

September 2023

CONTENTS

No	Topic	Page
1.	Reproduction	2-15
2.	HumanResponse to the Environment	15-29
3.	Plant Response to the Environment	30-35
4.	Endocrine System \& Homeostasis	36-44
5.	DNA: Code of Life	45-53
6.	Meiosis	53-62
7.	Genetics	63-77
8.	Evolution	78-105

PAPER 1 TOPICS:

TOPIC: REPRODUCTIVE STRATEGIES AND HUMAN REPRODUCTION

Question 1

1.1 C $\checkmark \checkmark$
$1.2 \mathrm{D} \checkmark \checkmark$
1.3 D $\checkmark \checkmark$

1.4 C $\checkmark \checkmark$
$1.5 \mathrm{~B} \checkmark \checkmark$
$1.6 \mathrm{D} \checkmark \checkmark$
$1.7 \mathrm{D} \checkmark \checkmark$
$1.8 \mathrm{D} \checkmark \checkmark$
$1.9 \mathrm{D} \checkmark \checkmark$
1.10 B $\checkmark \checkmark$
$1.11 B \vee \checkmark$
1.12 $B \vee \checkmark$

$$
(12 \times 2) \quad(24)
$$

BIOLOGICAL TERMS:

Question 2

	DESCRIPTION	TERM
2.1	The fusion of the sperm and egg outside the body	External fertilization \checkmark
2.2	The development of the embryo inside an incubated egg that is laid.	Internal fertilization \checkmark
2.3	The development of the embryo in the uterus and the young are born alive.	Vivipary \checkmark
2.4	The complete development of the embryo inside an egg in the female body.	Ovovivipary \checkmark
2.5	The development of the embryo in which very little energy is used and parental care is required.	Altricial \checkmark
2.6	The development of the embryo in which a lot of energy is used and the young are able to move directly after hatching.	Precocial \checkmark
2.7	Structure that provides nutrition to the embryo in the amniotic egg	Yolk Sac \checkmark
2.8	Fluid filled bag around embryo	Amnion \checkmark
2.9	Structure in the sperm cell that contains enzymes used toman penetrate the ovum	Acrosome \checkmark
2.10	The liquid that surrounds the human embryo	Amniotic fluid \checkmark

2.11		
		Blastula/blastocyst \checkmark
2.12	The lining of the uterus which is richly supplied with blood vessels	Endometrium \checkmark
2.13	Coiled tubular structure outside the testis that stores sperms	Epididymis \checkmark
2.14	The part of the female reproductive system in which fertilisation takes place	Fallopian tube/Oviduct \checkmark
2.15	The name given to the embryo after it reaches 12 weeks	Foetus \checkmark
2.16	The hormone produced by the pituitary which controls growth of the Graafian follicle	Follicle Stimulating Hormone \checkmark
2.17	Layer within the ovary that is responsible for formation of ova through meiosis	Germinal Epithelium \checkmark
2.18	Another name for the period of pregnancy	Gestation \checkmark
2.19	The process by which the embryo becomes attached to the uterine wall	Implantation \checkmark
2.20	The hormone which converts the ruptured follicle into a corpus luteum	Luteinizing Hormone \checkmark
2.21	Type of cell division by which sperms are produced	Meiosis \checkmark
2.22	The 28-day reproductive cycle in females involving changes in the ovary and uterus	Menstrual cycle \checkmark
2.23	Tearing away of the endometrium lining of the uterine wall, accompanied by the loss of blood	Menstruation \checkmark
2.24	The cell division by which the zygote becomes multicellular	Mitosis \checkmark
2.25	Production of ova by meiosis	Oogenesis \checkmark
2.26	The hormone which starts the preparation of the lining of the uterus for attachment of the fertilised ovum	Oestrogen \checkmark
2.27	Process by which an ovum is released from the ovary in humans	Ovulation \checkmark
2.28	Gland in the brain that produces FSH and LH	Pituitary/hypophysis \checkmark
2.29	Combination of foetal and maternal tissue responsible for gas exchange, nutrition and excretion	Placenta \checkmark
2.30	Hormone that maintains pregnancy	Progesterone \checkmark
2.31	The stage when sexual maturity is reached in males and females	\qquad nab Tn
2.32	Production of spermatozoa by meiosis	Spermatogenesis \checkmark
2.33	Hormone responsible for secondary sexual characteristics in males	Testosterone
2.34	A hollow, rope-like tube which attaches the embryo to the placenta	Umbilical cord \checkmark

2.35	The blood vessel that carries nitrogenous waste from the foetus to the placenta	Umbilical artery \checkmark
2.36	The blood vessel that carries oxygenated blood from the placenta to the foetus	Umbilical vein \checkmark
2.37	The structure where testosterone is produced	Testes \checkmark
2.38	Sac-like structure that contains testes	Scrotum \checkmark
2.39	A gland that lubricates end of penis	Cowper's gland \checkmark
2.40	Common tubefor sperm and urine	Urethra \checkmark
2.41	A gland thatproduces alkaline medium of semen	Prostate gland \checkmark
2.42	A gland that provides nutrients for the sperms	Seminal vesicle \checkmark
2.43	A tube that transfers sperms to the urethra	Vas deferens \checkmark
2.44	Finger-like projections that develop from the outer membrane of an embryo after implantation	Chorionic villi
2.45	The fluid that protects the developing foetus against mechanical injury	Amniotic fluid
2,46	The organelles found in large quantities in the neck region of a sperm cell	Mitochondria \checkmark
2,47	The type of development in birds in which the young is born fully developed and able to move and feed itself	Precocial development
2.48	The structure in the sperm that contains enzymes to dissolve the outer layer of the ovum	Acrosome ${ }^{\checkmark}$
2.49	A blood vessel that transports carbon dioxide from the foetus to the placenta	Umbilical artery ${ }^{\checkmark}$
	(49 x 1)	(49)

Question 3

3.1	Both A and B $\checkmark \checkmark$
3.2	B only $\checkmark \checkmark$
3.3	A only $\checkmark \checkmark$
3.4	None $\checkmark \checkmark$
3.5	A only $\checkmark \checkmark$
3.6	B only $\checkmark \checkmark$
3.7	A only $\checkmark \checkmark$
3.8	A only $\checkmark \checkmark$
3.9	B only $\checkmark \checkmark$
3.10	B only $\checkmark \checkmark$
3.11	Both A and B $\checkmark \checkmark$
3.12	None $\checkmark \checkmark$
3.13	None $\checkmark \checkmark$
3.14	Both A and B $\checkmark \checkmark$
3.15	B only $\checkmark \checkmark$
3.16	None $\checkmark \checkmark$
3.17	B only $\checkmark \checkmark$

3.18	Noner ${ }^{\text {a }}$		
3.19	Both and B		
3.20	B only		
		(20 x 2)	(40)

Question 4

4.1 Internal \checkmark fertilisation
4.2 -Sperm are deposited inside the female body thereby increasing the chances of fertilisation \checkmark

- Gametes/zygotes are inside the body \checkmark
therefore protected from the predators $\checkmark /$ environmental dangers
(Mark first TWO only)
4.3 - The eggs hatch inside the female's body \checkmark
- and the young are born live \checkmark

Question 5

5.1 - The (amniotic) egg is retained inside the mother's body \checkmark^{*}

- to protect the embryo from predators \checkmark
- The allantois \checkmark protects the embryo
- by removing waste products \checkmark
- The embryo is protected from shocks $\checkmark /$ sudden changes in temperature/dehydration by the:
- Chorion \checkmark
- Amnion \checkmark
- Amniotic fluid \checkmark inside the amniotic membrane
- Shell \checkmark louter covering
- Air pocket \checkmark

$$
\text { Compulsory } 1^{*}+\text { Any } 4
$$

Nourishment (N)

- The embryo receives nutrients \checkmark
- from the egg yolk \checkmark in the yolk sac
and from the albumen \checkmark

Question 6

6.1 Internal fertilisation \checkmark
6.2 Internal fertilisation

increases the chances of fertilisation
Ovovivipary $\checkmark /$ eggs retained inside the female's body
 offspring

- As eggs may be lost to predators \checkmark /environmental factors etc.
- Since there is external fertilisation \checkmark Any 1

Question 7

Question 8

8.1	External \checkmark fertilisation	(1)
8.2	-	To increase the chances of fertilisation \checkmark
	since the gametes may be lost/ \checkmark not reach one another due to predation $\checkmark /$ water currents	
	OR \quad To produce more zygotes $\checkmark /$ offspring	
-	since many will be lost \checkmark because they are preyed on $\checkmark /$ washed away/dry out	(3)
8.3	The embryos develop inside an egg, outside the female's body \checkmark	(1)
		(5)

Question 9

9.1 Cervix \checkmark
9.2 - The site of fertilisation \checkmark

- The site of zygote division \checkmark
- The transfer of the ovum/embryo to the uterus \checkmark
(Mark first ONE only)
9.3 -Diploid cells in the ovary undergo mitosis \checkmark
- to form numerous follicles \checkmark
- Under the influence of FSH \checkmark
- one cell undergoes meiosis \checkmark
- to form a (haploid) ovum

9.4 -It is a hollow organ \checkmark
- It has a muscular wall \checkmark
- It has a blood-rich lining $\checkmark /$ endometrium

Any
(Mark first ONE only)

- No oestrogen produced \checkmark
- and no progesterone produced \checkmark
- Therefore, the endometrium will not develop \checkmark^{*} to be shed during menstruation

Compulsory mark $\sqrt{ }{ }^{1}$ + Any 2

Question 10

10.1	Endometrium \checkmark	(1)
10.2	Fertilisation \checkmark	(1)
10.3	The (nucleus of the) sperm fuses with (the nucleus of) the ovum \downarrow	(1)
10.4	- Zygote divides by mitosis \checkmark - to form a (solid) ball of cells \checkmark - called the morula \checkmark	(4)
10.5	```It is muscular \(\checkmark\) to protect the foetus from mechanical injury \(\checkmark\) /to allow for parturition/birth - It is flexible \(\checkmark\) /can expand to accommodate the growing foetus \(\checkmark\) It is hollow \(\checkmark\) to accommodate the growing foetus \(\checkmark\) The thickened endometrium \(\checkmark\) allows for implantation \(\checkmark\) /survival of the embryo Mark first TWO only) Any (2 x 2)```	(4)
10.6	- \quad The secretion is alkaline \checkmark which - \quad neutralises the acidic conditions \checkmark of the vagina	(2)
		(13)

Question 11

11.1 (a) Vas deferens \checkmark /sperm duct
(b) Scrotum \checkmark
(c) Penis \checkmark
11.2 $\mathrm{D} \checkmark$ Epididymis \checkmark

G \checkmark Urethra \checkmark
E \checkmark Testis \checkmark
11.3 A $\sqrt{ }$

B \checkmark
E \checkmark

(Mark first TWO only)

QUESTION 12 ade d from Stanmore prysics.com

12.1 Vas deferens \checkmark
12.2 - Sperm storage \checkmark

- Sperm maturation \checkmark Any 1×1

(Mark first ONE only)

12.3 - Thesermen will not contain sperm \checkmark because

- theyare not transported \checkmark
- butwillicontain all other secretions of the accessory glands \checkmark
- / examples thereof
- the vasectomy occurred before \checkmark the accessory glands
12.4 - The temperature of the testes inside the body will be too high \checkmark
- No/abnormal sperm will be produced \checkmark
- The man will be infertile $\checkmark /$ not able to reproduce
12.5 - Under the influence of testosterone \checkmark
- diploid cells $\checkmark /$ germinal epithelial cells
- in the seminiferous tubules $\checkmark /$ testes
- undergo meiosis \checkmark
- to form haploid sperm cells \checkmark

QUESTION 13

13.1	Seminal vesicle \checkmark	(1)
13.2	Transports semen out of the body \checkmark	(1)
13.3	- Transports its secretions in ducts $\checkmark /$ secretion not directly in blood - Does not produce a hormone \checkmark	(2)
13.4	Spermatogenesis \checkmark	(1)
13.5	- The secretion is alkaline \checkmark to neutralise the acidity of the vagina $\checkmark /$ urethra - The secretion contains nutrients \checkmark for the sperm to generate energy for movement \checkmark - The secretion is a fluid $\checkmark /$ mucus which facilitates the movement of the sperm cells \checkmark Any (2 x 2)	(4)
		(9)

Question 14

$\left.\begin{array}{|l|l|l|l|}\hline 14.1 & \text { Acrosome } \checkmark & 1 \\ \hline 14.2 & \begin{array}{l}\text { - Fuses with the nucleus of the ovum } \checkmark \\ \text { - Carries genetic material } \checkmark\end{array} & 1 \\ \hline 14.3 & \begin{array}{l}\text { - Produce energy } \checkmark / \text { site for cellular respiration } \\ \text { - which is needed for movement } \checkmark \text { of the sperm }\end{array} & n \pi n\end{array}\right)$

15.1 - Must have regular menstrual cycles \checkmark

- They must not become pregnant \checkmark
- Diet \checkmark

Any (2x1)
(2)

(Mark first TWO only)

15.2 - 250 females per group were used $\checkmark / 1000$ females participated

- Measurement was done for 5 cycles \checkmark
(Mark first TWO only)
15.3 Older groups of women have a higher (average) FSH level than the younger groups $\checkmark \checkmark$ OR
Younger groups of women have a lower (average) FSH level than the older groups $\checkmark \checkmark$ Any (1x2)
(Mark first ONE only)
15.4 - The Graafian/developing follicles secretes oestrogen \checkmark but since the number of follicles are low $\checkmark /$ depleted
- less/no oestrogen will be secreted \checkmark
15.5 - A high concentration of progesterone \checkmark
- inhibits the pituitary gland $\checkmark /$ results in reduced FSH secretion
- This will decrease the validity of the investigation \checkmark

Question 16

16.1 Male fertility \checkmark
16.2 Measuring the sperm count \checkmark
16.3 Age \checkmark

- Diet \checkmark
- Exercise \checkmark
- Activity level \checkmark
- Lifestyle \checkmark
- Occupation \checkmark etc.
(Accept factors that are NOT related to health; race) (Any(2x1)
(Mark first TWO only)
11.5 - The higher temperature/pressure on the testes \checkmark due to the tight underwear
- could decrease the sperm count $\checkmark /$ sperm production/lead to the production of abnormal sperm.
11.6 - To determine if TU is still effective after 12 months \checkmark
- To see ifithe sperm count returns to normal \checkmark when the treatment stops Any
(Mark first ONE only)
11.7 - No sperm will be transported \checkmark
- from the epididymis to the urethra \checkmark
- Semen without sperm will be released \checkmark

Any

Question 17

17.1 Acrosome \checkmark
17.2 mitochondrion \checkmark
17.3 (a) $3 \checkmark$
(b) $1 \checkmark$
(c) $1 \checkmark$
17.4 $\quad B \checkmark$ - Nucleus \checkmark
17.5 Mitosis \checkmark
17.6 - After implantation the chorion \checkmark

- develops many finger-like outgrowths \checkmark
- called chorionic villi \checkmark
- The endometrium \checkmark
- together with the chorionic villi forms the placenta \checkmark
- The umbilical artery \checkmark
- and the umbilical vein \checkmark develops
- inside a hollow tube \checkmark to form the umbilical cord between the foetus and the placenta \checkmark Any

Question 18 Loaded from Stanmoreptysics.com

18.1 (a) Pituitary \checkmark gland/hypophysis
(b) Graafian follicle \checkmark
(c) Ovulation \checkmark
(d) Corpus luteum \checkmark
18.2 Remains low $\checkmark /$ decreases
18.3 - stimulates ovulation \checkmark

- stimulates the development of the corpus luteum \checkmark
(Mark first ONE only)

Question 19

19.1 -A \checkmark
-B \checkmark
-E \checkmark

Mark first TWO only

19.2 -The scar tissuer
-may partially block the Fallopian tube \checkmark

- preventing the embryo from reaching the uterus $\checkmark /$ resulting in implantation in the Fallopian tube
19.3 - The other Fallopian tube is still present \checkmark / not blocked
- Fertilisation may still take place in this Fallopian tube \checkmark /the developing embryo can move along this Fallopian tube
OR
- During invitro fertilisation \checkmark (IVF)
- the resulting embryo is inserted into the uterus \checkmark

