19)
FION 5		
$n = \frac{Q}{a} \checkmark$		
$n = \frac{-15 \times 10^{-9}}{100} \checkmark$		
1,0 10		
= 2.5 x 10 ¹³ electrons ✓		(3)
k Q4Q0		(0)
$F_{AB} = \frac{RQ_1Q_2}{r^2} \checkmark$		
$(9 \times 10^{9})(4 \times 10^{-6})(3 \times 10^{-6})$		
$F_{AB} = \frac{1}{(0,2)^2}$		
= 2.70 N ✓		(3)
	hich an electric charge experiences a	
		(2)
$E_{AM} = \frac{kQ}{r^2} \checkmark$		
•		
$E_{AM} = \frac{(0.110 \text{ A} + 3.10 \text{ J})}{(0.3)^2} \checkmark$		
, ,		
,		
$E_{BM} = \frac{\kappa_{Q}}{r^2}$		
(9 × 10 ⁹)(3 × 10 ⁻⁶)		
$E_{BM} = \frac{(0.1)^2}{(0.1)^2} \checkmark$		
() /		
-		
` '		(5)
	$= \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$ $= 5 \times 10^{-6} \text{C}$ $n = \frac{Q}{e} \checkmark$ $n = \frac{5 \times 10^{-6} - 8 \times 10^{-6}}{-1.6 \times 10^{-19}} \checkmark$ $n = 1,875 \times 10^{13} \text{ electrons} \checkmark$ FION 5 $n = \frac{Q}{Q_{e}} \checkmark$ $n = \frac{-15 \times 10^{-9}}{-1.6 \times 10^{-19}} \checkmark$ $= 2.5 \times 10^{13} \text{ electrons} \checkmark$ $\text{F}_{AB} = \frac{k Q_{1} Q_{2}}{r^{2}} \checkmark$ $\text{F}_{AB} = \frac{(9 \times 10^{9})(4 \times 10^{-6})(3 \times 10^{-6})}{(0,2)^{2}} \checkmark$ $= 2.70 \text{ N} \checkmark$	$= \frac{8 \times 10^{-6} \times 2 \times 10^{-6}}{2} \checkmark$ $= 5 \times 10^{-6} \text{C}$ $n = \frac{Q}{e} \checkmark$ $n = \frac{5 \times 10^{-6} - 8 \times 10^{-6}}{-1.6 \times 10^{-19}} \checkmark$ $n = 1,875 \times 10^{13} \text{ electrons} \checkmark$ $n = \frac{Q}{e} \checkmark$ $n = \frac{5 \times 10^{-6} - 8 \times 10^{-6}}{-1.6 \times 10^{-19}} \checkmark$ $n = 1,875 \times 10^{13} \text{ electrons} \checkmark$ $n = \frac{Q}{1.6 \times 10^{-19}} \checkmark$ $= 2.5 \times 10^{13} \text{ electrons} \checkmark$ $F_{AB} = \frac{\frac{1}{2} \times 10^{-9}}{1.6 \times 10^{-9}} \checkmark$ $= 2.70 \text{ N} \checkmark$ Electric field is a region in space in which an electric charge experiences a electric force. $\checkmark \checkmark$ $E_{AM} = \frac{\frac{1}{2} \times 10^{-9} \times 10^{-9} \times 10^{-9}}{(0.3)^{2}} \checkmark$ $= 4.0 \times 10^{5} \text{N} \cdot \text{C}^{-1} \text{ left}$ $E_{BM} = \frac{\frac{1}{2} \times 10^{-9} \times 10^{-9} \times 10^{-9}}{(0.1)^{2}} \checkmark$ $= 2.7 \times 10^{6} \text{N} \cdot \text{C}^{-1} \text{ right}$ $E_{net} = E_{BM} + E_{AM}$ $= 2.7 \times 10^{6} \text{N} \cdot \text{C}^{-1} \text{ right}$ $E_{net} = E_{BM} + E_{AM}$ $= 2.7 \times 10^{6} + (-4.0 \times 10^{5}) \checkmark$

5.5 Positive $$ 5.6 $(F_{\text{net}})^2 = (F_{\text{AD}})^2 + (F_{\text{AB}})^2 $ $(7.69)^2 = (F_{\text{AD}})^2 + (2.7)^2 \checkmark $ $F_{\text{AD}} = 7.2 \text{ N}$ $F_{\text{AD}} = \frac{\text{k Q Q Q P}}{\text{r}^{2}}$ $7.2 = \frac{(9 \times 10^9)(4 \times 10^{-6})(Q)}{0.15^2} \checkmark $ $Q_D = 4.5 \times 10^{-6} \text{C } \checkmark$ QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of th distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark $ $1.2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark $ $r = 0.015 \text{ m } (0.02 \text{ m}) \checkmark$ Note: • 1 mark for all substitution of lift negative charge substitution of lift negative charge substitution.	
$(7.69)^2 = (F_{AD})^2 + (2.7)^2 \checkmark$ $F_{AD} = 7.24$ $F_{AD} = 7.24$ $F_{AD} = \sqrt{\frac{9 \times 10^9 \text{ (4} \times 10^{-6} \text{ (Q)})}{1.25^2}} \checkmark$ $Q_D = 4.5 \times 10^{-6} \text{ C} \checkmark$ QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1.2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0.015 \text{ m (0.02 m)} \checkmark$ Note: • 1 mark for all substitution If negative charge substitution If negative charge substitution Max: 2/3	(3) (17)
FAD = 72 $\frac{k Q_1 Q_2}{r^2}$ $7.2 = \frac{k Q_1 Q_2}{0.15^2}$ $\sqrt{2}$ $Q_D = 4.5 \times 10^{-6} \text{C} \sqrt{2}$ QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $\frac{Note:}{r^2}$ 1.2 × 10 ⁻³ = $\frac{(9\times 10^9)(6\times 10^{-9})(5\times 10^{-9})}{r^2} \checkmark$ 1 mark for all substitution If negative charge substitution Max: 2/3	(17)
FAD = 72 $\frac{k Q_1 Q_2}{r^2}$ $7.2 = \frac{k Q_1 Q_2}{0.15^2}$ $\sqrt{2}$ $Q_D = 4.5 \times 10^{-6} \text{C} \sqrt{2}$ QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $\frac{Note:}{r^2}$ 1.2 × 10 ⁻³ = $\frac{(9\times 10^9)(6\times 10^{-9})(5\times 10^{-9})}{r^2} \checkmark$ 1 mark for all substitution If negative charge substitution Max: 2/3	(17)
QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ ACCEPT ACCEPT	(17)
QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ ACCEPT ACCEPT	(17)
QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ ACCEPT ACCEPT	(17)
QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ ACCEPT ACCEPT	(17)
QUESTION 66.1The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m} (0.02 \text{ m}) \checkmark$ Note: • 1 mark for all substitution 	(17)
QUESTION 6 6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ 1,2 × 10 ⁻³ = $\frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ 1 mark for all substitution If negative charge substitution Max: 2/3	(17)
6.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ 6.4 N ACCEPT	ne
another point charge is directly proportional to the product of the (magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ 6.4 N ACCEPT ACCEPT	
(magnitudes) of the charges \checkmark and inversely proportional to the square of the distance between them. \checkmark 6.2 $F = \frac{KQ_1Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ 6.4 N ACCEPT ACCEPT	
distance between them. \checkmark $F = \frac{\kappa Q_1 Q_1}{r^2} \checkmark$ $1,2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ N ACCEPT ACCEPT	
6.2 $F = \frac{\kappa Q_1 Q_1}{r^2} \checkmark$ $1.2 \times 10^{-3} = \frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2} \checkmark$ $r = 0.015 \text{ m } (0.02 \text{ m}) \checkmark$ 6.4 N ACCEPT Note: • 1 mark for all substitution Max: 2/3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2)
1,2 × 10 ⁻³ = $\frac{(9 \times 10^9)(6 \times 10^{-9})(5 \times 10^{-9})}{r^2}$ r = 0,015 m (0.02 m) 6.4 N • 1 mark for all substitution Max: 2/3	
$r = 0,015 \text{ m } (0.02 \text{ m}) \checkmark$ $6.4 \qquad \text{N}$ ACCEPT	ns/
6.4 N ACCEPT	1 1
N	
N	(3)
N N	
 	