OR

- The ovum can be placed after the blockage r
- allowing fertilisation \checkmark
19.4 - Insufficient space $\sqrt{ }$
- Poor/no placental development $\sqrt{ }$
- Decreased blood supply $\sqrt{ }$
- Insufficient nutrients \checkmark /oxygen
(2)
(9)

Question 20

20.1	-	Stimulates the development of ovarian follicles \checkmark Initiates puberty \checkmark	(1)	
20.2	-	LH \checkmark /Luteinising Hormone		(1)
20.3	-	LH stimulates ovulation \checkmark therefore, ovalation will not take place \checkmark There will be no ovum to fertilise \checkmark		(2)
	-			

Question 21

21.1	-	Under the influence of testosterone \checkmark diploid cells $/ \checkmark$ germinal epithelium cells - - in the seminiferous tubules \checkmark of the testis undergo meiosis \checkmark to form haploid sperm \checkmark	
		(4)	

QUESTION 22
22.1 Progesterone maintains/thickens the endometrium $\sqrt{ }$ and therefore, maintains the pregnancy $\sqrt{ }$
22.2 (a) Progesterone treatment $\sqrt{ }$
(b) Development of gestational diabetes $\sqrt{ }$
22.3 - Glucose levels were taken daily $\sqrt{ }$

- When the glucose level of a pregnant woman remains high continuously it indicates the development of gestational diabetes. \checkmark
22.4 (Same) dosage/250 mg of progesterone $\sqrt{ }$
(Same) period of time for injection injections given between weeks 16 and $20 \checkmark$
(Same) frequency of injections/weekly injections $\sqrt{ }$.
Any 2
(Mark first TWO only)
22.5 Group B did not receive progesterone $\sqrt{ }$

If gestational diabetes develops in group A it would be due to the progesterone treatment $\sqrt{ }$

Question ${ }_{23}$ Downloaded from Stanmoreptysics.com

23.1 Chorion $\sqrt{ }$
23.2 - Acts as a shock absorber $\sqrt{ }$

- It prevents desiccation $\sqrt{ } /$ dehydration
- It helps tokeep the temperature within a narrow range $\sqrt{ }$
- It facilitates free movement $\sqrt{ }$ of the foetus

Any
(2)
(Mark firsffwo only)
23.3 - The zygote divides by mitosis $\sqrt{ }$

- to form a (solid) ball of cells $\sqrt{ }$
- called the morula $\sqrt{ }$
- which develops into a hollow ball of cells $\sqrt{ }$
- called the blastula $\sqrt{ } /$ blastocyst
23.4 - Acts as a micro-filter $\sqrt{ } /$ protect against pathogens
- Removal of harmful metabolic waste $\sqrt{ }$
- Produces antibodies $\sqrt{ }$
- Maintains the endometrium $\sqrt{ }$

Any
(Mark first TWO only)
23.5 Umbilical vein $\sqrt{ }$
23.6 -In humans the developing foetus receives nutrients from the mother's $\sqrt{ }$ blood

- via the placenta $\sqrt{ } / u m b i l i c a l ~ v e i n ~$
- In oviparous organisms the developing embryo receives nutrients from the yolk//albumen

Question 24

24.1	- Stimulates ovulation \checkmark - Stimulates the development of the corpus luteum \checkmark (Mark the first TWO only)		(2)
24.2	(a)	- $\mathrm{FSH} \checkmark /$ a high concentration of hormone A - will stimulate follicles to develop \checkmark - Therefore, ova will be produced \checkmark increasing the chancestof fall pregnant	(3)
	(b)	- A peak in hormone $B \checkmark / L H$ - will indicate that ovulation is about to happen \checkmark - therefore, an ovum will be available for fertilisation \checkmark Any 2	(2)

Downloaded from Stanmoreptysics.com				
24.3	- The levels will remain low \checkmark because - the high progesterone levels \checkmark during pregnancy - will inhibit the secretion of FSH $\checkmark /$ hormone A	(3)		
		(10)		

QUESTION 25

	- The Graafianfollicle \checkmark		
- secretes oesfrogen \checkmark			
- causing- Thecorpus luteum \checkmark			
- secretes progesterone \checkmark			
- which (further) increases the thickness of the endometrium \checkmark			
- High levels of progesterone inhibit FSH secretionng \checkmark the endometrium to			
become thicker \checkmark /more glandular or vascular		\quad	(5)
:---			

QUESTION 26

26.1 (a) Oestrogen \checkmark
(b) Progesterone \checkmark
26.2 - It increases \checkmark

- the thickness \checkmark of the endometrium/the blood vessels in the endometrium/the amount of glandular tissue in the endometrium
26.3 (a) Release of an ovum \checkmark from the ovary \checkmark /Graafian follicle
(b) Day $14 \checkmark$
(c) LH/ Luteinising Hormone \checkmark
26.4 - High levels of hormone B/progesterone will inhibit \checkmark
- the secretion of $\mathrm{FSH} \checkmark$

OR

- No new ova/mature follicles \checkmark
- are required during pregnancy \checkmark
26.5 The progesterone \checkmark
- levels decreased \checkmark
- because the corpus luteum degenerated \checkmark
26.6 - High levels of progesterone \checkmark
- stimulate the Pituitary gland/ Hypophysis \checkmark to secrete a less FSH \checkmark

To prevent the growth of a new follicle $\checkmark /$ ovulation during the pregnancy OR

- Low levels of progesterone \checkmark

- stimulate the Pituitary gland/ Hypophysis \checkmark to secrete a more FSH \checkmark
-which stimulate the development of new follicles \checkmark
\square
Question 27
27.1 Accept day $14 \checkmark$ or day 15(1)
27.2 Days 0-7(1)
27.3 - Causes the follicle to burst open $\checkmark /$ stimulates ovulation - Stimulatest the formation of corpus luteum \checkmark (Mark first ONE only) (1)
27.4 - LH levels remain low up to day $12 / 13 \checkmark$
- Then it increases sharply up to day $14 \checkmark$
- After which it decreases and remains low \checkmark(3)
27.5 As the oestrogen level increases \checkmark The thickness of the endometrium also increases \checkmark(2)
27.6 Maintain the increase in the thickness of the endometrium \checkmark for greater chance of implantation \checkmark(2)
28.7 Nor(1)
29.8 The progesterone levels \checkmark has dropped $\checkmark /$ not maintain/corpus luteum has started to degenerate(2)

Question1

$1.1 \quad B \checkmark \checkmark$
1.2 $C \checkmark \checkmark$
1.3 A $\checkmark \checkmark$
1.4 $A \checkmark \checkmark$
$1.5 \mathrm{~B} \checkmark \checkmark$
1.6 $\mathrm{D} \checkmark \checkmark$
1.7 C $\checkmark \checkmark$
1.8 A $\checkmark \checkmark$
1.9 A $\checkmark \checkmark$
$1.10 \mathrm{C} \checkmark \checkmark$

(10×2) (20)

Questioninloaded from Stanmorepfysics.com

	DESCRIPTION	TERM
2.1	The part of the brain that receives impulses from the maculae	Cerebellum \checkmark
2.2	The structure that connects the left and right hemispheres of the brain	Corpus callosum \checkmark
2.3	The part of the brain that controls body temperature	Hypothalamus \checkmark
2.4	The branch of the autonomic nervous system that restores an increased heart rate back to normal	Parasympathetic \checkmark
2.5	The part ofthe nervous system that is made up of cranial and spinal nerves	Peripheral nervous system \checkmark
2.6	A part of the nervous system that consist of sympathetic and parasympathetic section	Autonomic \checkmark
2.7	A functional gap between two consecutive neuron	Synapse \checkmark
2.8	Collective name for the membranes that the brain and spinal cord	Meninges \checkmark
2.9	Neurons that carry impulses from receptors	Sensory \checkmark
2.10	The part of the skull that protects the brain	Cranium \checkmark
2.11	The part of the brain that controls body temperature	Hypothalamus \checkmark
2.12	The disease characterised by the degeneration of brain tissue, leading to memory loss	Alzheimer's disease \checkmark
		(16)

Question 3

3.1 B Only
3.2 A Only
3.3 Both A and B $\checkmark \checkmark$
3.4 B Only $\checkmark \checkmark$
3.5 A only $\checkmark \checkmark$

Question 4
4.1 B \checkmark-Cerebrum \checkmark

D \checkmark-Cerebellum \checkmark
A \checkmark - Pituitary gland $\checkmark /$ Hypophysis
C \checkmark - Corpus callosum \checkmark
E \checkmark-Spinal cord \checkmark

Question 5
5.1 Cerebellum \checkmark
5.2 - High thought processes \checkmark / (intelligence/ memory/ reasoning)

- Interpretation of all senses \checkmark
- Controls all voluntary actions \checkmark
(Mark the first TWO only)

Question 6

6.1 (a) Myelin Sheath \checkmark
(b) Axon?
6.2 (a) $A \checkmark$
6.3 D \checkmark-Synapse \checkmark

Question 7

7.1 Motor \checkmark /efferent neuron
7.2 $\quad \mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \checkmark \checkmark$ (Must be in the correct sequence)
7.3 - Impulse will be transmitted faster in neuron $1 \checkmark \checkmark /$ slower in neuron 2

- because of the presence of myelin sheath in neuron $1 \checkmark /$ absence of myelin sheath in neuron 2
7.4 - Impulses from the receptor \checkmark / sensory neuron
- will be transmitted to the central nervous system \checkmark but
- the impulse will not reach the effector \checkmark

Question 8

(a) $1 \checkmark$ and $4 \checkmark$
(Mark first TWO only)
(b) $1 \checkmark$ and $3 \checkmark$
(Mark first TWO only)
(c) $2 \checkmark$ and $3 \checkmark$
(Mark first TWO only)

Question 9

9.1 Reflex arc \checkmark
9.2 (a) B- Motor neuron/Multipolar neuron/efferent neuron
(b) C - Interneuron \checkmark
(c) E-Sensory neuron/unipolar neuron/afferent neuron \checkmark

9.3 (a) F^{2}
(b) $A \checkmark$
9.4 (c) $D \checkmark$ - Synapse
(b) G \checkmark - Myelin sheath \checkmark

Question 10 loaded from Stanmorepfysics.com

10.1 A \checkmark
10.2 The Impulse does not travel to the brain $\checkmark /$ goes directly from receptor to effector via the spinal cord
10.3 - Allows the person to respond rapidly

- and without thinking \checkmark /involuntary
- to a stimulusir
- to preventdamage to the bodyin

$$
1^{*} \text { compulsory + any other } 2
$$

10.4 Nerve $\checkmark /$ spinal cord
10.5 - Its acts as the insulator- and therefore, speed up the nerve impulse / prevents a short circuit
10.6 - The person would be able to feel the stimulus \checkmark

- but would be unable to react
- because the impulse would not be transmitted to the effector \checkmark
(Any two)
10.7 - The receptor receives the stimulus
- And convert it to an impulse \checkmark
- which is transported by the sensory neuron \checkmark via the spinal cord
- to the brain $\checkmark * /$ cerebrum
- the brain/cerebrum interprets the impulse \checkmark^{*}
- the brain/ cerebrum sends an impulse to the motor neuron \checkmark
- which conducts impulse to the effector \checkmark
- to bring about response $\checkmark \quad$ 2* compulsory + any other 4

Question 11

11.1 - From the dendrites \checkmark

- to the axon \checkmark
11.20 to $1 \checkmark \checkmark$ um / 0 to 0,9 um
11.3 As the axon diameter increase the speed of the impulse increases $\checkmark \checkmark$
OR
As the axon diameter decrease the speed of the impulse decrease $\checkmark \checkmark$
$\begin{aligned} 11.4 & \text { - The speed of the impulse will decrease } \checkmark \\ & \text { - resulting in it taking longer for impulse to reach the effectors } \checkmark \\ & \text { - and the person will react more slowly } \checkmark\end{aligned}$

Question 12

12.1 Corpus callosum \checkmark

12.2 - It controls vital processes/ \checkmark heartbeat/breathing - which will stop \checkmark when it is damaged
12.3 (a) Spinal cord \checkmark
(b) - The impulses from the cerebrum \checkmark

- are not transmitted \checkmark to the skeletal muscles

Question 13 loaded from Stanmorepfysics.com

13.1 Africa \checkmark
13.2 - not all brain injuries are recorded \checkmark

- due to poor health facilities \checkmark
13.3

Criteria for marking graph:

Criteria	Mark allocation
Bar graph is drawn (T)	1
Caption of the graph includes both variables (C)	1
Correct labels on X-axis and Y-axis (L)	1
Correct scale for Y-axis	1
Equal spaces between bars and equal width of bars	
for X-axis (S)	
Plotting: (P)	
1-4 co-ordinates plotted correctly	1
All 5 co-ordinates plotted correctly	2

Question 14

14.1 (a) Peripheral \checkmark nervous system
(b) Autonomic nervous system \checkmark
14.2 Spinal \checkmark nerves
14.3 E \checkmark-Parasympathetic nervous system \checkmark
14.4 Neurons \checkmark
14.5 - Meninges \checkmark

- Cranium/bone tissue \checkmark
- Cerebrospinal fluid \checkmark
(Mark first TWO only)
Any two
1.1 $B \checkmark \checkmark$
$1.2 \mathrm{~B} \checkmark \checkmark$
1.3 D $\checkmark \checkmark$
1.4 D $\checkmark \checkmark$
1.5 A $\checkmark \checkmark$
$1.6 \mathrm{D} \checkmark \checkmark$
1.7 $C \checkmark \checkmark$
1.8 $A \checkmark \checkmark$
$1.9 B \checkmark \checkmark$

(9X2)
(18)

Question 2

	DESCRIPTION	TERM
2.1	A type of vision in which both eyes are used together to focus on an object	Binocular vision \checkmark
2.2	The watery fluid that supports the cornea and the front chamber of the eye	Choroid \checkmark
2.3	A structure in the eye that absorbs light to prevent internal reflection.	Aqueous humor \checkmark
2.4	The series of changes that take place in the shape of the lens and the eyeball in response to the distance of an object from the eye	Accommodation \checkmark
2.5	A defect condition of the eye where a person can see nearby objects clearly while distant objects are blurred.	Myopia \checkmark
2.6	The visual defect characterised by a cloudy lens	Cataract \checkmark
2.7	The area of the retina that contains the highest concentration of cones	Yellow spot \checkmark lfovea centralis
2.8	The layer in the eye that is richly supplied with blood vessels	Choroid \checkmark
		(8)

Question 3

3.1 A only $\checkmark \checkmark$
3.2 Both A and $B \checkmark \checkmark$
3.3 Both A and $B \checkmark \checkmark$
3.4 Both A and $B \checkmark \checkmark$
3.5 B only $\checkmark \checkmark$

Question 4
(a) $A \checkmark-$ Iris \checkmark
(b) E \checkmark - Optic nerve \checkmark
(c) $C \checkmark$ - choroid \checkmark
(d) $D \checkmark-$ Fovea / yellow spot \checkmark
(e) $B \checkmark$-Cornea \checkmark

Question $\boldsymbol{5}^{\text {lod }}$ lod from S tanmorepfysics.com

5.1 (a) Sclera
(b) Lens
(c) Iris
5.2 Pupillary mechanism \checkmark
-In the brightdight the circular muscles contract \checkmark
-The radial muscles relax \checkmark and the pupil becomes constrict \checkmark
-Less light enters the eye \checkmark

$$
\ln
$$

Question 6

6.1 (a) Accommodation \checkmark
(b) Pupillary mechanism $\checkmark /$ pupillary reflex
6.2 (a) $B \checkmark$ and $D \checkmark$
(Mark the first TWO only)
(b) $A \checkmark$ and $B \checkmark$
(Mark the first TWO only)
6.3
(a) $\quad \subset \checkmark$ and $D \checkmark$
(Mark the first TWO only)
(b) A \vee and $C \checkmark$
(Mark the first TWO only)

Question 7

7.1 Long-sightedness \checkmark
7.2 (a) The lens becomes cloudy/opaque/milky \checkmark and there it does not allows the light to pass through \checkmark
(b) Surgery
(Mark first ONE only)
7.3 The lens is less convex \checkmark / the eye ball is too short / Cornea is flat.