T T	
FE	
↓	
ACCEPT	
N N	
\ 10	
\	
W _I	
F _E W⊥	
Accept the following symbols:	
N ✓ F _N / Normal /Normal force	
W ✓ F _g / Weight /F _{earth on sphere} / 0.098 N /gravitational force	

	T✓	Tension / F _T	
	F _E ✓	F _R / F / Electrostatic force	
	<u>Notes</u>		
	Mark awa	arded for label <u>and</u> arrow	
	Do not per	enalise for length of arrows since drawing is not to scale.	
	Any othe	r additional force(s) <i>Max</i> : ³ / ₄	
	If force(s)	do not make contact with body Max: ³ / ₄	
		ot shown but w// and w□ are shown give 1 mark for both.	
6.4.1	F _{net} = ma		
		ma √Any one	
	$T - F_E - w_{\parallel} =$	0	
	T – <u>1,2 x 10</u> -	$\sqrt{-(0.01)(9.8)\sin 25^{\circ}} \sqrt{=0}$	
	T = 0,04 N ✓	′ (0,0426 N)	
	OR		
	F _{net} = ma √		
	T – F _E - W _{II} =		
	T – F _E - W _{II} =		
		$3\sqrt{-(0,01)(9,8)\cos 65^{\circ}}\sqrt{=0}$	
	T = 0,04 N√	(0,0426 N)	(4)
6.4.2	E = k		
	r ²	√ anyone	
		·	
	Enet = ER +		
	Enet = ER +	- (-ES)	
	KO _n	KO_c	
	$E_{net} = \frac{KQ_R}{r^2} +$	$\frac{r^2}{r^2}$	
	$E_{\text{max}} = \frac{(9 \times 10^9)}{10^9}$	$\frac{(5\times10^{-9})}{(5+0.03)^2} + \frac{(9\times10^9)(6\times10^{-9})}{(0.03)^2}$	
	`	, , ,	
	$E_{net} = -37.77$		
	$\begin{bmatrix} E_{net} = 3/7/7 \end{bmatrix}$	7.78 N· C ⁻¹ \checkmark (3.78× 10 ⁴) down (the incline) / towards the charges	
			[18]
QUES	STION 7		[]
7.1		le of the electrostatic force exerted by one point charge (Q1) on	(2)
	1	charge (Q2) is directly proportional to the product of the	
	magnitudes o	f their charges√√	
7.2		Accept the following symbols	(3)

	T F	T F W	Tension in the spring Electrostatic force of repulsion F _g / mg / gravitation force	
7.3	W = mg = 0.0009 × 9.8 \checkmark = 0.0088 N Tan 45 = $\frac{F}{0.0088}$ \checkmark F = 0.008 N repulsion to the right \checkmark			(3)
7.4	$F = k \frac{Q_1 Q_2}{r^2} \checkmark$ $0.0088 = 9 \times 10^9 \frac{(Q)^2}{(0.04)^2} \checkmark$ $Q = 3.8 \times 10^{-8} \text{C} \checkmark$			(3)
				[11]

ELECT	RIC CIRCUITS	
SOLUT	TIONS	
QUEST	ΓΙΟΝ 1	
1.1	The potential difference across a conductor is directly proportional to	
	the current in the conductor√ at constant temperature. ✓ OR	
	Provided temperature and other physical conditions are constant√,	
	the potential difference across a conductor is directly proportional to	(0)
	the current√.	(2)
1.2	OPTION 1	
	$V_{tot} = IR_{tot} \checkmark$	
	$12 = (0,5)R_{tot} \checkmark$	
	$\therefore R_{tot} = 24 \Omega \checkmark$	
	$\therefore R_{\chi} = (24 - 8) \checkmark = 16 \Omega \checkmark$	
	OPTION 2	
	$V_8 = IR_{8\Omega} \checkmark$	
	= (0,5)(8) √	
	= 4 V	
	$V_{X} = (12 - 4) \sqrt{= 8} \text{ V}$	
	$V_{x} = IR_{x}$	
	$8 = (0,5)(R_X) \checkmark$	
	$\therefore R_{\chi} = 16 \Omega \checkmark$	
	OPTION 3	
	$V_8 = IR_{8\Omega} \checkmark$	

	= 0,5 (8) ✓	
	= 4 V	
	$\therefore V_{X} = (12 - 4) \checkmark = 8 \text{ V}$	
	$V_{X} = \frac{Rx}{Rtot}Vtot$	
	$8 = \frac{Rx}{(8+Rx)} 12 \checkmark$	
	∴R _X = 16 Ω ✓	
	OR	
	$V_8 = IR_{8\Omega} \checkmark$	
	= 0,5 (8) √	
	= 4 V	
	$V_{X} = (12 - 4) \sqrt{= 8} V$	
	$\frac{R_8}{Rx} = \frac{V_8}{Vx}$	
	KX VX	
	$\therefore R_{X} = \frac{(8)(8)}{4} \checkmark$	
	= 16 Ω ✓	(5)
1.2.1	12 V √	(1)
1.2.2	OPTION 1	
	$V_4 = I_4 R_{4\Omega} \checkmark \checkmark$	
	12 = I _∗ (4) √	
	$12 = I_4(4) \checkmark$ $I_{10} = 3 \text{ A}$	
	$I_{4\Omega} = 3 A$	
	$I_{4\Omega} = 3 A$ $V_{X} = I_{16\Omega}R$	
	$I_{4\Omega} = 3 A$ $V_{X} = I_{16\Omega}R$ $12 = I_{16\Omega}16 \checkmark$	
	$I_{4\Omega} = 3 \text{ A}$ $V_{X} = I_{16\Omega}R$ $12 = I_{16\Omega}16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$	
	$I_{4\Omega} = 3 \text{ A}$ $V_{X} = I_{16\Omega} R$ $12 = I_{16\Omega} 16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_{A} = (3 + 0.75) \checkmark$	
	$I_{4\Omega} = 3 \text{ A}$ $V_X = I_{16\Omega}R$ $12 = I_{16\Omega}16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_A = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$	
	$I_{4\Omega} = 3 \text{ A}$ $V_X = I_{16\Omega} R$ $12 = I_{16\Omega} 16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_A = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$ OPTION 2	
	$I_{4\Omega} = 3 \text{ A}$ $V_X = I_{16\Omega}R$ $12 = I_{16\Omega}16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_A = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$	
	$I_{4\Omega} = 3 \text{ A}$ $V_X = I_{16\Omega} R$ $12 = I_{16\Omega} 16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_A = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$ OPTION 2	
	$I_{4\Omega} = 3 \text{ A}$ $V_{X} = I_{16\Omega} R$ $12 = I_{16\Omega} 16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_{A} = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$ OPTION 2 $V_{4} = I_{4} R_{4\Omega} \checkmark$	
	$I_{4\Omega} = 3 \text{ A}$ $V_{X} = I_{16\Omega} R$ $12 = I_{16\Omega} 16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_{A} = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$ OPTION 2 $V_{4} = I_{4} R_{4\Omega} \checkmark$ $12 = I_{4}(4) \checkmark$	
	$I_{4\Omega} = 3 \text{ A}$ $V_{X} = I_{16\Omega} R$ $12 = I_{16\Omega} 16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_{A} = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$ OPTION 2 $V_{4} = I_{4} R_{4\Omega} \checkmark$ $12 = I_{4}(4) \checkmark$ $I_{4\Omega} = 3 \text{ A}$	
	$I_{4\Omega} = 3 \text{ A}$ $V_{X} = I_{16\Omega} R$ $12 = I_{16\Omega} 16 \checkmark$ $I_{16\Omega} = 0.75 \text{ A}$ $I_{A} = (3 + 0.75) \checkmark$ $= 3.75 \text{ A} \checkmark$ OPTION 2 $V_{4} = I_{4} R_{4\Omega} \checkmark$ $12 = I_{4}(4) \checkmark$ $I_{4\Omega} = 3 \text{ A}$ $I_{4}R_{4} = I_{16\Omega} R_{16\Omega}$	