This causes the light rays to fall behind the retina \checkmark
Therefore light rays are focused on the retina to form a clear image \checkmark

7.5

The percentage of (visually impaired) people suffering from different visual defects

Rubric for assessing the graph

Title of the graph shows the relation	1
between the two variables (H)	$\mathbf{1}$
Correct calculation to determine the	2:All 4 correct
proportion (C)	1:1-3 correct
Correct proportions for the labelled	2:All 4 sectors correct
sectors (P)	1:1-3 sectors correct

Question 8

8.1 (a) Curvature \checkmark of the lens
(b) Distance \checkmark of the pencil
8.2 Same light intensity \checkmark

Same person doing experiment \checkmark
Same person taking measuring \checkmark
Using the same optic instrument \checkmark
Time to focus on the pencil \checkmark
Same eye \checkmark
(Mark first TWO only)
8.3 To improve the validity \checkmark of the procedure

To get results for the factors \checkmark that is being tested so the above factors do not interfere with the factors being tested \checkmark
(Mark first TWO only)
8.4 As the distance increases \checkmark curvature of the lenses decreases
8.5 Ciliary muscle \checkmark

Suspensory ligament \checkmark

Questionghloaded from Stanmoreptysics.com

9.1 (a) $B \checkmark$ - Iris \checkmark
(b) $A \checkmark-S c l e r a \checkmark$
9.2
(a) $2 \checkmark$
(b) $3 \checkmark$
9.3 (a) Circular \checkmark muscles
(b) Circularmuscles

Question 10
\square
10.1 Iris \checkmark
10.2 - Helps to maintain the shape of the eye \checkmark

- Plays a role in refraction of light \checkmark
- Allows the transmission of light \checkmark
- Prevents desiccation \checkmark of structures in the eye
- Holds the retina in position \checkmark
- Nourishment \checkmark of the eye
- Prevents mechanical injury \checkmark in the eye
(Mark first TWO only) (Any two)
10.3 - Area B contains (a high concentration of) photoreceptors $\checkmark /$ cones
- Area C contains no photoreceptors $\checkmark /$ no rods \& cones
10.4 Astigmatism \checkmark
10.5 - Because the lens will become cloudy \checkmark /opaque
- no/less light will enter the eye \checkmark
causing no sight $\checkmark /$ weak sight
10.6 - The ciliary muscle contracts \checkmark
- The ciliary body moves closer to the lens \checkmark
- The suspensory ligaments slacken \checkmark
- Tension on the lens decreases \checkmark
- The lens becomes more convex $\checkmark /$ rounded
- Light rays are refracted more \checkmark
- To focus the light on the retina \checkmark

Any Six

EAR

Question1

1.1 A $\checkmark \checkmark$
$1.2 B \checkmark \checkmark$
$1.3 C \checkmark \checkmark$
$1.4 C \checkmark \checkmark$
$1.5 \mathrm{~B} \checkmark \checkmark$

Questioninloaded from Stanmorepfysics.com

2.1	Receptors that provide information about the gravitational position of the head	Maculae \checkmark
2.2	A small device that is inserted in the ear to drain fluids caused by a middle-ear infection	Grommet \checkmark
2.3	A structure in the ear that contains receptors that converts pressure waves into nerve impulse in the ear	Cochlea \checkmark
2.4	A structure inthe ear that absorbs excess pressure waves from the innencear	Round window \checkmark
2.5	A structure dnathe ear that transmits the nerve impulse to the cerebellumforthe balance of the body	Auditory nerve \checkmark
	1×6	(10)

Question 3
 MATCHING COLUMNS

3.1 A only $\checkmark \checkmark$
3.2 A only
3.3 B only
3.4 None $\checkmark \checkmark$
(4x2) (8)

Question 4

4.1 (a) Semi-circular canal \checkmark
(b) Auditory canal \checkmark
4.2 (a) E \checkmark - Oval window \checkmark
(b) $\quad \mathrm{D} \checkmark$ - Round window \checkmark
4.3 (a) Cerebellum \checkmark
(b) Hair cells/Organ of Corti \checkmark

Question 5

5.1 (a) $F \checkmark$-Auditory nerve \checkmark
(b) $\quad \mathrm{G} \checkmark$-Eustachian tube \checkmark
5.2 (a) $\mathrm{B} \vee$ and $\mathrm{C} \checkmark$
(b) $\quad E \checkmark$ and $F \checkmark$
5.3 -Grommet will be inserted in the tympanic membrane \checkmark
-Antibiotics \checkmark
5.4 Auditory canal \checkmark
5.5 - The ear wax can be moved from the auditory canal \checkmark

- to allow sound to reach the tympanic membrane / which allows tympanic membrane to vibrate freely \checkmark

Question 6

6.1 (a) A - Cerebrum
(b) B - Medulla oblongata \checkmark
(c) H-Eustachian \checkmark
6.2 G \checkmark - Round window \checkmark
6.3 Hair cells/Organ of Corti \checkmark
6.4 -Part B controls vital processes \checkmark, /heartbeat/breathing

- These processes will stop \checkmark leading to death
6.5 The imputses will be interpreted \checkmark and sent to the skeletal muscles \checkmark to maintain balance \checkmark
6.6 The impulses will be interpreted \checkmark and sent to the skeletal muscles \checkmark to
maintain balance \checkmark

Question 7

7.1 (a) Auditory canal \checkmark
(b) Ossicles \checkmark
7.2 - Collects the sound waves \checkmark

- Directs the sound waves towards the auditory canal \checkmark
(Mark first ONE only)
7.3 -Part D / the ossicles do not vibrate freely \checkmark
- Fewer / no vibrations will be sent to oval window \checkmark / inner ear
- Fewer / no pressure waves will be set up in the cochlea \checkmark
-The receptors/organ of Corti will be stimulated less $\checkmark /$ not stimulated
- The cerebrum is stimulated differently/ not stimulated
-which leads to hearing loss \checkmark
Any 4
$7.4 \quad$-Equalises pressure \checkmark
-on the either side of the tympanic membrane \checkmark
7.5 Grommet \checkmark
$7.6 \quad$ C \checkmark
$7.7 \quad$ - The cristae are stimulated \checkmark
- To convert the stimuli to impulse \checkmark
- The impulses are sent to the cerebellum \checkmark where they are interpreted \checkmark
- The cerebellum sends impulses to the skeletal muscles \checkmark to maintain balance

Questionsinloaded from Stanmorepfysics.com

8.1 (a) Transmits sound waves to the tympanic membrane \checkmark /Secretes ear wax (Mark first ONE only)
(b) Equalises pressure on either side of the tympanic membrane \checkmark
(Markfirst ONE only)
(c) Releases pressure from the inner ear \checkmark
(Mark first ONE only)
8.2 (a) C
(b) $D \checkmark$
8.3 - The receptors cannot convert the stimuli into impulses \checkmark

- No impulses/fewer impulses are transmitted to the cerebrum \checkmark
- and the person does not hear anything $\checkmark /$ hearing is impaired
8.4 - The sound vibrations are transmitted from the large tympanic membrane \checkmark
- to the smaller oval window \checkmark
- through the ossicles \checkmark
- which are arranged from largest to smallest \checkmark
- This concentrates the vibrations \checkmark, amplifying them Any
8.5
- A change in speed/direction of movement \checkmark
- stimulates the cristaer
- The stimulus is converted to an impulse \checkmark
- The impulse is transmitted to the cerebellum \checkmark
- via the auditory nerve \checkmark
- The cerebellum sends impulses to the muscles \checkmark to restore balance

Questionghloaded from Stanmorepfysics.com

9.1 (a) Auditory nerver
(b) Round window $/$ /Fenestra rotunda

Cerebrum ${ }^{\sim}$

- The cristae \checkmark in the semi-circular canals
9.3 - are stipmbated by changes in speed and direction
- when 绝作endolymph moves
- The cristale convert the stimuli to nerve impulses $\sqrt{2}$
- The nence impulses are transported along the auditory nerver
- to the certebellum to be interpreted
- Imputises sent to muscles \backslash to restore balance (Any 5)
- The mucus will block the opening of the Eustachian tuber
9.4 - Air cannot enter or leave \checkmark the middle ear
- to equalise pressure $\checkmark /$ causing imbalance in pressure

OR

- Mucus may move through the Eustachian tuber
- causing pressure in the middle ear
- pushing on the tympanic membraner/part E
- The ossicles/structures at A will not be able to vibrate
- and hence no vibrations will be passed to the inner
9.5 ear $\sqrt{ } /$ cochlea will not be stimulated/no amplification

Question 10

10.1 (a) Round window \checkmark
(b) Cochlear
10.2

Cristae
10.3 (a)

- Impulses from the cochlea cannot be transmitted to the brain \checkmark
- and therefore hearing will not occur \checkmark
(b)
- Part A will not be able to vibrater
- The round window will not absorb the sound waves from the cochlea
- and hearing will be affected \quad (Any 2)

Question 11

11 -The pinna of the ear traps sound waves \checkmark
-The auditory canal directs the sound waves to the tympanic membrane \checkmark
-causing the tympanic membrane to vibrate \checkmark
-which causes the ossicles to vibrate \checkmark and -pass the vibrations to the oval window $\checkmark /$ amplify the vibrations nan
-(Pressure) waves are set up in the inner ear \checkmark / perilymph/endolymph
-The organ of Corti is stimulated \checkmark
-and converts the stimuli into impulses \checkmark

- which are transmitted by the auditory nerve \checkmark
-to the cerebrum \checkmark for interpretation

Question \mathcal{T} 位loaded from Stanmoreptysics.com

12.1 Cochlea
12.2 (a) Absorbs excess pressure waves $\checkmark /$ releases pressure from the inner ear/ prevents an echo
(Mark first ONE only)
(b) It converts stimuli/pressure waves into impulses \checkmark

(Mark first ONE only)
12.3 - Part A/tympanic membrane will not be able to vibrate $\checkmark /$ vibrate freely ann

- No/less vibrations will be carried to the middle ear $\checkmark /$ ossicles
12.4 - Middle ear infections cause fluid build-up in the middle ear \checkmark
- which can block the Eustachian tube \checkmark
- The grommet will release the pressure \checkmark that will build up in the middle ear/ drain the fluid from the middle ear
- The pressure on either side of the tympanic membrane is equalised \checkmark
- preventing the tympanic membrane from rupturing \checkmark and
- allowing the ossicles to vibrate freely

Any
(4)
12.5 - The cristae are stimulated \checkmark and

- convert the stimuli into impulses \checkmark
- The impulses are sent via the auditory nerve \checkmark
- to the cerebellum \checkmark
- which interprets the information \checkmark and
- sends impulses to the skeletal muscles \checkmark to restore balance Any

Question 13

13.1 Semi-circular canals \checkmark
13.2 Ossicles \checkmark
13.3 (a) $D \checkmark$-Eustachian tube \checkmark
(b) $\quad \mathrm{C} \checkmark-$ Oval window \checkmark
13.4 (a) Maculae \checkmark
(b) Cristae \checkmark

Question 14

14.1 Cochlear
$14.2(\underline{130000-85000)} \checkmark \times 100 \checkmark=52.94 \checkmark \%$
85000
14.3 - More factories \checkmark were built increase in supply and demand

- More workers \checkmark were employed
- Extended exposure to loud sounds \checkmark
- Lack of precautionary measures \checkmark Any
14.4 - The impulse will not be transmitted \checkmark to the cerebrum \checkmark
- and will not be interpreted \checkmark

Any 2
(2)

Downloaded from Stanmorepfysics.com
14.5

Criteria for marking graph:

Criteria	Mark allocation
Type: Bar graph is drawn (T)	1
Caption of the graph includes both variables (C)	1
Correct labels on X-axis and Y-axis (L)	1
Correct scale for Y-axis	
Equal width of bars and spaces (S)	1
Plotting: (P)	
1-4 co-ordinates are plotted correctly	1
All 5 co-ordinates are plotted correctly	2

Histogram or line graph drawn:

- Lose marks for type of graph and for scale

Transposed axes:

- Can get full credit if axes labels are also swapped and bars are horizontal
- If labels are not corresponding, then lose marks for labels and scale
- Check that the plotting is correct for the given labels

Topic Plant Growth Hormones

Solutions

Question 1

1.1 B $\checkmark \checkmark$
1.2 $A \checkmark \checkmark$

Question 2

	DESCRIPTION	TERM
2.1	Growth or bending reaction by plants in response to light stimuli.	Phototropism \checkmark
2.2	The plant hormone that promote apical dominance	Auxin \checkmark
2.3	The plant hormone that causes leaves to fall off trees in Autumn	Abscisic acid \checkmark
2.4	A chemical that is used by farmers to kill weeds	Herbicides \checkmark
2.5	Promote sprouting of buds	Gibberellins \checkmark
2.6	Inhibition of the growth of lateral buds by auxins present in apical buds	Apical dominance \checkmark
2.7	A movement of part of a plant in response to gravity	Geotropism \checkmark
2.8	Plant growth responses to external stimuli	Tropism \checkmark
2.9	A substance containing plant hormones used to kill unwanted plants	Weed killer \checkmark /herbicide
2.10	Sharp structures found in plants for protection from herbivores	Thorns \checkmark
	(10)	

Question 3

3.1 A only $\checkmark \checkmark$
3.2 Both A and B $\checkmark \checkmark$
3.3 B only $\checkmark \checkmark$
3.4 B only $\checkmark \checkmark$
(4x2)

Question 4

4.1 -Rate of seed germination \checkmark
-Percentage of seed germination \checkmark


```
4.2 Downloade oflom stame amount of water \(\checkmark\) tan ore pfysics.com
-Same species!/type of seed \(\checkmark\)
-Same light intensity \(\checkmark /\) darkness \(\checkmark\)
- Same temperature \(\checkmark\)
- Same time period ( 24 hours) for all 3 groups \(\checkmark\)
- Seed mixtures were treated in the same way \(\checkmark / f i l t e r e d\) and rinsed with cold, distilled water for 2 minutes
(Mark first THREE only).
```

4.3 Same volume \checkmark /amount of gibberellins that the seeds were soaked in
4.4 - So that the average percentage and rate of seed germination could be calculated \checkmark

- in order to improve the reliability \checkmark of the results
4.5 - Seeds usually germinate under the soil \checkmark
- in the absence of light \checkmark

Question 5

5.1 Gibberellins stimulates cell elongation \checkmark /cell enlargement/ growth in stems/elongation of internodes
(Mark first ONE only)
$5.2(120-80) \checkmark \mathrm{mm}=40 \checkmark \mathrm{~mm} \checkmark$
$\begin{array}{ll}5.3 & \text {-Increase the number of plants used in each treatment } \checkmark \\ & \text {-Repeat the investigation } \checkmark \\ & \text {-Increase the period of the investigation } \checkmark \\ & \text { (Mark first TWO only) }\end{array}$
5.4 -Auxins diffused from the paste into the plants \checkmark inhibiting growth of the lateral branches \checkmark
-Once all the auxins were used up \checkmark from the paste the growth of the lateral branches increased \checkmark

Question 6
$\begin{array}{ll}\text { 6.1 } & \text {-To ensure unilateral light } \checkmark / \text { the plant receives light from one } \\ \text { direction only }\end{array}$
$6.2 \quad$-Auxins $\checkmark \mathrm{AA} /$ Indole acetic acid

Bownloadea froms tanmpre itysics.com

Plant A	Plant B
The stem of the plant will bend towards the light \checkmark	The stem of the plant will remain straight $\checkmark /$ will not bend towards the light
Does not have lateral branches vionly lower lateral branches anllstart to grow	All the lateral branches will grow \checkmark along the whole stem
The plant ${ }^{\text {and }}$ be taller \checkmark	The plant will be shorter \checkmark
(Mark first TWO ONLY) 1 table $(\mathrm{T})+(2 \times 2)$	

Question 7

7.1 (a) Amount of abscisic acid \checkmark
(b) Seed germination \checkmark
7.2 -Promotes seed dormancy $\checkmark /$ /inhibits growth
7.3 -As the days increase the hormone concentration decreases $\checkmark \checkmark$
7.4 - Decrease in abscisic concentration \checkmark

- which allows seed germination $\checkmark /$ growth.
7.5 - Same type of seeds \checkmark.
- Same age of seeds \checkmark
- Same measuring instrument \checkmark.
- Same person taking measurements \checkmark
(Mark the FIRST TWO only)
7.6 - As the setup was placed in the dark cupboard \checkmark
- there was no effect of light \checkmark
- Force of gravity \checkmark acts on the seedlings
- the stem is negatively geotropic
- hence it grows straight upwards \checkmark
(Any 4)

Question 8

8.1 Geotropism $\checkmark /$ gravitropism
8.2 - Auxins \checkmark

- accumulate at the lower \checkmark part of the stem
- because of gravity \checkmark
- The higher concentration of auxins at the lower part of the stem stimulates cell elongation $\checkmark /$ growth on the lower side of the stem
- The lower concentration of auxins at the upper part of the stem inhibits cell elongation $\checkmark /$ growth on the upper side of the stem.
(Any 4)
8.3 DTheleaves and stem will be carried in such a way that they receive maximum sunlight $\sqrt{ }$
- For photosynthesis \checkmark
OR
- Exposes the flowers more favorably \checkmark
- for pollination $\checkmark /$ seed dispersal
9.1 November \checkmark

QUESTION 9

8.4 The roots will grow downwards $\checkmark /$ towards gravity
9.2 -The concentration of abscisic acid increases \checkmark
-To stimulate the abscission/ falling of leaves \checkmark
-To prepare the tree for dormancy \checkmark
9.3 - Less sunlight $\checkmark /$ less water/ cold conditions therefore

- decreased photosynthesis \checkmark / reduced transpiration / lower energy demand / low growth rate Any (1x2)
(Mark the first ONE only)

QUESTION 10

10.1 - Auxins promote the development of roots \checkmark
 - It brings about root growth \checkmark causing their downwards \checkmark growth / positive geotropism

10.2 - In the stem, auxins stimulate growth \checkmark on the lower side causing the stem to grow / bend upwards \checkmark

- In the roots, the auxins inhibit growth \checkmark on the lower side causing the root to grow / bend downwards \checkmark

QUESTION 11

11.1 -(Apical) tip of the stem $\checkmark /$ apical bud
-(Apical) tip of the stem \checkmark
(Mark first TWO only)
11.2 - Stimulate cell division $\checkmark /$ mitosis

- stimulate cell elongation \checkmark
(Mark first TWO only)
11.3 Gibberellins \checkmark

- Saves species that are facing extinction
12.1

Mark allocation of the graph

Criteria	Mark Allocation
Correct type of graph including the joining of points	1
Title of graph	1
Correct scale, label and unit for X- axis	1
Correct scale, label and unit for Y- axis	1
Drawing of the graph	$0:$ No points plotted correctly $1:$ 1 to 5 points plotted correctly $2:$ All 6 points plotted correctly

NOTE:

If the wrong type of graph is drawn: Marks will be lost for "correct type of graph".
If axes are transposed: Marks will be lost only for labelling of X -axis and Y -axis
12.2 (a) Decreased \checkmark
(b) Increased \checkmark
12.3 - Auxins are sensitive to light \checkmark

- Light stimulus from one side causes auxins to move to the shaded side $\checkmark /$ destroyed on the illuminated side
- Auxin concentration is higher on the shaded side
- This promotes cell elongation \checkmark on shaded side of plant
- resulting in more growth \checkmark on this side
- Stem grows towards the light stimulus \checkmark
- This is called phototropism \checkmark

QUESTION ${ }^{33}$? dod from Stanmorepfysics.com

13.1 Auxins \checkmark

13.2 -The growth movement of part of a plant in response to a unilateral light stimulus.
13.3 - Auxins diffuse through the agar to the stem

- Auxins arexight sensitive \checkmark /are destroyed by light/Auxins move away from light
- There is a migher concentration of auxins on the dark side of the stem \checkmark
- Growth is stimulated \checkmark on the dark side which - grows faster \checkmark
- causing the stem to grow/bend towards the light \checkmark (Any 6)
13.4 - Light will not reach the tip of the stem \checkmark
- Therefore, auxins are distributed evenly \checkmark throughout the tip of the stem
- The stem will grow straight up $\checkmark /$ no bending towards the light

QUESTION 14

14.1 -To expose the leaves to light for photosynthesis \checkmark
14.2 -Geotropism $\checkmark /$ gravitropism
14.3 -To eliminate the effect of gravity $\checkmark /$ expose the stem to gravity on all sides
14.4 - Auxins will move to the lower side of the growing tip \checkmark

- There will be a high concentration of auxin in the lower side \checkmark stem
- Which will stimulate cell elongation / \checkmark growth
- Therefore, the lower side will grow faster \checkmark
- This will cause the stem to bend upwards \checkmark
14.5 - The auxins \checkmark
- produced at the tip of the stem \checkmark will be removed
- Therefore, stem will not grow \checkmark
- Lateral branches will develop \checkmark
- In the absence of apical dominance \checkmark (Any 4×1)

QUESTION1: MCQs

1.1	B $\checkmark \checkmark$			
1.2	A $\checkmark \checkmark$			
1.3	D $\checkmark \checkmark$			
1.4	B $\checkmark \checkmark$			
1.5	C $\checkmark \checkmark$	$\sqrt{01}$		
	$\xrightarrow{0 n+}$			(10)

QUESTION 2: BIOLOGICAL TERMS

DESCRIPTION		TERM
2.1	A gland whose secretion are transported through blood streams.	Endocrine gland \checkmark
2.2	A system that is responsible for chemical coordination in the body.	Endocrine system \checkmark
2.3	A hormone that stimulates ovulation in humans	LH \checkmark
2.4	The process of maintaining a constant internal environment in the human body	Homeostasis \checkmark
2.5	A gland whose secretions are transported through ducts.	Exocrine Gland \checkmark
2.6	A hormone that stimulates mammary gland to produce milk.	Prolactin \checkmark
2.7	A hormone that is responsible for osmoregulation in the body.	ADH \checkmark
2.8	Specialized cells in the pancreas that secretes insulin and glucagon	Islets of Langerhans \checkmark
2.9	A hormone responsible for secondary sexual characteristics in males	Testosterone \checkmark
2.10	A hormone that is responsible for maintaining salt balance in the blood.	Aldosterone \checkmark
2.11	A gland that secretes FSH and LH in females.	Pituitary \checkmark
2.12	Chemical messengers produced by endocrine glands.	Hormone \checkmark
2.13	A gland located in the neck that secretes thyroxin hormone.	Thyroid gland \checkmark
2.14	A hormone that controls the metabolic rate in the body.	Thyroxin \checkmark

2.15	A hormone that increases the blood glucose level in the body.	Glucagon \checkmark
2.16	A hormone that lowers the blood glucose level in the body.	Insulin \checkmark
2.17	Promotes the secretions of hormones produced by thyroid glands.	TSH \checkmark
2.18	A mechanism that detects imbalances and restores balance in the internal environment	Negative feedback \checkmark
2.19	A hormone responsible for growth and development in the body	Growth Hormone \checkmark
		(19x1) (19)

QUESTION 3

3.1	Nonerloaded from Stamoreplysics.com	
3.2	A only $\checkmark \checkmark$	
3.3	A only $\checkmark \checkmark$	
3.4	A only $\checkmark \checkmark$	
3.5	B only $\checkmark \checkmark$	(5×2)
		(10)

QUESTION 4

4.1	A - Pituitary gland \checkmark D- Adrenal gland \checkmark	(2)
4.2	a) C \checkmark Pancreas \checkmark b) A \checkmark Pituitary gland \checkmark c) B \checkmark Thyroid gland \checkmark d) $\mathrm{D} \checkmark$ Adrenal gland \checkmark	(8)
4.3	They respond to internal/external stimulus \checkmark They protect organisms \checkmark (Mark first TWO only)	(2)
		(12)

Question 5
5.1 Sweat gland \checkmark
5.2 - Structure A will constrict $/$ /vasoconstriction occurs

- Less blood flows towards the surface \checkmark of the skin
- Less heat is lost \checkmark through the surface of the skin
- Temperature increases $\checkmark /$ returns to normal
5.3 - Enzymes function optimally \checkmark at normal body temperature $\checkmark / 37^{\circ} \mathrm{C}$
- Enzymes/proteins will denature \checkmark at high temperatures \checkmark
- Enzymes will become inactiver at low temperatures \downarrow
(Mark first ONE only)

Question 6

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{} \& \begin{tabular}{l}
(1) \\
(1)
\end{tabular} \\
\hline 6.2

6.3 \& | (a) Adrenalin \checkmark |
| :--- |
| (b) - More air/oxygen will be inhaled |
| - Blood will be pumped faster \checkmark |
| - therefore, transporting more oxygen and glucose \checkmark to the skeletal muscles |
| - which will increase the rate of cellular respiration $\checkmark /$ metabolism \square |
| - Part B/the medulla oblongata is stimulated \checkmark |
| - and sends impulses to the heart \checkmark and to |
| - the breathing muscles $\checkmark /$ intercostal muscles and diaphragm |
| - More blood is transported to the lungs \checkmark |
| - and the carbon dioxide is exhaled faster \checkmark |
| - and the carbon dioxide levels return to normal \checkmark Any | \& (1)

(4)

(4)

\hline \& \& (11)

\hline
\end{tabular}

Question 7		
7.1	$5 \checkmark \mu \mathrm{~g} / \mathrm{dl}$	(1)
7.2	$\begin{aligned} & \left.\frac{(25-5)}{5}\right] \\ & =400 \vee \% \end{aligned}$ OR $\begin{aligned} & \left.\frac{(24-5)}{5}\right]^{\checkmark} \times 100 \\ & =380 \vee \% \end{aligned}$ Accept a range between: - 24 and 25 for the first value and - 380% and 400% for the answer	(3)

Question 8		
8.1	$50 V^{\circ} \mathrm{C}$	(1)
8.2	As the temperature increases the average rate of blood-flow to the skin increases	(2)
8.3	$\left.\left.\frac{11-4}{4}\right] \checkmark \times 100 \checkmark=175 \checkmark \% \quad \text { OR } \quad \frac{7}{4}\right] \checkmark \times 100 \checkmark=175 \checkmark \%$	(3)
8.4	- As the temperature increases \checkmark from $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ - vasodilation occurs $\checkmark / b l o o d$ vessels dilate - to increase the rate of blood flow \checkmark /more blood flows to the skin - so that more heat $\checkmark /$ sweat can be lost	(4)
8.5	- Less blood flows to the skin \checkmark at low temperatures - Less oxygen $\checkmark /$ nutrients reach the cells of the tissue and the cells may die OR - Less blood flows to the skin \checkmark at low temperatures - More carbon dioxide $\checkmark /$ waste products accumulate in the cells of the tissue and the cells may die	(2)
		(12)

Question 13		
13.1	Adrenalin \checkmark	(1)
13.2	- Increases the heart rater - Increases blood pressurer - Stimulates the conversion of glycogen into glucoser - Increases the blood supply to the heart $\checkmark /$ skeletal muscles - Decreases blood flow to the digestive system \checkmark - Decreases blood flow to the skin \checkmark - Increases muscle toner - Increases the rate/depth of breathing \checkmark - Increases the rate of respiration $\checkmark /$ metabolism - Dilates/increases the diameter of the pupils r (Mark first THREE only)	(3)
13.3	- Blood glucose levels rise \checkmark above normal - The pancreas \checkmark /islets of Langerhans - secretes insulin \checkmark into the blood - which travels to the liver $\checkmark /$ muscle cells - and stimulates them to absorb glucoser from the blood - and to convert the excess glucose into glycogenr - which decreases the blood glucose levels \checkmark to normal \square \square Any 5	(5)
		(9)

Downloaded from Stanmorepfysics.com

Question 14

When the carbon dioxide levels rise above normal (C):

- Receptoricells in the (carotid) artery in the neck/aorta are stimulated
- to sendimpulses to the medulla oblongatar
- The medulla oblongata sends an impulse to the breathing muscles \checkmark
- to centract more actively $\sqrt{ }$
- and increase the rate/depth of breathing \checkmark
- An impulse is also sent to the heart \checkmark
- to beat faster \checkmark
- More carbon dioxide is taken to the lungs \checkmark lexhaled
- The carbon dioxide levels return to normalv

> Any (7)

Question 15

Role of the endocrine system in providing energy (E)

- More adrenalin \checkmark is secreted
- by the adrenal glands \checkmark
- increases blood glucose \checkmark /increase heart rate/ increase breathing rate/dilate blood vessels to essential organs
- More glucagon \checkmark is secreted
- by the pancreas $\checkmark /$ islets of Langerhans
- increases blood glucose \downarrow
- More TSH \checkmark is secreted
- by the pituitary gland $\sqrt{ }$
- to increase thyroxin production \checkmark
- More thyroxin \checkmark is secreted
- by the thyroid gland $\sqrt{ }$
- to increase the body's metabolic rate $\checkmark /$ rate of respiration

> Any (9)

Topic: DNA Code of Life

Question1

1.1
$D \vee \checkmark$
$1.2 \mathrm{D} \checkmark \checkmark$
1.3 C $\checkmark \checkmark$

$1.4 \mathrm{~B} \checkmark \checkmark$
1.5 $C \checkmark \checkmark$
1.6 C $\checkmark \checkmark$
1.7 B $\checkmark \checkmark$

Question 2

	DESCRIPTION	TERM
2.1	A tangled network of DNA and protein located within the nucleus	Chromatin network
2.2	The bonds that hold the two strands of a DNA molecule together.	Hydrogen bonds
2.3	The sugar found in DNA	Deoxyribose sugar \checkmark
2.4	The analysis of DNA samples to identify individuals that may be related	DNA Profiling \checkmark
2.5	The process whereby DNA makes an exact copy of itself	DNA replication \checkmark
2.6	The monomers of nucleic acids	Nucleotides \checkmark
2.7	The natural shape of a DNA molecule	Double helix \checkmark
2.8	Sections of DNA that carry hereditary information	Gene \checkmark
2.9	The sugar that forms part of a nucleotide in RNA	Ribose \checkmark
2.10	The process whereby mRNA is formed from DNA	Transcription \checkmark
2.11	Base triplets found on mRNA	Codons \checkmark
2.12	The cell organelle to which mRNA attaches during protein synthesis	Ribosome \checkmark
2.13	The process of arranging amino acids according to the sequence of bases on mRNA	Translation \checkmark
2.14	The organelle in a cell where translation occurs	Ribosome \checkmark
2.15	The triplet of bases found on a tRNA molecule non	Anticodon \checkmark
2.16	The type of RNA containing anticodons	tRNA \checkmark
2.17	Bonds that join amino acids together	Peptide bond \checkmark
	(17 X 1)	(17)

Question ${ }^{\text {Donloade }}$ from Stanmorepfysics.com

3.1 A only $\checkmark \checkmark$
3.2 Both A and B $\checkmark \checkmark$
3.3 A only $\checkmark \checkmark$
3.4 A only $\checkmark \checkmark$
3.5 B only $\checkmark \sqrt{\substack{n \pi n}}$
(10)
4.1 (a) Y^{\prime}
(b) $\quad X V$
$4.2 \quad 4 \checkmark$
4.3 A C T G (Must be in the correct order) \checkmark
$\begin{array}{ll}4.4 & \text { (DNA) replication } \checkmark \\ & \text { Transcription (Protein synthesis) } \checkmark\end{array}$

Question 5

5.1 (a) W- Nucleotide \checkmark
(b) X - Phosphate $\checkmark /$ phosphate ions

Y - Deoxyribose
(c) Hydrogen bond
5.2 Nucleus \checkmark
5.3 Interphase \checkmark