	$I_A = (3 + 0.75) \checkmark$	
	= 3,75 A ✓	
	OPTION 3	
	Combined resistance of the lower portion:	
	$R = \frac{R16R4}{R16 + R4}$	
	$R = \frac{16 \times 4}{30} \sqrt{= 3.2 \Omega}$	
	20	
	$V = I_A R$	
	$12 \checkmark = I_A(3,2) \checkmark$	
	$I_{\Delta} = 3.75 \text{ A} \checkmark$	(5)
100	_ ^	
1.2.3	OPTION 1	
	$V_{12} = \frac{R12}{Rtot}Vtot \checkmark$	
	12	
	$V_{12} = \frac{12}{(8+12)} 12 \checkmark$	
	= 7,2 V	
	Energy W = $\frac{V^2}{R} \Delta t \checkmark$	
	$=\frac{(7.2)^2}{12}120$ \checkmark	
	12	
	= 518,4 J ✓	
	OPTION 2	
	$V_{8,12} = I(R_8 + R_{12}) \checkmark$	
	12 = I(20) √	
	I = 0,6 A	
	Energy W = I ² R∆t √	
	$= (0.6)^2 (12)(120) \checkmark$	
	= 518,4 J √	
	OR	
	$V_{8,12} = I(R_8 + R_{12}) \checkmark$	
	12 = I (20) √	
	I = 0,6 A	
	$V_{12} = IR_{12\Omega}$	
	= 0,6 (12)	
	= 7,2 V	
	Energy W = VIΔt √	
		(5)