Question 6

6.1 DNA replication \checkmark
6.2 (a) Sugar \checkmark
(b) Phosphate \checkmark
6.3 (a) Guanine \checkmark
(b) Guanine \checkmark

Question ${ }_{7}^{\text {Dowloade }}$ from Stanmorepfysics.com

7.1 - The DNA is located in the nucleus \checkmark

- and mitochondria \checkmark and chloroplasts \checkmark any 2
7.2 - DNA is andouble-stranded \checkmark molecule that
- formsadouble helix \checkmark
- It is made up of nucleotides \checkmark
- Eachnucleotide has a deoxyribose sugar \checkmark molecule
- a phosphate group \checkmark and
- a nitrogenous base \checkmark
- The bases are A, T, C and G \checkmark
- which join to form complementary pairs $\checkmark /$ (A to $T \& C$ to G)
- held by hydrogen bonds \checkmark
any 7
7.3 - The DNA (double helix) unwinds \checkmark and
- unzips $\checkmark /$ hydrogen bonds break
- to form two separate strands \checkmark
- Both DNA strands serve as templates \checkmark
- to build a complementary DNA $\checkmark /(A$ to T and C to $G)$
- using free (DNA) nucleotides \checkmark from the nucleoplasm
- This results in two identical (DNA) molecules \checkmark
- Each consists of 1 original and 1 new strand \checkmark

Any 6

Question 8

8.1 Heila \checkmark and Leo \checkmark
(Mark first TWO only)
8.2 - All the (DNA) bands from Heila and Leo \checkmark

- match with the DNA of the mother and father \checkmark

OR

- none of the (DNA) bands from Priya \checkmark
- match with the (DNA) bands of the mother and the father \checkmark
8.3 - Tracing missing persons \checkmark
- Identification of genetic disorder's \checkmark
- Identification of suspects in a crime
- matching tissues for organ transplants \checkmark
- Identifying dead persons
(Mark first THREE only)

Question $\begin{gathered}\text { Downloade } \\ \text { Q from } \\ \text { Stanmorepfysics.com }\end{gathered}$

9.1 DNA Profiling \checkmark
9.2 Jennie $\sqrt{ }$
9.3 -Jennie's DNA profile \checkmark /bands
matches DNA profile/ bands of the sample \checkmark from the crime scene
9.4 -Proof of paternity \checkmark

- Tracing missing person \checkmark
- Identification of genetic disorders \checkmark
- Establishing family relationships \checkmark
- Matching tissues for organ transplants \checkmark
- identifying dead persons $\checkmark /$ animals.
9.5 - Samples containing DNA can be planted $\checkmark /$ person was framed
- Human error \checkmark during DNA profiling process
- Costly procedure \checkmark
- Invasion of privacy \checkmark
(Mark first TWO only) any 2

Question 10

10.1 Mary $\checkmark \checkmark$
10.2 There are no matching bands $\checkmark /$ bars/ patter/ DNA profile with both parents \checkmark and Mary

Question 11

11.1 Number of people \checkmark found guilty/ convicted
$11.244-25 \checkmark=19 \checkmark$
$11.3-\quad$ More criminals are found guilty when DNA evidence is included \checkmark in the
investigation

- DNA found at crime scene \checkmark
- can be compared to the DNA database \checkmark
- making it easier $\checkmark /$ Faster
- to identify suspects in the crime \checkmark (Mark first FOUR only)

Question 12 loaded from Stanmorepfysics.com

12.1 Nucleus \checkmark (Nucleoplasm)
12.2 (a) Deoxyribose \checkmark
(b) Uracil \checkmark / U

	Transcription
	Only onestrand acts as a templaterm
(Free) RNA nucleotides are complementary \checkmark	Both strands acts as a template \checkmark
Adenine complements with uracil / (A complements with complementary \checkmark	
U) \checkmark	Adenine complements with thymine / (a complements with T) \checkmark

Only a short section of DNA is The whole DNA molecule is used \checkmark used

| DNA unwinds and unzips | DNA unwinds and unzips |
| :--- | :--- | partially \checkmark completely \checkmark

(Mark first TWO only) 1 mark for table + (Any 2×2)

Question 13

13.1 (a) Amino acids \checkmark
(b) mRNA \checkmark
13.2 (a) TAC $\checkmark \checkmark$
(b) GUA \checkmark
13.3 Translation \checkmark^{*}

- Each RNA carries a specific amino acid \checkmark
- when the anticodon on tRNA $\checkmark /$ GUA
- matches the codon on mRNA $\checkmark /$ CAU
- then tRNA brings the required amino acid to the ribosome \checkmark
- amino acids become attached to each other by the peptide bonds
- to form the required protein \checkmark
1^{*} compulsory + 6

Question 14 loaded from Stanmoreptysics.com

14.1 Transcription \checkmark
14.2 mRNA \checkmark
14.3 -makes up the genes which carry hereditary information -contains coded information for protein synthesis
14.4

A(DNA)	B (RNA)
Doublestrand \checkmark bases \checkmark	Paired
Souble helix/ helical \checkmark	Single strand \checkmark Unpaired bases \checkmark
Thymine \checkmark	Non- helical \checkmark

1 mark for table + 2×2
14.5 - The double helix DNA unwinds \checkmark and

- unzips $\checkmark /$ weak hydrogen bonds break
- to form two separate strands \checkmark
- one strand acts as a template \checkmark
- to form mRNA \checkmark
- using free nucleotides from the nucleoplasm
- the mRNA is complementary to the DNA
- the copied message for protein synthesis is thus copied Onto mRNA \checkmark
(Any 6)
14.6 - This will result in different tRNA molecules \checkmark
- bringing different amino acids \checkmark
- leading to the formation of a different protein. \checkmark

Question 15

15 - Codon GAC \checkmark (on mRNA)

- changed to GAU \checkmark
- Both these codons code for the same amino acids $\checkmark /$ Aspartic acid
- there for there will be no effect on the protein formed \checkmark

Question 16

16.1 Gene \checkmark mutation
16.2 - There is change in sequence (of nitrogenous bases) from CCG To CUG

(b) UAU \checkmark
(c) -The codon CCG changed to CUG $\checkmark / 4^{\text {th }}$ codon has changed

- The anticodon/ tRNA sequence changed \checkmark
- The amino acids proline \checkmark
- Was replaced by Leucine \checkmark
- This resulted in a different protein $\checkmark /$ no protein being formed
17.1 (a) GAC \checkmark
(b) ACU $\checkmark \checkmark$
17.2 (Gene) mutation \checkmark
17.3 - CTC on the DNA changed to CAC \checkmark
- Codons (on the mRNA) changed $\checkmark /$ GAG changed to GUG
- Anticodons (on tRNA) changed $\checkmark / C U C$ replaced by CAC
- which resulted in a different amino acid $\checkmark / \mathrm{Val}$
17.4 - The cells will not receive enough oxygen \checkmark
- resulting in reduced cellular respiration $\checkmark /$ a person lacking energy/becoming tired/ anaemia

Question 18

18.1 (a) Transcription \checkmark
(b) Translation \checkmark
18.2 (a) Nucleus \checkmark
(b) mRNA
18.3 Chloroplasts \checkmark Mitochondria \checkmark
18.4 (a) - The double helix DNA unwinds \checkmark and

- (the double-stranded DNA) unzips $\checkmark /$ weak hydrogen bonds break
- to form two separate strands \checkmark
- One strand is used as a template \checkmark
- to form mRNA \checkmark
- using free (RNA) nucleotides \checkmark from the nucleoplasm
- The mRNA is complementary to the DNA $\checkmark /$ (A-U, G-C) $\square \pi n$
- mRNA now has the coded message for protein synthesispm

- When the anticodon on the tRNA \checkmark
- matches the codon on the mRNA \checkmark
- the tRNA brings the (required) amino acid to the ribosome \checkmark
- Amino acids become attached by peptide bonds \checkmark
- to form the (required) protein \checkmark
18.5
(a) TCG $\sqrt[n]{n n}$
(b) Tyrosiney

Valinem
18.6 Gene mutation \checkmark
18.7 - The anticodon will be GGA \checkmark /not GAA

- The last amino acid would be proline instead of leucine \checkmark
- resulting in a different protein $\checkmark /$ no protein at all

Question 19

19.1 Cytosine \checkmark
$19.220 \checkmark \checkmark \%$
19.3 GAA \checkmark UGU \checkmark
19.4 Glutamic acid \checkmark - Cysteine \checkmark (in that order)
19.5 U A C

Question 20
20.1 Protein synthesis \checkmark
20.2 Peptide \checkmark bond
$20.363 \checkmark$
20.4 20.4.1 Guanine \checkmark
20.4.2 (a) CAG \checkmark
(b) $C C T \checkmark$
20.4.3 CAU \checkmark

Question ${ }^{\text {Din }}$ loaded from $\operatorname{Stanmorepfysics.com~}$

-RNA is single stranded \checkmark
-and is made up of nucleotides \checkmark which comprise:
-ribose \checkmark sugar
-phosphate \checkmark group
-nitrogenoustbases \checkmark which are
-adenine, Hfacil, guanine and cytosine $\checkmark /$ (A, U, G and C)
-The phosphate group is attached to the ribose sugar \checkmark

- and the nitrogenous base is attached to the ribose sugar \checkmark
-Bases on RNA are arranged in triplets \checkmark
-as codons on mRNA \checkmark
-and anticodons on tRNA \checkmark
-tRNA has a clover-leaf $\checkmark /$ hairpin structure
-tRNA has a place of attachment for an amino acid \checkmark Any (6)

Question 22

- mRNA $\sqrt{ }$ forms
- during transcription $\checkmark /$ by copying the coded message from DNA
- and moves out of the nucleus \checkmark
- and attaches to the ribosome \checkmark
- During translation \checkmark
- the anticodon matches the codon \checkmark
- tRNA
- brings the required amino acid \checkmark to the ribosome
- Amino acids become attached by peptide bonds \checkmark
- to form the required protein \checkmark
Any (8)

TOPIC: MEIOSIS

Question1

1.1 $C \checkmark \checkmark$
1.2 A $\checkmark \checkmark$
1.3 A $\checkmark \checkmark$
1.4 D $\checkmark \checkmark$
$n=n$
$n \pi n$
$n \pi n$
n
$\begin{array}{ll}1.5 & D \vee \checkmark \\ 1.6 & D \vee \checkmark\end{array}$
1.7 $D \checkmark \checkmark$

Dounloaded from Stanmorepfysics.com
Question 2
BIOLOGICAL TERMS:

	DESCRIPTION	TERM
2.1	The point of crossing over between two adjacent chromosomes	Chiasma
2.2	The splitting of the cytoplasm during cell division	Cytokinesis
2.3	The failure of chromosome pairs to separate during meiosis	Non-disjunction
2.4	The structures in the cell that forms the spindle fibres.	Centrioles
2.5	The phase of meiosis when homologous chromosomes are aligned at thenequator of the cell.	Metaphase I
2.6	The division of the nucleus	Karyokinesis
2.7	Exchange of genetic material between chromatids of homologous chromosomes	Crossing over
2.8	The point at which the two chromatids of a chromosome are joined together	Centromere
2.9	Site of meiosis in females	Ovaries
2.10	A genetic disorder caused by having an extra copy of chromosome number 21	Down syndrome
2.11	The Structure formed by the centrioles during cell division	Spindle fibres
2.12	The non-sex chromosomes in humans	Autosomes
2.13	The condition in a cell where there is only one set of Chromosomes	The structure that is responsible for the formation of spindle fibres during cell division in animal cells and is made up of two centrioles
2.14	Centrosomes	
2.15	The phase in the cell cycle during which the cell growth occurs	Interphase
2.16	Chromosomes that carry the same set of genes	Homologous
2.17	The structure that joins two chromatids of a chromosome	Centromere
2.18	The division of the cytoplasm of a cell during cell division	Cytokinesis
2.19	The process during meiosis where there is an exchange of genetic material between chromatids.	Crossing over
2.20	The structures in animal cells that give rise to spindle fibres during cell division.	centrosome

2.21	The phase in the cell cycle during which DNA replication takes place	interphase
2.22	The point where adjacent chromatids overlap during meiosis May June	Chiasma /chiasmata
2.23	The representation showing the arrangement of a diploid set of karyotype chromosomes	
	(23 $\times 1$)	(23)
\square		

Question ${ }^{\text {Donloade }}$ from Stanmorepfysics.com
 MATCHING COLUMNS

3.1. None $\checkmark \checkmark$
3.2. B only $\checkmark \checkmark$
3.3. Both $\checkmark \checkmark$
3.4. B only $\checkmark \checkmark$
3.5 Both $\checkmark \checkmark$ n $n=\frac{\pi n}{n \pi n}$

(6x2)

Question 4

4.1. (a) Centromere \checkmark
(b) Homologous chromosomes \checkmark
(c) Spindle fibres $\checkmark /$ spindle threads
4.2. Anaphase II \checkmark
4.3. $2,1,3 \checkmark \checkmark$
4.4. In metaphase I, the chromosomes arrange at the equator in homologous pairs \checkmark whereas in metaphase II, the chromosomes arrange at the equator singly \checkmark (Mark first ONE only)

Question 5

5.1. Anaphase II \checkmark
5.2 (a) Centrosome \checkmark
(b) Centromere \checkmark
(c) Spindle fibre $\checkmark /$ Spindle threads
5.3 The chromatids separate $\checkmark /$ centromere splits
5.4 Crossing over \checkmark
5.5 Reduces genetic variation \checkmark
5.6 (a) Four $\checkmark / 4$
(b) $23 \checkmark$

Question ${ }^{\text {Donloaded from }}$ Stanmorepfysics.com

6.1. Metaphase II \checkmark
6.2. Individual chromosomes line up at the equator $\checkmark \checkmark$ of the cell (Mark first one only)
6.3. a) Cell membrane \checkmark
b) Spindle fitiares \checkmark
6.4. - It contracts $\checkmark /$ shortens

- to pull the chromosomes $\checkmark /$ daughter chromosomes/chromatids to opposite poles of the cell
6.5

Guideline for assessing the drawing

CRITERIA	ELABORATION		MARK
Heading (H)	-Structure C in the final phase of meiosis/Telophase II		1
Correct drawing (D)	-Daughter chromosome/unreplicated chromosome/chromatid/s drawn from structure C only	T01	1
Correct shading (S)	-One unshaded OR one -One with shaded tip unshaded	$\begin{aligned} & n n \pi \\ & n n n n \\ & n+n n \end{aligned}$	1
Labels (L)	-Any correct label	\square	1

Question $\begin{gathered}\text { Donloaded from Stanmorepfysics.com }\end{gathered}$

7.1. (a) Metaphase $I \checkmark$

(b) Telophase IV
7.2. (a) $B \checkmark$
(b) $C \checkmark$
(c) $D \checkmark$

7.3. Testis \checkmark

Question 8

- in prophase $\ \checkmark$ of meiosis
- crossing over \checkmark occurs
- between homologous chromosomes \checkmark
- resulting in the exchange of genetic material \checkmark
- leading to chromosomes with a mixture of maternal and paternal genetic material \checkmark
- In metaphase \checkmark of meiosis
- random arrangement of chromosomes occur \checkmark
- leading to chromosomes moving into gametes in different combinations \checkmark Any 5

Question 9

9.1. Autosomes \checkmark
9.2. a) - One chromosome comes from the sperm \checkmark /father

- and other comes from the ovum $\checkmark /$ mother
b) - Shape \checkmark
- Size \checkmark /length
- Position of genes \checkmark /alleles
- Genes coding for same characteristic \checkmark
- Location of centromere \checkmark
(Mark the first THREE only)
9.3. - Gonosomes are not identical $\checkmark /$ chromosomes at position 23 are not identical
- Individual 1 has $X Y$ gonosomes $\checkmark /$ is a male
- Individual 2 has $X X$ gonosomes $\checkmark /$ is a female

Question ${ }^{D}$ Donloaded from Stanmorepfysics.com

10.1. (a) Down syndrome \checkmark
(b) Anaphase I/II \checkmark
(c) Chromosomal aberration \checkmark

Question 11

11.1. - Due to non-disjunction $\checkmark /$ non-separation of a chromosome pair

- during Anaphase IV
- Two chromosomes moved to the one pole \checkmark and
- none moved to the other pole \checkmark
11.2. - Gamete A will have 24 chromosomes $\checkmark /$ extra chromosome
- and when it fertilises a normal ovum $\checkmark /$ gamete with 23 chromosomes
- the zygote will have 3 chromosomes at position $21 \checkmark / 47$ chromosomes
11.3. (a) Prophase I
(b) - Adjacent chromatids of homologous chromosomes cross \checkmark
- At a point called the chiasmar
- There is an exchange of DNA segments \checkmark /genetic material

Downloaded from Stanmorepfysics.com

OR

ANY ONE OF THE FOLLOWING ARRANGEMENTS INCLUDING CORRECT LABELS

MARK ALLOCATION FOR DIAGRAM

Question ${ }^{\text {Thombloaded from } S \text { tanmoreptysics.com }}$

13.1. Centromere \checkmark
13.2. Metaphase IV
13.3. - A pair of chromosomes with the same structure \checkmark /location of centromere/ length and

- the same sequence of genes \checkmark
- One is ofmaternal origin and the other of paternal origin \checkmark
13.4. - Some chromatids have a mixture of genetic material \checkmark from its homologue
- as crossing over \checkmark took place
- during Prophase $I \checkmark$
13.5. $48 \checkmark \checkmark$ arbitrary units.

Question 14

14.1. Centrosome \checkmark
14.2. Anaphase $I \checkmark$
14.3. - The spindle fibres contract \checkmark

- The centromeres split \checkmark
- Each chromatid is pulled to the opposite poles \checkmark

Any 2
14.4. Crossing over \checkmark
14.5. It leads to (genetic) variation \checkmark
(Mark first ONE only)
14.6. $46 \checkmark / 23$ pairs
14.7. Structure B consists of two DNA molecules $\checkmark /$ contains a double thread/ is made up of two chromatids
-because of DNA replication \checkmark

- Structure C consists of one DNA molecule $\checkmark /$ contains a single thread/chromatid
- because it is unreplicated $\checkmark /$ as a result of splitting of the chromosome during anaphase 2 Any

Question 15

15.1. a) Centrosome \checkmark

b) Chromosome \checkmark
c) Cell membrane \checkmark
15.2. a) $2 \checkmark$ - Metaphase II \checkmark
b) $4 \checkmark$ - Prophase I \checkmark
c) $1 \checkmark$ - Anaphase $I \checkmark$
15.3. Da) ${ }^{\text {Dinfloaded from } S \text { tanmorepfysics.com }}$
b) $23 \checkmark$
c) $46 \checkmark$

Question 16

16.1. a) Meiosis $\triangle M$ meiosis I
b) Prophase id
16.2. Ovary \checkmark \qquad
16.3. $\mathrm{C} \checkmark$ - centromere \checkmark
16.4. $3 \checkmark /$ Three

Question 17

17.1 (a) centromere \checkmark
(b) Chiasma \checkmark /chiasmata
(c) Homologous chromosomes $\checkmark /$-chromosome pair/bivalent
(d) Chromatid $\checkmark /$ sister chromatid
17.2 - Similar shape $\checkmark /$ similar centromeres

- size $\sqrt{ }$ and
- genetic composition \checkmark
(Mark first TWO only)
17.3 - In prophase $1 \checkmark$
- Non-sister chromatids/ one chromatid of each homologous chromosome pair \checkmark
- Touch $\checkmark /$ overlap
- At a point called chiasma \checkmark
- DNA/ genetic material is crossed over $\checkmark /$ swopped at the chiasma.
17.4 (a) $21 \checkmark$
(b) $42 \checkmark$
(c) $21 \checkmark$

Question 18 Doaded from Stanmorepfysics.com

- When chromosome pair 21/chromosome 21 fail to separate \checkmark
- during Anaphase \checkmark
- the daughter cells (gametes) will have 24 chromosomes \checkmark /an extra chromosome
- when this gamete is fertilised by a normal gametes \checkmark with 23 chromosomes.
- the zygote will have 47 chromosomes $\checkmark / 3$ chromosomes at position $21 /$ Trisomy 21

QUESTION 19

19.1. (a) Prophase $1 \checkmark$
(b) Twelve \checkmark
(c) Three / $3 \checkmark$
19.2 (a) Nuclear membrane \checkmark
(b) Cell membrane \checkmark / plasmalemma / plasma membrane
(c) Nuclear membrane \checkmark
$19.3 \begin{aligned} & \text {-Testes } \checkmark \\ & \\ & \text {-Ovaries } \checkmark\end{aligned}$

Question 20

20.1 5/ Five $\sqrt{ }$
20.2 Gonosomes \checkmark / sex chromosomes
20.3 (a) Down Syndrome \checkmark / Trisomy 21
(b) Non- disjunction \checkmark
20.4 Male \checkmark

Downloaded from Sotpletgenerite sidututions

Question1

Multiple choice questions:

1.1 $C \checkmark \checkmark$
1.2 C $\checkmark \checkmark$
1.3 C $\checkmark \checkmark$
$1.4 \quad B \checkmark \checkmark$
1.5 A $\checkmark \checkmark$

1.6 C $\checkmark \checkmark$
1.7 A $\checkmark \checkmark$
1.8 A $\checkmark \checkmark$

Question 2

Biological terms:

	DESCRIPTION	TERM
2.1	The study of heredity and variation in organisms	Genetics
2.2	All the genes that make up an organism	Genome
2.3	Two or more alternative forms of a gene at the same locus	Alleles
2.4	The position of a gene on a chromosome	Locus
2.5	The non-sex chromosomes in humans	Autosomes
2.6	An inherited disorder where blood fails to clot properly	Haemophilia
2.7	The number, shape and arrangement of all chromosomes in the nucleus of a somatic cell	Karyotype
2.8	A genetic cross involving one gene and its alleles	Monohybrid
2.9	A genetic disorder where blood does not clot	Haemophilia
2.10	The use of living organisms and their biological processes to improve the quality of human life	Biotechnology
2.11	The type of inheritance involving two alleles that are not dominant over one another	Incomplete dominance
2.12	Characteristics controlled by genes which are located on the sex chromosomes	Sex-linked
2.13	The type of inheritance involving alleles that equally determine the phenotype of heterozygous offspring	Codominance
2.14	An allele that is expressed phenotypically only in the homozygotis condition	Recessive
2.15	The physical and functional expression of a gene nnn	Phenotype
2.16	The production of a genetically identical copy of an organism using biotechnology	Cloning

2.17	The manipulation of the genetic material of an organism to get desired changes	Genetic engineering
2.18	A diagram showing the inheritance of genetic disorders over many generations	Pedigree diagram
2.19	An allele that does not influence the phenotype when found in the heterozygous condition	Recessive
2.20	Organismshaving two identical alleles at a given locus	Homozygous
2.21	An allele fhat lis always expressed in the phenotype	Dominant
2.22	An individuat having two non-identical alleles for a characteristic	Heterozygous
2.23	A segment of a chromosome that codes for a particular characteristic	Gene
2.24	The type of inheritance which produces an intermediate phenotype	Incomplete dominance
		$24 \times 1=(24)$

Question 3
 Matching Columns

3.1 Both A and $B \checkmark \checkmark$
3.2 None $\checkmark \checkmark$
3.3 A only $\checkmark \checkmark$
3.4 B only $\checkmark \checkmark$
3.5 A only $\checkmark \checkmark$
3.6 None $\checkmark \checkmark$
3.7 A only $\checkmark \checkmark$
3.8 B only $\checkmark \checkmark$

Question 4

4.1 Incomplete dominance \checkmark
4.2 - The pink flower colour is an intermediate phenotype $\checkmark /$ a blend of red and white indicating that neither of the alleles is dominant \checkmark

Downloaded from Stanmorepfysics.com
$4.3 \quad \mathbf{P}_{1}$
Meiosis
Phenotype Genotype

G/gametes
Fertilisation
$F_{1} \quad$ Genotype
P_{1} and F Pn
Meiosis and fertilisation \checkmark
$P_{1} \quad$ Phenotype Genotype

Meiosis
Fertilisation
$F_{1} \quad$ Phenotype
Meiosis and fertilisation \checkmark

1 Red: 2 Pink: 1 Whiter*

OR

Gametes	R	W
R	RR	RW
W	RW	WW

1 mark for correct gametes
1 mark for correct genotypes

1 Red: 2 Pink: 1 White ${ }^{*}$

1* compulsory + Any 5

Question 5

$5.1 \quad P_{1}$

Meiosis

	G/gametes
Fertilisation	
F_{1}	Genotype
	Phenotype

P_{1} and $F_{1} \checkmark$
Meiosis and fertilisation \checkmark

[^0]
5.2 Dounloqded from stanmorepfysics.com
 Normal emales have two X chromosornes

- Normal males have one X and one $Y \checkmark$
- The female always provides X in the egg \checkmark
- If an egg cell is fertilized by an X bearing sperm \checkmark a female/girl \checkmark is formed
- If an egg is fertilized by a Y bearing sperm
- a male/boy ${ }^{\checkmark}$ is formed

Question 6

6.1 Purple \checkmark
6.2 -When purple-flowering plants and white-flowering plants are crossed \checkmark

- all the offspring have purple flowers \checkmark /have no white flowers
6.3 The two alleles for a characteristic \checkmark
- separate during meiosis \checkmark so that
- each gamete contains only one allele \checkmark for that characteristic

6.4 $\underset{\mathbf{P}_{1}}{\text { Downloaded from } \operatorname{Stanmorepfysics.com~}}$

*Compulsory $1+$ Any 5
OR

$\mathbf{P 1}_{1} \quad$| Phenotype |
| :--- |
| Genotype |

Purple $\quad x \quad \begin{aligned} & \text { Purple } \\ & x\end{aligned}$

Meiosis
Fertilisation

1 mark for correct gametes 1 mark for correct genotypes

$\quad F_{1} \quad$ Phenotype	Purple: White \imath^{*}
P_{1} and	
$\mathrm{F}_{1} \downarrow$	
Meiosis and fertilisation \checkmark	

Question 7

7.1 ffHh
7.2
(a) (a) $\mathrm{FfHh} \checkmark \checkmark$
(b) (b) 3^{r}
(c) (c) h^{\checkmark}
(d) (d) Long fingers and continuous hairline $\checkmark \checkmark$

Question 8

8.1 Dihybrid \checkmark cross
(1)
8.2 TTrr $\checkmark \checkmark$
8.3 $\operatorname{TR} \checkmark, \operatorname{Tr} \checkmark, t R \checkmark, \operatorname{tr} \checkmark$

Questiong ${ }^{\text {Donloaded from } \operatorname{Stanmorepfysics.com~}}$

-An individual inherits one allele from each parent \checkmark

- The Y chromosome was inherited from the father $\checkmark \checkmark$
- and the recessive allele/ X^{h} was inherited from the mother $\checkmark \checkmark$
- since the mother has two recessive alleles $/ X V^{h} X^{h}$
- A son only needsto get one recessive allele to be haemophiliac \checkmark since the
- Y-chromosomedoes not carry any allele to mask the haemophilia allele \checkmark Any

Question 10
 \square

10.1 Pedigree \checkmark diagram
10.2 (a) $6 \checkmark$
(b) $1 \checkmark$
$10.3 \mathrm{X}^{\mathrm{G}} \mathrm{X}^{\mathrm{g}} \checkmark \checkmark$
10.4 Unaffected $\checkmark \checkmark$ / without Goltz syndrome
10.5 - Pilusa is affected $\checkmark X^{G} Y$

- Anju is unaffected $\checkmark \mathrm{X}^{g} \mathrm{X}^{g}$
- Males inherit the Y chromosome from Pilusa \checkmark
- and inherit X^{9} from Anju \checkmark

Question 11

11.1 (a) Normal female
(b) $X^{H} X^{h} \checkmark \checkmark$
11.2 - Haemophilia is caused by a recessive allele

- Carried on the X chromosomer
- Females have two X chromosomes $\sqrt{ } /$ Males only have one X chromosome
- Females must inherit two copies of the recessive allele $\checkmark /$ females who inherit only one of the recessive allele are still normal

Any (3)

$\mathbf{P}_{1} / \mathbf{P}_{3}$ Phenotype Genotype $\left[\begin{array}{l}\text { Meiosis } \\ \text { Fertilisation }\end{array}\right.$	Normal male \times Haemophiliac female$X^{H} Y \times X^{n} x^{h} v$		
	Gametes	$X^{\text {n }}$	$\mathrm{X}^{\text {h}}$
	$\mathrm{X}^{\text {H }}$	$\mathrm{X}^{\text {H }} \mathrm{X}^{\text {h }}$	$\mathrm{X}^{H} \mathrm{X}^{\text {h }}$
	Y	$\mathrm{X}^{\text {\% }} \mathrm{Y}$	$\mathrm{X}^{\text {h }} \mathrm{Y}$
	1 mark fo 1 mark fo	rect gam	

F_{1} / F_{3} Phenotype 2 normal daughters: 2 haemophiliac sons \checkmark
. 50%, chance of having a haemophiliac son
P_{1} and F_{1} r
Meiosis and fertilisation \checkmark *1 compulsory+any 6

Question 12

12.1 A change in the sequence \checkmark of nitrogenenous bases $\checkmark /$ nucleotides in a gene
12.2 Nigeria \checkmark \%
$12.3 \underline{39746} \checkmark \times 100 \checkmark=13 \checkmark \%$
305733
12.4 (a) dd \checkmark
(b) $\mathrm{Dd} \checkmark$

Question 13

13.1 The dominant allele is always expressed (in the phenotype) when in the heterozygous condition $\checkmark \checkmark$ OR

- The dominant allele masks/hides the (phenotype of the) recessive allele $\checkmark \checkmark$

$$
\begin{equation*}
\xrightarrow{n n n} \tag{2}
\end{equation*}
$$

13.2
(a) N^{\vee}
(b) $\mathrm{Tt} \checkmark$

- Individual K is $\mathrm{tt} \checkmark$
- Individual O is a non-taster $\checkmark /$ is homozygous recessive/tt
- She must have inherited a recessive allele/t from each parent \checkmark
- Therefore, J must have one recessive allele \checkmark / t

OR

- J is ataster and therefore must have one dominant allele \checkmark / T
- If Jishomozygous dominant \checkmark /TT
- and
- then it is not possible to have child (O) who is homozygous recessive \checkmark / tt
- as she must have inherited a recessive allele/t from each parent \checkmark

Any (4)
(8)

Question 14

14.1 (a) $3 \checkmark /$ Three
(b) $2 \checkmark / T w o$
14.2 Hearing \checkmark
14.3 - Bob and Ann can both hear \checkmark

- They have a child who is deaf $\checkmark /$ who has the genotype aa
- This means that each parent carries an allele for deafness \checkmark /are heterozygous/Aa
- but it is masked \checkmark by the dominant allele /which is for hearing
14.4 AA \checkmark and Aar

Question 15

15.1 - Spine \checkmark

- Hips \checkmark
(Mark first TWO only)
15.2 - A change in the sequence \checkmark
- of nitrogenous bases \checkmark /nucleotides in DNA
15.3 - To check for the gene mutation \checkmark
- and if it results in the high bone density \checkmark
15.4 Produces high bone density \checkmark /reduces the risk of bone fracturesno
$15.5 \frac{13}{20} \checkmark \times 100 \checkmark=65 \checkmark \% \quad$ OR $\quad \frac{7}{20} \times 100 \checkmark=35 \%$ nחn

16.1 (a) $4 \checkmark /$ Four
(b) $1 \checkmark /$ One
$16.2 \quad \mathrm{IA}_{\mathrm{i}} \downarrow \checkmark$
16.3 (a) Son $1 \checkmark$
(b) Monther
(c)
(c) Son 18

Question 17

17.1 - The nucleus of the somatic cell is diploid $\checkmark /$ has a full set of chromosomes/has all the genetic material whereas

- the nucleus of the sperm cell is haploid \checkmark /contains half the set of chromosomes/ has half the genetic material
- The somatic cell carries the desired characteristic $\checkmark /$ straight hair
17.2 -To ensure that:
- The DNA (of the ovum)/characteristic of curly hair is removed \checkmark
- Only the desired DNA is present in the clone \checkmark
- Correct number of chromosomes is present in the clone \checkmark

Any
17.3 (Horse) S \checkmark
17.4 - To produce organisms with desired traits \checkmark e.g. health, appearance, nutritious, yield, shelf life etc.