	= (7,2)(0,6)(120) √	
	= 518,4 J ✓	
		[18]
QUES	TION 2	
2.1	The potential difference across a conductor is directly proportional to	
	the current in the conductor at constant temperature. ✓✓	(2)
2.2	More resistors connected in parallel. ✓ Therefor the effective	
	resistance of the circuit decreases. √	(2)
2.3.1	Any set of values from the table can be used for example:	
	$R = \frac{V}{I}$ \checkmark	
	$R = \frac{1}{4,8} \qquad \checkmark$	
		(3)
2.3.2	R = 2 Ω \checkmark POSITIVE MARKING FROM QUESTION 2.3.1.	(0)
2.3.2	OPTION 1	
	Switch 1 closed:	
	R _{tot} = 3 + 2 √	
	$R_{tot} = 5 \Omega$	
	V _{em} f = IR _{tot} ✓	
	$V_{emf} = (2,4)(5) \checkmark$	
	V _{emf} = 12 V √√	
	OPTION 2	
	Switches 1 and 2 closed:	
	$\left \frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} \right $	
	$\begin{vmatrix} 1 & 1 & 1 \\ - & - & + & - \end{vmatrix}$	
	$\frac{1}{R} = \frac{1}{3} + \frac{1}{6}$	
	$Rp = 2 \Omega$	
	Rtot = $2 + 2 \checkmark = 4 \Omega$	
	Vemf = IR _{tot} ✓	
	= (3)(4) ✓	
	= 12 V \(
	OPTION 3	
	3 Switches 1, 2 and 3 closed	
	$\frac{1}{R_1} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	
	$\begin{vmatrix} R_1 & R_1 & R_2 & R_3 \\ & = \frac{1}{3} + \frac{1}{6} + \frac{1}{4} \end{vmatrix}$	
	$R_p = 1,33 \Omega$	
	$R_{\text{tot}} = 1,33 \pm 2 \sqrt{} = 3,33 \Omega$	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
QUESTION 3 [11]		V _{emf} = IR _{tot} ✓	
QUESTION 3 3.1 OPTION 100 $\frac{1}{n_p} = \frac{1}{n_1} \frac{1}{4R} \checkmark$ $R = 2 \Omega \checkmark$ OPTION 2 $R = \frac{R_1 R_2}{4R + 6R} \checkmark$ $R = 2 \Omega \checkmark$ 3.2 POSITIVE MARKING FROM QUESTION 3.1 OPTION 1 $V_{4R} = IR_{4R}$ $= 1.8(4)(2) \checkmark$ $= 14.4 \lor$ $I_{6R} = \frac{14.4}{12} \checkmark$ $= 1.2 A$ $V_{2R} = IR \checkmark$ $= 1.8(4)(2) \checkmark$ $= 1.4(4) \checkmark$ $= 4.8 \lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ $= 1.9(4)(2) \checkmark$ $= 1.12(4) \checkmark$ $= 1.2(4) \checkmark$ $= 1.2(4) \checkmark$ $= 1.2(4) \checkmark$ $= 1.4 \lor \checkmark$ $I_T = \frac{V}{R_T}$ $I_T = \frac{14.4}{4.8}$ $= 3 \land A$ $I_{2R} = 3 - 1.8 \checkmark$ $= 1.2 \land A$ $V_{2R} = IR \checkmark$		$=(3,6)(3,33)$ \checkmark	(4)
QUESTION 3 3.1 OPTION 100 $\frac{1}{R_p} = \frac{1}{R_1}$ $\frac{1}{4.8} = \frac{1}{4R} + \frac{1}{6R} \checkmark$ $R = 2 \Omega $		= 12 V √	
3.1 OPTION $\frac{1}{R_p} = \frac{1}{R1} \frac{1}{R2} \checkmark$ $\frac{1}{4,8} = \frac{1}{4_R} + \frac{1}{6_R} \checkmark$ $R = 2 \Omega \checkmark$ OPTION 2 $R = \frac{R_1 R_2}{R_1 + R_2} \checkmark$ $R = \frac{4R \times 6R}{4R + 6R} \checkmark$ $R = 2 \Omega \checkmark$ 3.2 POSITIVE MARKING FROM QUESTION 3.1 $OPTION 1$ $V_{4R} = R_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor$ $I_{6R} = \frac{14,4}{12} \checkmark$ $= 1,2 A$ $V_{2R} = R \checkmark$ $= 1,2(4) \checkmark$ $= 4,8 \lor \checkmark$ OPTION 2 $V_{4R} = R_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor$ $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ $= 3 A$ $I_{2R} = 3 - 1,8 \checkmark$ $= 1,2 A$ $V_{2R} = R \checkmark$			[11]
$\frac{1}{R_{p}} = \frac{1}{R1} \underbrace{\frac{1}{4R}}{\frac{1}{4R}} + \frac{1}{6R} \checkmark$ $R = 2 \Omega \checkmark$ OPTION 2 $R = \frac{R_{1}R_{2}}{R_{2} + R_{2}} \checkmark$ $R = \frac{4R \times 6R}{R_{4} + 6R} \checkmark$ $R = 2 \Omega \checkmark$ 3.2 POSITIVE MARKING FROM QUESTION 3.1 OPTION 1 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor V$ $I_{6R} = \frac{14,4}{12} \checkmark$ $= 1,2 A$ $V_{2R} = IR \checkmark$ $= 1,2(4) \checkmark$ $= 4,8 \lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor V$ $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ $= 3 A$ $I_{2R} = 3 - 1,8 \checkmark$ $= 1,2 A$ $V_{2R} = IR \checkmark$		ALL II	
$\begin{array}{l} \frac{1}{4.8} = \frac{1}{4R} + \frac{1}{6R} \ \ \ \ \ \ \ \ \ \ \ \ \ $	3.1		
$\begin{array}{c} R = 2 \Omega \checkmark \\ \\ \mathbf{OPTION 2} \\ R = \frac{R_1 R_2}{R_1 + R_2} \checkmark \\ R = \frac{4R \times 6R}{4R + 6R} \checkmark \\ R = 2 \Omega \checkmark \end{array} \tag{3} \\ \hline 3.2 \qquad \begin{array}{c} \mathbf{POSITIVE \ MARKING \ FROM \ QUESTION \ 3.1} \\ \\ \mathbf{OPTION 1} \\ V_{4R} = IR_{4R} \\ = 1,8(4)(2) \checkmark \\ = 14,4 V \\ I_{6R} = \frac{14,4}{12} \checkmark \\ = 1,2 A \\ V_{2R} = IR \checkmark \\ = 1,2(4) \checkmark \\ = 4,8 V \checkmark \\ \\ \mathbf{OPTION 2} \\ V_{4R} = IR_{4R} \\ = 1,8(4)(2) \checkmark \\ = 14,4 V \\ I_T = \frac{V}{R_T} \\ I_T = \frac{14,4}{4,8} \\ = 3 A \\ I_{2R} = 3 - 1,8 \checkmark \\ = 1,2 A \\ \\ V_{2R} = IR \checkmark \end{array}$			
OPTION 2 $R = \frac{R_1 R_2}{R_1 + R_2} \checkmark$ $R = \frac{4R \times 6R}{4R + 6R} \checkmark$ $R = 2 \Omega \checkmark$ 3.2 POSITIVE MARKING FROM QUESTION 3.1 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor$ $I_{6R} = \frac{14,4}{12} \checkmark$ $= 1,2 A$ $V_{2R} = IR \checkmark$ $= 1,2(4) \checkmark$ $= 4,8 \lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor$ $I_T = \frac{V}{R_T}$ $I_T = \frac{14,4}{4,8}$ $= 3 A$ $I_{2R} = 3 - 1,8 \checkmark$ $= 1,2 A$ $V_{2R} = IR \checkmark$			
$R = \frac{R_1 R_2}{R_1 + R_2} \checkmark$ $R = \frac{4R \times 6R}{4R + 6R} \checkmark$ $R = 2 \Omega \checkmark$ 3.2 POSITIVE MARKING FROM QUESTION 3.1 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor$ $I_{6R} = \frac{14,4}{12} \checkmark$ $= 1,2 \land A$ $V_{2R} = IR \checkmark$ $= 1,2(4) \checkmark$ $= 4,8 \lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor V$ $I_T = \frac{V}{R_T}$ $I_T = \frac{14,4}{4,8}$ $= 3 \land A$ $I_{2R} = 3 - 1,8 \checkmark$ $= 1,2 \land A$ $V_{2R} = IR \checkmark$			
$R = \frac{4R \times 6R}{4R + 6R} \checkmark$ $R = 2 \Omega \checkmark$ 3.2 POSITIVE MARKING FROM QUESTION 3.1 $V_{4R} = R_{4R} $ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor V$ $I_{6R} = \frac{14,4}{12} \checkmark$ $= 1,2 \land A$ $V_{2R} = R \lor \checkmark$ $= 1,2(4) \checkmark$ $= 4,8 \lor \checkmark$ OPTION 2 $V_{4R} = R_{4R} $ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor V$ $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ $= 3 \land A$ $I_{2R} = 3 - 1,8 \checkmark$ $= 1,2 \land A$ $V_{2R} = R \lor \checkmark$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R = \frac{R_1 R_2}{R_1 + R_2} \checkmark$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R = \frac{4R \times 6R}{4R + 6R} \checkmark$	
3.2 POSITIVE MARKING FROM QUESTION 3.1 OPTION 1 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor V$ $I_{6R} = \frac{14,4}{12} \checkmark$ $= 1,2 \land A$ $V_{2R} = IR \checkmark$ $= 1,2(4) \checkmark$ $= 4,8 \lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ $= 1,8(4)(2) \checkmark$ $= 14,4 \lor V$ $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ $= 3 \land A$ $I_{2R} = 3 - 1,8 \checkmark$ $= 1,2 \land A$ $V_{2R} = IR \checkmark$			(3)
OPTION 1 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_{6R} = \frac{14,4}{12} \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$ = 1,2(4) \checkmark = 4,8 \lor \checkmark OPTION 2 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$	3.2		'
= 1,8(4)(2) \checkmark = 14,4 \lor $I_{6R} = \frac{14,4}{12} \checkmark$ = 1,2 \land $\lor_{2R} = IR \checkmark$ = 1,2(4) \checkmark = 4,8 \lor \checkmark OPTION 2 $\lor_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_T = \frac{V}{R_T}$ $I_T = \frac{14,4}{4,8}$ = 3 \land $I_{2R} = 3 - 1,8 \checkmark= 1,2 \land\lor_{2R} = IR \checkmark$			
= 14,4 V $I_{6R} = \frac{14,4}{12} \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$ = 1,2(4) \checkmark = 4,8 V \checkmark OPTION 2 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 V $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		$V_{4R} = IR_{4R}$	
= 14,4 V $I_{6R} = \frac{14,4}{12} \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$ = 1,2(4) \checkmark = 4,8 V \checkmark OPTION 2 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 V $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		= 1,8(4)(2) √	
= 1,2 A $V_{2R} = IR \checkmark$ = 1,2(4) \checkmark = 4,8 $\lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_T = \frac{V}{R_T}$ $I_T = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		= 14,4 V	
$V_{2R} = IR \checkmark$ = 1,2(4) \checkmark = 4,8 $\lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$			
= 1,2(4) \checkmark = 4,8 $\lor \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_T = \frac{V}{R_T}$ $I_T = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		= 1,2 A	
$= 4.8 \text{ V} \checkmark$ OPTION 2 $V_{4R} = IR_{4R}$ $= 1.8(4)(2) \checkmark$ $= 14.4 \text{ V}$ $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14.4}{4.8}$ $= 3 \text{ A}$ $I_{2R} = 3 - 1.8 \checkmark$ $= 1.2 \text{ A}$ $V_{2R} = IR \checkmark$		$V_{2R} = IR \checkmark$	
OPTION 2 $V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		= 1,2(4) √	
$V_{4R} = IR_{4R}$ = 1,8(4)(2) \checkmark = 14,4 \lor $I_{T} = \frac{V}{R_{T}}$ $I_{T} = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		= 4,8 V ✓	
= 1,8(4)(2) \checkmark = 14,4 V $I_T = \frac{V}{R_T}$ $I_T = \frac{14,4}{4,8}$ = 3 A $I_{2R} = 3 - 1,8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		OPTION 2	
		$V_{4R} = IR_{4R}$	
		= 1,8(4)(2) √	
$I_T = \frac{14.4}{4.8}$ = 3 A $I_{2R} = 3 - 1.8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		= 14,4 V	
$I_T = \frac{14.4}{4.8}$ = 3 A $I_{2R} = 3 - 1.8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		$I_T = \frac{V}{V}$	
= 3 A $I_{2R} = 3 - 1.8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		R_T	
= 3 A $I_{2R} = 3 - 1.8 \checkmark$ = 1,2 A $V_{2R} = IR \checkmark$		$I_T = \frac{14.4}{4.8}$	
= 1,2 A V _{2R} = IR ✓			
= 1,2 A V _{2R} = IR ✓		$I_{2R} = 3 - 1.8 \checkmark$	
		lnnar	
= 1,2(4) √		$V_{2R} = IR \checkmark$	
		= 1,2(4) √	

	= 4,8 V 🗸	
	$V_{4R} = IR_{4R}$	
	= 1,8(4)(2)	
	= 14,4 V	
	R: 2R: 3Rn 1:2:3	
	$V_R: V_{2R}: V_{3R}$	
	1 : 2 : 3 √	
	1.2.3	
	$V_{2R} = \frac{2}{6} x 14.4 \checkmark$	
	$V_{2R} = 4.8 \text{ V} \checkmark$	
		(5)
	= 4,8 V ✓	(5)
3.3	POSITIVE MARKING FROM 3.1 AND 3.2	
	OPTION 1	
	$W = I^2 R\Delta t \checkmark$	
	$= 1.8^{2}(8)(120) \checkmark$	
	= 1036,8 J ✓	
	OPTION 2	
	W = VI∆t ✓	
	= (14,4)(1,8)(120) √	
	= 3110,4 J ✓	
	OPTION 3	
	$W2 = \frac{V^2 \Delta t}{R} \checkmark$	
	$W = \frac{(14.4)^2 (120)}{8} \checkmark$	(3)
	W = 3110,4 J ✓	
3.4	Decrease √	(1)
3.5	The ammeter has such a <u>low resistance</u> ✓	
	It short circuits the parallel part and <u>all current flows through the</u>	
	ammeter. √	
	OR	
	The ammeter short circuits the resistors ✓	(2)
	No current flows through resistor 2R √	
	QUESTION 4	[14]
	QUEUTION T	