- Conservation of threatened species \checkmark
- To create tissue/organs for transplant \checkmark

Any
(Mark first TWO only)

Question 18

$\left.18.1 \quad\right|^{\mathrm{A}} \checkmark \mathrm{I}^{\mathrm{B}} \checkmark \mathrm{i} \checkmark$
$18.2 \quad 2 \checkmark$
18.3 - Any individual inherits one allele \checkmark

- from each parent \checkmark
18.4 - Each child \checkmark
- has an equal $\checkmark / 25 \%$ chance of having
- any blood group $\sqrt{ } / \mathrm{A}, \mathrm{B}, \mathrm{AB}$, or O .

Question 19 loaded from Stanmorepfysics.com

19.1 (a) $\left.\left.\right|^{B}\right|^{B} \checkmark$ of $I^{B} \mathfrak{i} \checkmark$
(b) ii \checkmark
19.2 - The baby inherited one allele for type O blood/i from each parent \checkmark since - her genotype is ii \checkmark

- Mr Phonela does not have an allele for O blood \checkmark
19.3 Blood type can be used to exclude a particular \checkmark man as the parent but it cannof confirm that a particular man is the father \checkmark Since a large portion of the population have the same blood type \checkmark Any $\xrightarrow{\square}$

Question 20

$20.1 \quad 3 \checkmark /$ Three
20.2 - Complete dominance \checkmark

- The allele for blood group B/ IB is dominant $\checkmark \checkmark$ and
- the allele for blood group O/ i is recessive $\checkmark \checkmark$
20.3

\mathbf{P}_{1}	Phenotype:	Blood group $A B$	\times Blood group $B \checkmark$
	Genotype:	$\left.\left.\right\|^{A}\right\|^{B}$	$\times\left.\right\|^{B} i v$

Meiosis

Phenotype: Blood group:
P_{1} and $F_{1} \checkmark$
Meiosis and fertilisation \checkmark

$$
\text { Compulsory 2*+ Any } 4
$$

Dounloaded from Stanmorepfysics.com

P_{1}
Phenotype: Blood group AB
x Blood group $B \checkmark$
Genotype:
$\left.\left.\right|^{A}\right|^{B}$
$\left.x\right|^{B_{i}}$
(6)

Meiosis

1 mark for correct gametes
1 mark for correct genotypes*
$F_{1} \quad$ Phenotype: Blood group:
AB;
A;
$B \vee^{*}$
P_{1} and $F_{1} \downarrow$
Meiosis and fertilisation \checkmark
Compulsory 2* ${ }^{*}$ Any 4 ,

Question 21

- The blood group of a child is determined by the alleles received from both parents \checkmark
- The blood group of the mother, the child and the possible father is determined \checkmark
- If the blood group of the mother and possible father cannot lead to the blood group of the child \checkmark
- the man is not the father \checkmark
- If the blood group of the mother and the possible father can lead to the blood group of the child \checkmark
- the man might be the father \checkmark
- This is not conclusiver
- because many men have the same blood group r Any 6

Question 22

22.1	Dihybrid \checkmark cross			(1)
22.2	(a)	Smooth \checkmark stem		(1)
	(b)	Elongated \checkmark fruit		(1)
22.3	(a)	nnrr $\checkmark \checkmark / \mathrm{nrnr} / \mathrm{rrnn}$	nol	(2)
	(b)	Smooth stem round fruit $\checkmark \checkmark$	0	(2)
			0	(7)
\square				

Question 23 loaded from Stanmorepfysics.com

23.1	- The disorder is controlled by alleles $\checkmark /$ genes that - are located on the autosomes \checkmark	(2)
23.2	One $\sqrt{ } / 1$	(1)
23.3	- Individuals 3 and 4 are both without Tay-Sachs disease \checkmark - The child has Tay-Sachs \checkmark /Individual 7 has Tay-Sachs - whichis only expressed in the phenotype in a homozygous condition \checkmark - Each parent must carry a recessive allele $\checkmark /$ be heterozygous - The child has two recessive alleles \checkmark - One was received from each parent \checkmark OR - Individuals 3 and 4 are both without Tay-Sachs disease \checkmark - If it was caused by a dominant allele \checkmark - then individual 3 or 4 would have Tay Sachs \checkmark - and still have a child with Tay-Sachs $\checkmark /$ individual 7 has Tay-Sachs - who could be heterozygous \checkmark Any	(5)
23.4	$\begin{aligned} & \hline \mathrm{TT} \checkmark \\ & \mathrm{tt} \checkmark \end{aligned}$	(2)
		(10)

Question 24

Question 25

Question ${ }^{26}$ loaded from Stanmorepfysics.com

26.1	$3 \checkmark /$ Three	(1)
26.2	(a) $\mathrm{H} \checkmark$	(1)
	(b) $\mathrm{Rr} \checkmark$	(1)
	(c) $\mathrm{C} \checkmark$ and $\mathrm{F} \checkmark$	(2)
		(5)
Question 27		
27.1	Dihybrid $\sqrt{\text { cross }}$	(1)
27.2	(a) Brown \checkmark fur and long ears \checkmark	(2)
	(b) bbee $\checkmark \checkmark$	(2)
	(c) Be \checkmark be \checkmark	(2)
		(7)
Question 28		
28.1	$954000 \checkmark$	(1)
28.2	$\begin{aligned} & 1800000 \checkmark-(954000+180000+54000) \checkmark \\ & =612000 \checkmark \text { people } \\ & 1800000 \checkmark-1188000 \checkmark \\ & =612000 \checkmark \text { people } \\ & \frac{34}{100} \checkmark \times 1800000 \checkmark=612000 \checkmark \text { people } \end{aligned}$	(3)
28.3	- The allele for blood group A / I^{A} is inherited from one parent \checkmark and - the allele for blood group B / I^{B} is inherited from the other parent \checkmark therefore - the child has blood group $A B \checkmark /$ genotype $\left.I^{A}\right\|^{B}$	(3)
		(7)

Question 29

29.1 - Males have only one X chromosome $\checkmark /$ The Y-chromosome does not have this allele and

- have to inherit only one recessive allele \checkmark to have white teeth
- whereas females have two X chromosomes \checkmark and have to inherit two recessive alleles to have white teeth \checkmark

Question 30

30.1	- Embryos \checkmark - Umbilical cord \checkmark - Bone marrow \checkmark (Mark first THREE only)	(3)
30.2	- Stem cells are undifferentiated \checkmark and have the potential to develop into any type of cell \checkmark to replace affected/defective cells \checkmark causing a disorder	(2)
30.3	- Stem cells are undifferentiated \checkmark and have the potential to develop into any type of cell \checkmark to replace affected/defective cells \checkmark causing a disorder Any	(1)
		(6)

Downloaded from Stanmorepfysics.com

TOPIC: EVOLUTION

Question1

1.1 B $\checkmark \checkmark$
1.2 $C \checkmark \checkmark$
1.3 C $\checkmark \checkmark$
$1.4 \mathrm{D} \checkmark \checkmark$
$1.5 \mathrm{D} \checkmark \checkmark$
1.6 C $\checkmark \checkmark$

$1.7 \mathrm{~B} \checkmark \checkmark$
1.8 C $\checkmark \checkmark$
$1.9 \mathrm{~B} \checkmark \checkmark$
$1.10 \mathrm{D} \checkmark \checkmark$

Question 2

	DESCRIPTION	TERM
2.1	A type of variation where there is a range of phenotype for the same characteristics	Continuous variation
2.2	Present day distribution of living organisms	Biogeography
2.3	The selection of desirable characteristics by humans	Artificial selection/ selective breeding
2.4	The process whereby new species are formed	Speciation
2.5	The type of variation in a population with no intermediate phenotype	Discontinuous variation
2.6	An explanation describing evolution as consisting of long phases of little change alternating with short phases of rapid change	Punctuated Equilibrium
2.7	The permanent disappearance of species from earth	Extinction
2.8	An explanation for something that has been observed in nature and which can be supported by facts, laws, and tested hypothesis	Theory

2.9	Organisms with similar characteristics, able to interbreed randomly and produce fertile offspring	Species				
2.10	Structured in different organism that have similar basic plan which suggest that they share common ancestor	Homologous structures				
2.11	The process that enables organisms with desirable characteristics to survive and reproduce in a particular environment	Natural selection				
2.13	Remains of life forms preserved in rocks, ice, and dried sap trees?		Fossils	2.14	Change in the characteristics of species over time	Biological evolution
:---	:---	:---				
2.15	Large, pointed teeth in African apes that are used for tearing food	Canine				
2.16	The part of the skull that houses the brain	Cranium				
2.17	Having a protruding jaw	Prognathous				

2.18	A diagrammatic representation showing possible evolutionary relationships between different species	Phylogenetic tree/ Cladogram
2.19	The opening in the base of the skull through which the spinal cord passes	Foramen magnum
2.20	Family to which humans belong	Hominidae
2.21	An upright posture and walking only on two legs	Bipedalism
2.22	The type of ivision shared by apes and humans that allows for depth perceptionnत	Stereoscopic vision
2.23	The act of walking on all four limbs	Quadrupedal
2.27	Similar structures that are inherited from a common ancestor and are modified for different functions	Homologous structures
2.28	The formation of new species	Speciation
	(28 X 1)	(28)

Question 3

3.1 A only $\checkmark \checkmark$
3.2 B only $\checkmark \checkmark$
3.3 Both A and B $\checkmark \checkmark$
3.4 A only $\checkmark \checkmark$
3.5 Both A and B $\checkmark \checkmark$
3.6 A only $\checkmark \checkmark$
3.7 B only $\checkmark \checkmark$

Question 4

4.1 Genetic \checkmark evidence
4.21 - A

C
$2-C \checkmark O R A$
$3-B \checkmark \quad B$
(4)

5.1

Guideline for assessing the graph

CRITERIA	ELABORATION	MARK
Correct type of graph (T)	Histogram drawn	1
Caption of graph (C)	Both variables included	1
Axes labels (L)	X - and Y -axis correctly labelled with units	1
Scale for X - and Y -axis (S)	- Same width of bars for X-axis and - Correct scale for Y -axis	1
Plotting of bars (P)	1 to 4 bars plotted correctly All 5 bars plotted correctly	$\begin{aligned} & 1 \\ & 2 \end{aligned}$

(6)
$5.2 \frac{11}{246} \checkmark \times 100 \checkmark=4,47 \checkmark \%$ (Accept 4,5)
5.3 Continuous \checkmark variation
5.4 There is range of intermediate phenotypes $\checkmark /$ the fat content \% is a range

Questionninloaded from Stanmoreptysics.com

6.1 - Crossing over

- Random arrangement of chromosome \checkmark
- Random fertilisation \checkmark
- Chromosomal mutation \checkmark
- Randommating \checkmark
6.2 (a) Mutant gene $\checkmark /$ inherited from their ancestors
(b) Inffuenced by altitude $\checkmark /$ level of oxygen
6.3 - More haemoglobin present \checkmark
- to allow for maximum absorption of the available oxygen \checkmark OR
- more oxygen will be available \checkmark
- to ,meet their energy need \checkmark
6.4 - Originally the amount of red blood cells was similar in all humans $\checkmark /$ the Tibetans did not produce the number of red blood cells
- as a result of low oxygen content at high altitudes \checkmark
- the red blood cells tried to increase the amount of oxygen absorbed
- as a result ancestral Tibetans produce more red blood cells $\checkmark /$ developed ways of using oxygen more efficiently to increase the availability of oxygen to the body
- this acquired characteristics \checkmark
- was passed on to their offspring \checkmark
- all Tibetans now produce more red blood cells $\checkmark /$ use oxygen more efficiently to survive at high altitude.

Question 7

7.1 (a) Gall size
(b) Percentage of gallfly larvae killed
7.2 - nutrition / food

- protection
- space
(Any one)
(Mark the first ONE only)
7.3 - There is a range of (intermediate) values in gall size
$7.4 \quad$ - Larvae in 30 mm galls are eating more
- since there are more visible to birds and
- contain more/ larger larvae

OR

- larvae in galls that are 25 mm and smaller are eaten less
- since they are less visible to birds and
- contain fewer / smaller larvae

7.5

Guideline for the assessing of the graph

CRITERIA	ELABORATION	MARK
Correct type of graph (T)	Line graph drawn	1
Caption of graph (C)	Both variables included	1
Axes labels (L)	Correct labels and units on X- and Y-axes	1
Scale for X- and Y-axes (S)	Equal spacing between intervals for each axis	1
Plotting of points (P)	1 to 4 points plotted correctly All 5 points plotted correctly	1

Question 8

8

- Organisms produce a large number of offspring \checkmark
- There is variation \checkmark amongst the offspring
- Some have favourable characteristics and some do not \checkmark
- When there is a change in the environmental conditions $\checkmark /$ there is competition
- organisms with favourable characteristics, survive r
- whilst organisms with unfavourable characteristics, die \checkmark
- The organisms that survive, reproducer
- and pass on the allele for the favourable characteristic to theiroffspring \checkmark
- The next generation will therefore have a higher proportion o individuals with the favourable characteristic \checkmark

Downloaded from Stanmorepfysics.com

Question 9

9.1 - He would use his of use and disuse \checkmark

- and law of iheritance of acquired characteristics \checkmark
- The ancestor of spider monkeys had short tails \checkmark
- to be able to hold onto tree branches \checkmark
- As a resultitheir tails became longer \checkmark
- and this characteristic was passed on to the next generation \checkmark Any
9.2 - Evolution occurs by natural selection \checkmark
- There was variation in the ancestral population
- Some spider monkeys had short tails \checkmark
- and some had long tails \checkmark
- The spider monkeys with long tails were able to hold onto tree branches $\checkmark /$ did not
- fall to the ground
- and survived $\checkmark /$ were not attacked by predators
- Those with short tails could not hold onto tree branches \checkmark /fell on the ground
- They died \checkmark /were attacked by predators
- The characteristic for long tails was passed to the offspring \checkmark Any

Question 10

10

| Lamarckism | Darwinism |
| :--- | :--- | :--- |
| $1 \begin{array}{l}\text { Variation of the offspring } \\ \text { occurs when individuals in the } \\ \text { population change. } \checkmark\end{array}$ | $\begin{array}{l}\text { Variation in the offspring is } \\ \text { inherited. } \checkmark\end{array}$ |
| 2 Change occurs because of | |
| adaptation to the environment// | |
| Law of use and disuse. \checkmark | |\(\left.\quad \begin{array}{l}Natural selection - individuals best

suited to the environment

survive. \checkmark\end{array}\right]\)| The population as a whole |
| :--- |
| changes. |

(Mark first THREE only) Any

Question 11

11.1 - As the wingswere used less \checkmark

- they became reduced in size \checkmark /less developed
- and could not be used for flying \checkmark
- This acquired characteristic was passed on to the offspring \checkmark

Question 12

12.1 (a) (Species-specific) courtship behaviour \checkmark
(b) Length of the (male long-tailed widowbird's) tails \checkmark
12.2 - A larger sample size \checkmark

- Increases the reliability \checkmark of the investigation
12.3 - To serve as a control \checkmark
- so that it can be compared \checkmark with the other groups
- and show that the tails length is the only factor that affects the results \checkmark /improves the validity of the investigation Any
(2)

12.4

Downloaded from Stanmorepfysics.com

Guideline for assessing the graph

CRITERIA	ELABORATION	MARK
Correct type of graph (T)	Bar graph drawn	1
Caption of graph (C)	Both variables included	1
Axes labels (L)	X- and Y-axis correctly labelled	1
Scale for X- and Y-axis(S)	Equal space between bars and width of bars for X-axis and Plotting of bars (P)1 to 2 bars plotted correctly All 3 bars plotted correctly	1

12.5 The longer the (male long-tailed widowbird's) tail, the higher the mating success $\checkmark \checkmark$

OR

The shorter the (male long-tailed widowbird's) tail, the lower the mating success $\checkmark \checkmark$

Question 13 loaded from Stanmorepfysics.com

13.1 - The mating call can be easily heard $\checkmark /$ can be heard over a distance

- to ensure that a mate is attracted \checkmark
13.2 - The investigation was done over a long period $\checkmark / 6$ years
- Many recordings were done in each year $\checkmark /$ an average was calculateann Any 1
nnon
13.3 As the traffienbise increased, the loudness of frogs' mating calls increased $\stackrel{\rightharpoonup}{\sigma}$
13.4 - Type of apparatus used \checkmark
- Time of recordings \checkmark
- Distance recordings are taken from \checkmark
- Person taking measurements \checkmark Any 2
(Mark first TWO only)
13.5

Comparison of the loudness of traffic noise and mating calls for a period of four years/from 2006-2009

CRITERION	ELABORATION	MARKS
TYPE	Two line graphs on the same set of axes (T)	1
KEY	A key or labels for each graph is present (K)	1
TITLE	Title of graph includes 3 variables	1
SCALE	Correct scale for X-axis and Y-axes \quad (S)	1
LABELS	Correct label and unit for X-axis and Y-axis (L)	1
PLOTTING	Correct plotting of points	$1: 1$ to 7 points plotted correctly Graph drawn for required years only, with all 8 points plotted correctly.