4.1.1	The inverse of the resistance OP 1/5	9 /	(1)
201 XXXXX	The inverse of the resistance OR 1/R√ OPTION 1/ OPSIE 1 OPTION 2/ OPSIE 2		(')
4.1.2	Gradient/ Gradient = $\frac{\Delta I}{\Delta V}$	$R = \frac{V}{I} \checkmark$	
	Gradient = $\frac{\Delta V}{3,0-0,6}$ \checkmark	1	
	Gradient/ Gradient = $\frac{1}{3}$	R = 3 Ω ✓	
	Gradient/ Gradient = $\frac{1}{R} = \frac{1}{3}$		
4.2.1	R = 3 Ω \checkmark OPTION 1/ OPSIE 1	OPTION 2/ OPSIE 2	(3)
100000000000000000000000000000000000000	$R_1 = R_2$		
	$I_1 = I_2 = 1 \text{ A } \checkmark$	$R = \frac{V}{I}$	
	$I = I_1 + I_2 \checkmark$	$R = 6 + 6 = 12 \Omega$	
	I = 1 + 1 = 2 A √	$12 = \frac{V_p}{1}$	
		1 V _p = 12 V	
		$12 = \frac{12}{1}$	
		I = 1 A ✓	
		= ₁ + ₂ √	
		I = 1 + 1 = 2 A √	
4.2.2	$R = \frac{V}{I} \checkmark$		
	$12 = \frac{V_p}{1} \checkmark$		
	$V_p = 12 \text{ V}$		
	$V = V_s + V_p$		
	15 = V _s + 12 √		
	V _s = 3 V		
	$R = \frac{V}{I}$		
	$R = \frac{1}{3} \checkmark$		
	$R = 1.5 \Omega \checkmark$		
4.3	Increase, √ the total resistance decr	eases and the current	(2)
	increases. √		(2)

5.6	OPTION 1/OPSIE 1	
0.0		
	$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \frac{1}{Rp} = \frac{1}{R1} + \frac{1}{R2} \checkmark$	
	Mar. 250 1491	
	$\frac{1}{R_p} = \frac{1}{4} + \frac{1}{6R_p} = \frac{1}{4} + \frac{1}{6} \checkmark \checkmark$	
	$R_{\rm p} = 2.4 \Omega$	
	$R_{p} = 2,40$ $R_{tot} = \frac{V}{I}$	
	$R_{tot} = \frac{V}{I}$	
	$R_{tot} = \frac{6}{0.8} \checkmark$	
	$R_{tot} = \frac{6}{0.8}$	
	$R_{tot} = 7.5 \Omega$	
	\	
	$R = R_{tot} - R_{par}$ $= 7.5 - 2.4 \checkmark$	
	$=5,1 \Omega \checkmark$	
	OPTION 2/OPSIE 2 V _{tot} = 6 V	
	$V_R = V_{tot} - V_2$ $= 6 - 1.9 \checkmark$	
	= 4,1 V 🗸	
	$R = \frac{V}{I}$	
	$R = \frac{4.1}{0.8} \checkmark R_{tot} = \frac{6}{0.8}$	
	R = 5,1 Ω ✓	(5)
5.7	V _R = 6 – 2,4 = 3,6 V	(5)
	$W = \frac{V^2 \Delta t}{R} \checkmark$	
	$W = \frac{V^2 \Delta t}{R} \checkmark$ $W = (3,6)(1)(10) W = \frac{(3,6)^2 10}{2,4} \checkmark$	
	W = 36 J ✓	(0)
		(3) [16]
	QUESTION 6	
6.1	$P = \frac{W}{\Lambda t} \checkmark$	
	$2000 \checkmark = \frac{W}{(5 \times 3600)} \checkmark$	
	$W = 36 \times 10^6 J \checkmark$	
6.2	P = 2000 W = 2 kW	(4)
0.2	F - 2000 VV - 2 KVV	

Δt = 5 hr x 30 days = 150 hours	
Cost = Power x Time X Price per unit	
= 2 x 150 x 80 ✓	
= 24000 cents = R240 ✓	
	(2)
	[6]

ELEC	TROMAGNETISM	
SOLU	TIONS	
QUES	TION 4	
		[11]
4.1	The magnitude of the induced emf across the ends of a conductor is directly	
	proportional to the rate of change in the magnetic flux linkage with the	
	conductor ✓	(2)
4.2	$\varepsilon = -N \frac{\Delta \Phi}{\Delta t} \checkmark$	
	✓	
	$3 = -200 \times 1.8 \times \Delta \Phi$	
	3	
	$\Delta \Phi = -\frac{3}{200 \times 1.8}$	
	$\Delta \Phi = -0.0083 \text{ Wb or } -8.33 \times 10^{-3} \text{ Wb} \checkmark$	
		(4)
4.3	$\Delta \Phi = \Phi_{\rm f} - \Phi_{\rm i}$	
	$\Delta \Phi = BA\cos\theta_f - BA\cos\theta_i$ any of the two	
	✓	
	$-0.0083 = \underbrace{(2.4)(4.86 \times 10^{-3})\cos 90^{0} - (2.4)(4.86 \times 10^{-3})\cos \theta_{i}}$	
	$\theta_{\rm i} = 44,64^{\rm 0}$	
	$\Delta\theta = 90^{0} - 44,64^{0}$ \checkmark	
	$=45,36^{\circ}$	(5)
		[11]
QUES	TION 5	
5.1	The magnitude of the induced emf across the ends of a conductor is directly proportional to the rate of change in the magnetic flux linkage with the conductor.	(2)
5.2	$\varepsilon = -N \frac{\Delta \Phi}{\Delta t} \qquad \checkmark$	
	Δt v	(3)

	$7 = -400 \frac{\Delta \Phi}{0,08}$	
	$\Delta \Phi = -\frac{7 \times 0.08}{400}$	
	$\Delta \Phi = -0.0014 \mathrm{Wb}$	
5.3	$\Delta \Phi = \Phi_{\rm f} - \Phi_{\rm i}$	
	$\Delta \Phi = BA\cos 45^{\circ} - BA\cos 0^{\circ}$ any of the two	
	✓ ✓	
	$-0.0014 = B \times 0.03^{2} \times 0.707 - B \times 0.03^{2} \times 1$	
	$-0.0014 = -2,637 \times 10^{-4} B$	
	$B = \frac{0,0014}{2,637 \times 10^{-4}}$	
	B = 5,31 T ✓	(4)
5.4	INCREASE ✓	(1)
5.5	Emf is inversely proportional to time. ✓	(1)
5.6	SOUTH. ✓	(1)
5.7	FROM B TO A. ✓	(1)
		[13]
QUES	STION 6	
6.1	$\Phi = BA\cos\theta\checkmark$	
	$A = \pi r^2$	
	$=\pi\times0,04^2$	
	$= 0.005026 \text{ m}^2$	
	$\Phi = 3.2 \times 0.005026 \times \cos^{0} \checkmark$	
	= 0,0161 Wb ✓	(3)
6.2	$\epsilon = -N \frac{\Delta \Phi}{\Delta t}$	

	$\epsilon = -N\frac{\Delta BA\cos\theta}{\Delta t}$ $\epsilon = -N\left(\frac{BA\cos\theta_f - BA\cos\theta_i}{\Delta t}\right)$ $2.8 = -250\left(\frac{3.2\times0.005026\cos25^0 - 3.2\times0.005026\cos0^0}{\Delta t}\right)$ $2.8 = -250\left(\frac{-0.00150687}{\Delta t}\right)$ $\Delta t = \frac{250\times0.00150687}{2.8}$	(4)
	$\Delta t = 0.135 \mathrm{s} \checkmark$	
6.3	, and the second	
0.3	Faraday's law of electromagnetic induction ✓ The magnitude of the induced emf across the ends of a conductor is directly proportional to the rate of change in the magnetic flux linkage with the conductor. ✓✓	(3)
6.4.1	SMALLER THAN. ✓	(1)
6.4.2	If $s = r$, $s^2 < \pi r^2$	
	∴ area of square < area of circle ✓	
	Emf is directly proportional to area. ✓	
	Therefore the emf will be smaller.	(2)
		[12]
1	1	1

QUAN	TATIT	IVE ASPECT OF CHEMICAL CHANGE	
SOLU	TIONS		
QUE	STION	1 – MULTIPLE CHOICE QUESTIONS	
1.1	B√√		(2)
1.2	D√√		(2)
1.3	B√√		(2)
1.4	A√√		(2)
			[8]
		QUESTION 1 - CONCENTRATION	
1.1.1		Number of moles of solute per unit volume of solvent. ✓✓	(2)
1.1.2		$C = \frac{m}{MV} \checkmark = \frac{8}{(40)\sqrt{(0.25)}} = 0.80 \text{ mol·dm}^{-3}$	(4)
1.2.		$n(Na_3N) = \frac{55}{83} = 0,662 \text{ mol}$ $n(Na_3N) : N_2$ $2 : 1 \checkmark$ $n(N_2) = \frac{1}{2}n(Na_2N)$ $= \frac{1}{2}(0,662) \text{ ratio}$ $= 0,331 \text{ mol}$ $n = V/V_m\checkmark$ $0,331 = V/22,4\checkmark$ $V = 7,42 \text{ dm}^3\checkmark$ QUESTION 2—EMPIRICAL FORMULA	(5) [11]
2.1.1		The simplest whole number ratio of atoms in a compound or molecules $\checkmark\checkmark$	(2)
2.1.2		$n(C) = \frac{m}{M} \checkmark = \frac{54,55}{12} = 4,55 \text{ mol } \checkmark$ $n(H) = \frac{9,09}{1} = 9,01 \text{ mol } \checkmark$ $n(O) = \frac{36,36}{16} = 2,27 \text{ mol } \checkmark$ $C : H : O$ $\frac{4,55}{2,27} : \frac{9,01}{2,27} : \frac{2,27}{2,27\checkmark}$ $2 : 4 : 1$ $C_2H_4O \checkmark$ Empirical formula mass $(C_2H_4O) = 2(12) + 4(1) + 1(16)$	(6)
2.1.3		= 44	
		Factor = $\frac{88}{44}$ = 2 \checkmark C ₄ H ₈ O ₂ \checkmark	(2)

2.2.1	%H in H ₂ O = $\frac{2}{18}$ × 100 ✓	
	= 11,11%	
	$m(H)$ in $H_2O = 11,11\%$ of 19,35 g	
	= 2,15 q \	
	2,10 9 4	
	% of C in $CO_2 = \frac{12}{44} \times 100$	
	= 27,27% √	
	$m(C)$ in $CO_2 = 27,27$ of 47,1 g	
	= 12,84 g − 12,85 g ✓	
	$n(H) = \frac{m}{M} = \frac{2,15}{1} = 2,15 \text{ mol } \checkmark$	
	$n(C) = \frac{m}{M} = \frac{12,84}{12} = 1,07 \text{ mol } \checkmark$	
	n(C): n(H)	
	1,07 : 2,15	
	1 : 2 ✓	(0)
	Empirical formular: CH₂ ✓	(8)
2.2.2	POSITIVE MARKING FROM 2.2.1	
	$m(CH_2) = 1(12) + 2(1) = 14 \text{ g.mol}^{-1}$	
	M(true formula)/M(empirical formula)	
	$\left \frac{28}{14} = 2 \checkmark \right $	
	C ₂ H ₄	(2)
	$\underline{x} = 2$ and $\underline{y} = 4$	(2)
		[20]
	QUESTION 3 - COMPLEX STOCHIOMETRICAL CALCULATIONS	
3.1.	$n(CaO) = \frac{m}{M} \checkmark = \frac{11,76}{56} \checkmark = 0,21 \text{ mol}$	
	n(CaO₃) = n(CaO) = 0,21 mol √ (ratio)	
	$m(CaCO_3) = nM$	
	= (0,21) <u>(100)</u> \(
	= 21 g	
	% purity = $\frac{m(pure\ compound}{m(impure\ sample)} \times 100$	
	$80 \sqrt{=\frac{21}{m(impure\ sample}} \times 100$	
	m(impure CaCO ₃) = $\frac{(21)(100)}{80}$ ✓	
	= 26, 25 g ✓	(6)
3.2.1	$n(K) = \frac{m}{M} \checkmark$	
	$=\frac{7,62}{39}$	
	= 0, 195 mol ✓	(3)

3.2.2	$n(S) = \frac{m}{M}$ = $\frac{4,34}{32}$ \(\square = 0,136 \text{ mol} \) $n(K)$ \(n(S)	
	$=\frac{0.195}{2}$ $=\frac{0.136}{1}$ \checkmark	
	= 0,0975 = 0,136 ✓	
	Therefore potassium (K) is the limiting agent, ✓ since 0,0975	(5)
3.2.3	< 0,136 √	
0.2.0	$n(K_2S) = \frac{1}{2}(0,195) \checkmark$ = 0,0975 mol	
	$m(K_2S) = nM$	
	= (0,0975)(110) √	(3)
	= 10,725 g ✓	(0)
3.3.1	Magnesium, ✓ the mass of magnesium after 3 minutes ✓/ at	(2)
3.3.2	the end of reaction was zero $C = \frac{n}{v} \checkmark$	(2)
0.0.2		
	$0.36 = \frac{n}{0.5} \checkmark$ $n = 0.18 \text{ mol}_{\searrow}$	
	$n = \frac{m}{M} \checkmark$	
	$=\frac{1,2}{24}\checkmark$	
	= 0,05 mol	
	n(Mg) : n(HCl)	
	1 : 2	
	$n(HC\ell) = 2n(Mg) \checkmark ratio$ = 2(0,05)	
	= 0,1 mol	
	n(HC ℓ) left in the test tube = $0.18 - \checkmark 0.1$	
	= 0,08 mol ✓	(5)
3.4	$n(KI) = \frac{n}{M} \checkmark = \frac{0.75}{166} \checkmark$	
	= 0,005 mol	
	KI : Pbl ₂ 2 : 1	
	$n(PbI_2) = \frac{1}{2}n(KI)$	
	$=\frac{1}{2}(0,005)$ \checkmark ratio	
	= 0,0025 mol	
	$M(PbI_2) = nM$	
	= (0,0025)(461) ✓	

	=1,15 g	
	$\%$ yield = $\frac{actual\ mass}{theoritical\ mass} \times 100$	
	$= \frac{0.583}{1.15} \times 100 \checkmark$	
	1,13	(6)
	50,70 % ✓	
3.5.1	H₂SO₄ ✓. It is completely used up ✓	(2)
3.5.2		
	=3 g √	
	$n(Zn) = \frac{m}{M} = \frac{3}{65} \checkmark = 0,046 \text{ mol}$	
	$n(H_2SO_4) = n(Zn) $ \sqrt{ratio}	
	= 0,046 mol	
	$C = \frac{n}{v} \checkmark = \frac{0.046}{0.05} \checkmark = 0.92 \text{ mol·dm}^{-3} \checkmark$	(6)
3.6.1	$2H_2O_2 \checkmark \rightarrow 2H_2O + O_2 \checkmark$	(2)
3.6.2	n(O₂) = V/V _m ✓	
	$= 600 \times 10^{-3}/24,5 \checkmark$	
	= 0,025 mol.	
	H ₂ O ₂ : O ₂	
	2 : 1	
	$n(H_2O_2) = \frac{1}{2}(O_2)$	
	$=\frac{1}{2}(0,025)$ \checkmark ratio	
	= 0,05 mol	
	$n(H_2O_2) = \frac{m}{M}$	
	$0.05 = \frac{m}{34} \checkmark$	
	m = 1,70 g ✓	(5)
		[33]

IDEAL GASES & THERMAL PROPERTIES

SOLUTIONS TO ACTIVITIES

QUESTION 1

1.1 D√√ 1.2 B√√

(2)

1.3 C\\ (2) (2)

1.4 C√√ (2)

1.5 A√√ (2)

1.6 $D\sqrt{\ }$ (2) [12]

QUESTION 2

2.1 What is the relationship between pressure and volume? ✓✓

(2)

2.2 Independent: Pressure ✓

Dependent: volume ✓

(2)

2.3 Allow temperature to stabilise as the control variable. √√ (2)

2.4 (i) 0,03 ✓

(ii) 0,04 √

(iii) 0,05 √

(4)

(iv) 0,07√

2.5

Criteria		
Correct shape (straight line	✓	
Both labels	√	
All points correct	✓ ✓ (two points: ONE mark)	
Extrapolated to origin	✓	

(5)

2.6 Volume is inversely proportional to the pressure provided the temperature remains constant $\checkmark\checkmark$

(2)

[17]

QUESTION 3

pV = nRT√ $(105000)(0,02)\Box = n(8.31)(293) \checkmark$ n = 0.86 mol $n = m/M \checkmark$ $0.86 = m/44 \checkmark$ (6) $m = 37,84g \checkmark$ **QUESTION 4** 4.1.1 Pα 1/V OR vα 1/P 🗸 (1) 4.1.2 Boyle's law √ (1) 4.1.3 As the volume of the container decreases, the number of collisions (2) per unit area √on the walls of the container increases √ 4.2 Mass √ Temperature √ • Wait a while after increasing the pressure before taking a volume reading. √ • Same mass of gas is trapped (in tube) /ensure that there is no leakage of gas √ (4) 4.3 30 cm³ √√ (2) 4.4 $P_1V_1 = P_2V_2 \checkmark$ $(120)(30) \checkmark = P_2(5) \checkmark$ $P_2 = 720 \text{ kPa } \checkmark$ (4) 4.5 High pressures √ (2) Low temperatures ✓ [16] **QUESTION 5** 5.1 (1) Boyle's law √ 5.2 If the pressure of and enclosed gas increases the volume will decrease at constant temperature. √√

45

(2)

The pressure of an enclosed gas is inversely proportional to the

volume it occupies if the temperature is kept constant. $\checkmark\checkmark$

OR

5.3

Graph of volume versus pressure

Criteria	
Correct shape (straight line	✓
Both labels	√
Atleast 6 points correct	✓

(3)

5.4
$$P_1V_1 = P_2V_2 \checkmark$$

 $70(174) = (300)V_2 \checkmark$

5.8

$$V_2 = 40.6 \text{ dm}^3 \checkmark$$
 (3)

5.5 At high pressure, a gas starts to deviate from ideal gas behaviour \checkmark because the volume of the molecules of a gas and the intermolecular forces start to influence the measured value, causing it to be greater than the theoretical value calculated / Forces of repulsion between the gas particles prevents them from moving closer \checkmark

(2)

- 5.6 Lower than \checkmark (1)
- 5.7 Temperature is an indication of the average kinetic energy of the molecules of a gas. If the temperature of a gas decreases, the molecules move slower and closer together √up to a point where the gas will start to condense ✓ and not behave like an ideal gas.

OR

(2)

The intermolecular forces of attraction become significant then the gas condenses. $\sqrt{\ }$

PV = nRT
$$\checkmark$$

(70 000)(174 x 10⁻³) \checkmark = n(8,31)(293) \checkmark
n = 5 moles \checkmark

(4)

[18]

QUESTION 6

- 6.1 Temperature ✓
 Number of moles of gas ✓
 (2)
- 6.2 Boyle's law (1)
- 6.3 Ensure that there is no gas leakage ✓
 OR
 Wait a minute after changing pressure before you take a reading to (1)
 - ensure that temperature is stabilised √
- 6.4 Pressure is directly proportional to the inverse of volume $\checkmark\checkmark$ (2)
- $6.5 m = \frac{p_2 p_1}{\frac{1}{V_2} \frac{1}{V_1}} \checkmark$

$$m = \frac{250000 - 100000}{60000 - 24000} \checkmark$$

$$m = 4.17 \, \text{J} \, \checkmark \tag{3}$$

- 6.6 gradient= nRT \checkmark pV = nRT 4.17 \square = n(8.31)(298) \checkmark 4.17 \checkmark = n(8.31)(298) \checkmark n = 0.00168 mol \checkmark n = 0.00168 mol \checkmark (4)
 - [13]

ENE	RGY AI	ND CHANGE		
SOL	UTIONS	6		
	QUES	TION 1-MULTIPLE CHOICE QU	ESTIONS MEMO	
1.1	B√√			(2)
1.2	B√√			(2)
1.3	C√√			(2)
1.4	A√√			(2)
1.5	C√√			(2)
				[10]
		2 MEMO		1.5
2.1	Exothe			(2)
		ints at higher energy than produ	cts / ∆H < 0 ✓	
	2.2.1	A√		(1)
	2.2.2	C - B√		(1)
	2.2.3	A-C√		(1)
2.3	Is a ch	emical substance used to speed	I up a chemical reaction. √√	(2)
2.4	It lower	rs/decreases the activation ener	gy. √	(1)
				[8]
QUE	ESTION	3 MEMO		
3.1	The second		ation to take place //	(2)
3.2	rne mi	nimum energy needed for a rea	Marking guidelines:	(2)
5.2	-	x	Reactants and products correctly	\dashv \mid
	R Ea		labelled ✓	
	rgy (k	/ EA	Activated complex √	\dashv \mid
	Potential energy HAT P	↑	Correct shape as shown √	\dashv \mid
		₽ P	ΔH correctly indicated. ✓	\dashv \mid
	₈ [EA correctly indicated. ✓	(5)
		Reaction coordinate		
	3.3.1	- 241,8 kJ·mol ⁻¹ √		(1)
	3.3.2	1 611,8 kJ·mol ⁻¹ √√		(2)
				[10]
1 1		TION 4 MEMO		
4.1			nergy than products. /Products at lower	(2)
		than reactants. /Energy is relea	ised. /ΔH < 0. √	(2)
	4.2.1	A√		(1)
	4.2.2	A - B√		(1)
	4.2.3	B - C√		(1)

4.2	1 mol Ba(OH)₂ releases: 116 kJ . ✓ 0,18 mol Ba(OH)₂ releases: 0,18 x 116√ = 20,88 KJ√	
	(Accept answers in range: 20,3 – 20,88 KJ)	
	TOTION E MEMO	[8]
	ESTION 5 MEMO	(2)
5.1	Is the unstable transition state from reactants to products. 🗸 🗸	(2)
5.2	Exothermic reaction. ✓ More energy released than absorbed/ enthalpy change negative ✓	is (2)
5.3	reactants products	(3)
5		
	MARKING CRITERIA	$\neg $
	Activation energy E _a correct position and labelled	$\exists $
	Heat of reaction H correct position and labelled √	
	Products have lower energy than reactants	
		[7]
	QUESTION 6	
6.1	the energy absorbed or released per mole in a chemical reaction. ✓✓	(2)
6.2	More energy is released than absorbed OR energy of products is less than	(1)
	energy of reactants OR ΔH < 0 OR ΔH is negative√	
6.3	ΔH = Hproducts- Hreactants √	
	= 183,3 − 400√	(2)
	= -216,7 kJ·mol ⁻¹ √	(3)

ACI	DS AND	BASES	
SOL	UTION	S	
QUE	STION	1: MULTIPLE CHOICES	
1.1	В	√ √	(2)
1.2	Α	√√	(2)
1.3	С	√ √ 10001	(2)
1.4	С	√ √ 1000	(2)
			[14]
QUE	STION	2	
2.1	NH ₄ ⁺ +	HCO_3 \rightarrow $H_2CO_3 + NH_3 \checkmark \checkmark$	(3)
2.2	A pair o	of compounds or ions that differ by the presence of one H⁺ ion. ✓✓	(2)
2.3	HCO ₃	· ✓ and NH₃✓	(2)
2.4			
	2.4.1	Ampholyte ✓	(1)
	2.4.2	$HSO_4^- + H_2O \checkmark \rightleftharpoons SO^{2-}_4 + H_3O^+ \checkmark$	
		$HSO_4^- + H_2O \checkmark \Rightarrow H_2SO_4 + OH^- \checkmark$	(4)
			[12]
	STION	3	
3.1			
	3.1.1	A base is proton acceptor✓✓	(2)
	3.1.2	$H_2SO_4(aq) + 2NaOH (aq) \checkmark \rightarrow Na_2SO_4 (aq) + 2H_2O (\ell) \checkmark \checkmark$	(3)
	3.1.3	Sodium sulphate✓✓	(2)
	3.1.4	HSO ₄ ⁻ ✓ ✓	(2)
	3.1.5	HSO ₄ ⁻ and H ₂ SO ₄ ✓ ✓ H ₂ O and H ₃ O ⁺ ✓ ✓	(4)
3.2			
	3.2.1	OPTION 1 $c = \frac{m}{MV} \checkmark = \frac{6 \checkmark}{(40)(0.5) \checkmark} = 0.3 \ mol. \ dm^{-3} \checkmark$	
		OPTION 2	
		$n = \frac{m}{M} = \frac{6}{40} \checkmark = 0.15 \ mol$	
		$c = \frac{n}{v} \checkmark = \frac{0.15}{0.5} \checkmark = 0.3 \text{ mol. } dm^{-3}$	
		$c = \frac{1}{v} = \frac{1}{0.5} = 0.3 \text{ mot. am}$	
			(4)
	3.2.2	$n(NaOH) = \frac{m}{M} = \frac{6}{40} \checkmark = 0.15 \ mol$	
		$n(NaOH) = \frac{1}{M} = \frac{1}{40} $ = 0.15 mot	
		n(NaOH):n(NH4Cl)	
		1 : 1 🗸	
		n(NaOH) = n(NH4Cl) = 0.15 mol	
		$n = \frac{m}{M}$ $0.15 = \frac{m}{53.5} \checkmark$ $\therefore m(NH4CL) = 80.25g$	
		$\%purity = \frac{mass\ pure}{mass\ impure} X100 = \frac{8.025}{10} X100 = 80.25\% \checkmark$	
		$\frac{75purity - mass impure}{10} 10$	

	1	T	
		percentage impurities in the NH4Cℓ =100 – ✓80.25 = 19,75%✓	(6)
			[23]
QUE	STION	4	[ZO]
4.1			
	4.1.1	A	(1)
	4.1.2	B	(1)
	4.1.3	C√	(1)
4.2			(1)
	4.2.1	$HC\ell(g) + H_2O(\ell) \checkmark \rightarrow H_3O^+(aq) + C\ell^-(aq) \checkmark \checkmark$	(3)
4.3		$c = \frac{m}{MV} \checkmark \qquad 0.12 \checkmark = \frac{m}{(138)(0.2) \checkmark} = 3.312 g \checkmark$	
			(4)
4.4			
	4.4.1	Organic dye with a specific colour in acid and base✓	(1)
	4.4.2	$n(CH_3COOH) = C.V\checkmark = (0.12)(0.0251) = 0.003012mol$	
		$n(CH_3COOH): n(K_2CO_3)$	
		2 : 1√	
		$n(K_2CO_3) = 0.001506 \ mol$	
		$c = \frac{n}{v} : 0.12 = \frac{0.001506}{V} \checkmark \qquad V(K_2 CO_3) = 0.01255 dm^3 \checkmark$	(4)
4.5			
	4.5.1	$2HC\ell(aq) + Mg(s) \to MgC\ell_2(aq) + H_2(g)$	(4)
	4.5.2	$MgO + H_2O \rightarrow Mg^{2+} + OH^{-}$	(2)
4.6			
	4.6.1	Acid – sulphuric acid	(2)
		Base – sodium hydroxide	
	4.6.2	$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(\ell)$	(3)
			[26]
	1		

RED	OX REA	CTIONS			
SOLI	SOLUTIONS				
QUESTION 1					
1.1	A✓✓				
1.2	C√√				
1.3	D✓✓				
1.4	B√√				
1.5	C√√				
			[10]		
QUESTION 2					
2.1	Oxidation is the increase in oxidation numbers 🗸 🗸				
	2.2.1	Cu(s)✓✓	(2)		
	2.2.2	Silver ion ✓✓	(2)		
	2.2.3	$Cu \rightarrow Cu^{2+} + 2e^{-}$	(2)		
	2.2.4	$Cu \rightarrow Cu^{2+} + 2e^{-} \checkmark$			
		$Ag^+ + e^- \rightarrow Ag \checkmark$	(4)		
		Cu + 2Ag ⁺ ✓ → Cu ²⁺ + 2Ag✓ balancing			
2.3	Cu + 2AgNO3 → Cu(NO3)2 + 2Ag		(2)		
	+1 0				
	Ag+ oxidation number changes from +1 to 0, gaining electrons, reduction. ✓✓				
			[14]		
QUE	STION 3	}			
3.1	Reduction is a decrease in oxidation number ✓✓				
3.2	Mn is +7 / Mn ⁷⁺ ✓				
3.3	H ₂ S / S ²⁻ ✓				
3.4	The oxidation number of S increases ✓ from -2 to 0 ✓				
3.5	MnO ₄ ⁻ / Mn ⁺⁷ ✓				
3.6	$H_2S(g) \to S + 2H^+ + 2e^- \checkmark \checkmark$				

	$H_2S \rightarrow S$	+ 2H ⁺ + 2e ⁻		
3.7	MnO ₄ ⁻ +	$8H^+ + 5e^- \rightarrow 2Mn^{2+} + 4H_2O \checkmark$	(3)	
	2MnO ₄ -	+ $5H_2S + 6H^+ \rightarrow 2Mn^{2+} + 5S + 8H_2O$ \checkmark balancing \checkmark equation		
			[12]	
QUE	STION 4			
4.1	Cr ⁶⁺ (+6)		(2)	
4.2	Gain of electrons ✓			
4.3	Fe ²⁺ , ✓ the oxidation number increases from +2 to +3 ✓			
4.4	Cr ⁶⁺ /Cr ₂ O ₇ ²⁻ ✓✓			
4.5	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$			
4.6	$6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-} \checkmark$			
	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2$		(3)	
	$Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+} \checkmark \checkmark$			
			[13]	
QUE	STION 5			
5.1	A reaction in which <u>electrons are transferred</u> . ✓✓			
	5.2.1	+7✓	(1)	
	5.2.2	+2✓	(1)	
5.3	Reduction✓			
	The oxidation number decreased. ✓		(2)	
	OR			
	Electrons	s are gained.		
5.4	(Reaction) 1 ✓			
	Oxidation number (of S) decreases ✓ from +4 (in SO₂) to 0 (in S)			
5.5	H ₂ S → S	$H_2S \rightarrow S + 2H^+ + 2e^- \checkmark \checkmark$		
5.6	$H_2S^{\rightarrow} S$	+ 2H ⁺ + 2e ⁻ (x2)		
	SO ₂ + 4H	$H^{+} + 4e^{-} \rightarrow S + 2H_{2}O$	(4)	

2H ₂ S + SO ₂ → ✓ 3S + 2H ₂ O ✓	Bal. ✓	
		[14]