14.1 Survival of the owls \checkmark

14.2 The brown owls are less suited to survive than the white owls $\checkmark \checkmark$ OR
14.3 The white owds are more suited to survive than the brown owls $\checkmark \checkmark$
nan
14.4 - There isnardecrease in the number of white owls \checkmark because

- there is less snow \checkmark and
- white owls-will not be camouflaged $\checkmark /$ will be more visible to predators
14.5 - They counted/sampled the number of owls at the beginning \checkmark of the 4-month period
- and again, at the end \checkmark
- Then they calculated the difference \checkmark between the two numbers
14.6 (Same):
- Time period $\checkmark / 4$ months
- Population \checkmark
- Season $\checkmark /$ winter
- Method of calculation \checkmark Any
(Mark first ONE only)

Question 15

15.1 - They measured the jaw size of lizards on both islands \checkmark and

- determined the average jaw size for each population \checkmark
- They calculated the difference \checkmark between the two
15.2 - A larger jaw allows for better muscle attachment \checkmark
- Thereby increasing the bite force \checkmark /ability
- to break down the fibrous plant material \checkmark
15.3 - They allowed the lizards of the two islands to mate \checkmark
- and determined if they were able to interbreed \checkmark and
- give rise to fertile offspring \checkmark Any

15.4 Do - Briodiversity remains the same surthere is no sic sfect
- because the number of species remains the same \checkmark la new species has not been formed

OR

- Biodiversity decreases \checkmark
- becausesome species of plants eaten on Island B could becomeextinct $\sqrt{ }$ $\xrightarrow[\square 1 ด ก]{\square}$

15.5 - There is variation in the size of the lizards' jaws \checkmark
- Some have small jaws and others have large jaws \checkmark
- Due to the larger supply of plants $\checkmark / f e w e r$ insects
- the lizards with the larger jaws will have more food \checkmark
- and survive \checkmark
- while those with smaller jaws will be unable to feed \checkmark
- and die \checkmark
- The lizards that survive will reproduce \checkmark and
- the allele for larger jaws will be passed on to the offspring \checkmark
- The next generation will have a higher proportion of lizards with larger jaws \checkmark

Any

Question 16

$16.11900 \checkmark$
$16.2\left\{\frac{80}{20}\right\} \checkmark \times 100 \checkmark=400 \vee \%$

OR

$\left\{\frac{(100-20)}{20}\right\} \checkmark \times 100 \checkmark=400 \vee \%$
16.3

Natural selection Artificial selection The environment or nature is the selective force \checkmark Humans represent the selective force \checkmark Selection is in response to suitability to the environment \checkmark Selection is in response to satisfying human needs \checkmark Occurs within a species \checkmark May involve one or more species \checkmark (as in cross breeding) (Mark first TWO only) 1 for Table + Any 2×2

Question ${ }^{\text {Din }}$ aded from S tanmorepfysics.com

17.1 - It is characterised by long periods of little or no change \checkmark

- alternating with short periods of rapid change \checkmark
- during which new species may form \checkmark
17.2 They containtoxins \checkmark which kill the snakes

17.3 - Having a small jaw \checkmark
- means cane toads cannot be consumed \checkmark
- thereby protecting the snakes from ingesting the toxins \checkmark
17.4 Since the snake's jaws were used less \checkmark /not used the snakes developed smaller jaws \checkmark
This characteristic (of a smaller jaw) was inherited by the offspring \checkmark
Over many generations the jaw of the snake became smaller \checkmark

Question 18

18 - A population of a particular species becomes separated

- by a geographical barrier \checkmark
- There is no gene flow between the separated populations r
- Natural selection occurs independently in each population \checkmark
- due to exposure to different environmental conditions $\sqrt{ } /$ selection pressures
- The populations become very different $\sqrt{ }$ from each other
- genotypically and phenotypically \checkmark
- Even if the populations were to mix again \checkmark
- they will not be able to interbreed \checkmark
- The different populations are now new species \checkmark

Any

Question 19

19.1 - There was once one large continent \checkmark and

- the common ancestor existed throughout this continent \checkmark
- When Madagascar separated \checkmark
- the common ancestor was found in both \checkmark regions

Downloaded from Stanmorepfysics.com
19.2 - The common ancestor became separated into two groups
by the ocean $\sqrt{ }$ *

- There was no gene flow between the two groups \checkmark
- Each group experienced different environmental conditions \checkmark
- and underwent natural selection independently \checkmark
- The individuals in each group became different \checkmark
- genotypic्वl\#f and phenotypically \checkmark
- to form thee pottos and lemurs $\sqrt{ }$ *
- Eventuallyifif the two groups are mixed again, they cannot interbreed 1 produce fertile offspring. *2 Compulsory + Any 4|

Question 20

20.1 Biogeography \checkmark
20.2 - Similar organisms \checkmark

- that can interbreed \checkmark
- to produce fertile offspring \checkmark
20.3 - The original population/common ancestor once lived on a large continent \checkmark
- and became separated by continental drift \checkmark /oceans - There was no gene flow amongst the three populations $\sqrt{ }$ *
- Each population experienced different environmental conditions \checkmark - and underwent natural selection independently \checkmark
- The individuals in each population became different \checkmark genotypically and phenotypically \checkmark
- Even if the (three) populations are mixed again \checkmark
- they would not be able to interbreed $\checkmark /$ produce fertile offspring forming the different species, the coyote, jackal, and dingo \checkmark *

$$
\begin{equation*}
2 \text { compulsory* }+ \text { any } 5 \tag{7}
\end{equation*}
$$

Question 21

21 MUTATIONS AND EVOLUTION IN PRESENT TIMES

- In a population of insects $\checkmark /$ bacteria/Hi viruses/Galapagos finches
- mutations are a source of variation \checkmark
- which may make some organisms more resistant $\checkmark /$ better suited
- to insecticides \checkmark /antibiotics/antiretroviral medication/drought
- Those individuals that are not resistant/suited will die \checkmark whereasinn
- those that are resistant/well suited, will survive \checkmark
- This is known as natural selection \checkmark
- As a result, individuals of the future generations will be resistant to the - insecticides \checkmark /antibiotics/antiretroviral/adapted to drought

> Any

Downloaded from Stanmorepfysics.com

Question 22

22.1 - It decreases the number of harmful bacteria the most \checkmark

- thereby preventing disease in cattle $\checkmark /$ resulting in less medical expenses
- Decreasing mortality $\checkmark / m a i n t a i n i n g ~ t h e ~ n u m b e r ~ o f ~ c a t t l e ~$
- to sell $\checkmark /$ breed /increase profit
22.2 - Natural selection \checkmark occurs - There is variation $\checkmark /$ mutation in the population o bacteria 2
- Some are resistant to antibiotics, some are non-resistant \checkmark
- When antibiotic is added \checkmark to the animal feed
- The bacteria that are non-resistant are killed by the antibiotic \checkmark
- Those that are resistant survive and reproduce \checkmark
- The characteristic for resistance to antibiotics is passed on to the offspring \checkmark
- The next generation will have a higher proportion of antibiotic resistant bacteria \checkmark

Question 23 foaded from Stanmorepfysics.com

23.1 Type of antibiotic \checkmark

23.2 Same:

- Environmental conditions \checkmark /example
- Amounfof antibioticr
- Concertfation of antibiotic
- Time Of itial injection of antibiotics \checkmark
- Age of the piglets \checkmark
- Species of piglets \checkmark
- Type food given to piglets \checkmark
- Amount of food given to piglets \checkmark
- Size/mass of piglets \checkmark
- Size of petri dishes \checkmark
- Growth medium in both sets of petri dishes \checkmark
- Sample size of E. coli \checkmark
- Method of measurement \checkmark
- Person doing the measurements \checkmark
- Time interval for measurements \checkmark Any
(Mark the first TWO only)
23.3
- Investigation was done over a period of six months \checkmark
- Took many measurements $\checkmark /$ calculated the average resistance
- Used a large sample sizer 100 piglets

Any
(Mark the first TWO only)
23.4 Antibiotic \mathbf{B}

- The average percentage resistance of E.coli to antibiotic \mathbf{B} is
23.5 lower \checkmark than its resistance to antibiotic \mathbf{A} therefore
- more E. coli bacteria die in the presence of antibiotic \mathbf{B} r
- There was variation \checkmark in the population of E. coli bacteria
- Some were resistant to antibiotic Ar
- others were not resistant \checkmark
- Those E. coli bacteria which were not resistant to antibiotic A were killed \checkmark
- Those which were resistant to antibiotic A survive $/$ /reproduced
- passing on the alleles for resistance to their offspring \checkmark
- Over time, the resistance to antibiotic A increased \checkmark /the percentage of E. coli bacteria dying decreased

Question 24 loaded from Stanmorepfysics.com

24.1 - They invade farm fields \checkmark

- They outcompete the crop plants for spacer Any
24.2 (a) Type of herbicide \checkmark
(b) Time taken for development of resistance \checkmark
(a) Dicogmop
(b) Tiflomalinv
(a) - They would apply the herbicide to the weed $\sqrt{ }$ and
- observe if the weed survives \checkmark over many generations
(b) - They used the same weed species as other weed species may have developed resistance to that herbicider
- Each weed species may respond differently r to a herbicide

OR

- It allows for a single variabler
- to which all results can be attributed \checkmark

Guideline for assessing the graph

Type: Bar graph drawn (T)	1
Title of graph	1
Correct: - Scale for Y -axis and - Width and interval of bars on X -axis	1
Correct: - Label for X-axis and - Label and unit for Y -axis (L)	$1 \quad \pi$
Plotting of bars	1-1 to 4 bars plotted cortedily 2-All 5 bars plotted co meatly

Question $\mathbf{2 5}^{\text {Dinloaded from } S \text { tanmoreptysics.com }}$

25.1 Ambulocetus \checkmark

25.2 It had flipper-like large feet and a tail $\checkmark \checkmark$
(Mark first ONE only
25.3 - They share characteristics/have intermediate characteristics

- of the ancestor/Pakicetu \checkmark s and the present-day species/ Balaena

- They have legs like Pakicetus a \checkmark and
- flippers of the present day Balaena \checkmark
25.4 - Ancestral species of whales all had legs \checkmark /lived on land
- As more time was spent in the water \checkmark in search of food
- the legs were used less a \checkmark and disappeared
- the acquired characteristic was passed on to the next generation \checkmark

Any 3

Question 26

26.1 - A group of organisms of the same species \checkmark

- occupying the same habitat \checkmark
- at the same time \checkmark

26.2 They produce infertile offspring \checkmark
(Mark first ONE only)
26.3 - Breeding at different times of the year \checkmark
- Species-specific courtship behaviour \checkmark
- Adaptation to different pollinators \checkmark
- Prevention of fertilisation \checkmark Any
(Mark first THREE only)

Question 27

27.1 Artificial selection $\checkmark /$ selective breeding
27.2 -They chose dogs with desirable traits \checkmark
-and interbred \checkmark them to
-produce offspring with these traits \checkmark
27.3 -Allow them to interbreed with each other \checkmark -and see whether they produce fertile offspring \checkmark OR
-Analysis of DNA \checkmark
-to check for matching sequences \checkmark

Any

Question 29

29.1 - They measured the jaw size of lizards on both islands and \checkmark

- determined the average jaw size for each population \checkmark
- They compared the difference \checkmark between the two
29.2 - A larger jaw allows for better muscle attachment/m \checkmark ore teeth /larger teeth
- Thereby increasing the bite force \checkmark /ability
- to break down \checkmark the fibrous plant material
29.3 - They allowed the lizards of the two islands to mate \checkmark
- and determined that they were able to interbreed \checkmark and
- give rise to fertile offspring \checkmark

29.4 - Biodiversity remains the same/t \checkmark here is no effect

- because the number of species remains the same $/ \checkmark$ a new
species has not been formed

OR

- Biodiversity decreases \checkmark
- because some species of plants eaten on Island B could become extinct \checkmark

$29.5 \mathfrak{D o}^{-}$There is yariation in the size of the lizards' jaws ${ }^{2}$
- Some have small jaws and others have farge jaws
- Due to the larger supply of (fibrous) plants \checkmark /fewer insects
- those with smaller jaws will be unable to feed \checkmark
- and die \checkmark
- The lizards with the larger jaws will have more food \checkmark
- and survive \checkmark
- to reproduce \checkmark
- The allele for larger jaws will be passed on to the offspring \checkmark
- The nextgeneration will have a higher proportion of lizards with larger jawsin

Any

Question 30

30.1 (a) Probability of developing resistance to antiretroviral drugs \checkmark
(b)Number of missed treatments \checkmark
30.2 Treatment must not be missed \checkmark
30.3 The probability of HIV developing resistance to antiretroviral drugs increases with the increase in the number of missed treatments $\checkmark \checkmark$ OR
The more the days of missed treatment, the greater the probability of the virus developing resistance to antiretroviral drugs $\checkmark \checkmark$
30.4 - There is variation in the resistance \checkmark of the HI virus to antiretroviral drugs

- Some viruses are resistant \checkmark to the drugs and
- others are not resistant \checkmark
- Those that are not resistant do not survive \checkmark
- When treatments are missed \checkmark
- the resistant viruses survive and reproduce \checkmark
- passing the resistance to their offspring \checkmark

Any

Question 31

31.1 - Bare fingertips \checkmark / n nails instead of claws

- Opposable thumbs $\checkmark /$ gripping ability
- Fingerprints \checkmark
- Five fingers \checkmark
(Mark first ONE only)

(Mark first THREE only)
Table 1 + (3×2)
31.3 - Short \checkmark and
- wide $\checkmark / b r o a d$
- Cup-shaped \checkmark Any

(Mark first TWO only)

Question 32

32.1 Walking on two legs $\checkmark \checkmark$
32.2 (a) - Foramen magnum moved to a more forward position \checkmark

- to allow the spinal cord to enter vertically \checkmark
(b) - Pelvic girdle is short and wide $\checkmark / b r o a d$
- to support the upper body \checkmark
(c) - Spine is more curved \checkmark / S shaped
- to absorb shock \checkmark /allow flexible movement/support

Question 33

33.1 - To show a possible common ancestor \checkmark

- To identify trends in evolution \checkmark

33.2 - Both have opposable thumbs \checkmark
- to allow for a power grip $\checkmark /$ precision grip/ any example thereof
33.3 - Humans have small teeth \checkmark /canine whereas

African apes have large teeth \checkmark /canines

- There are no gaps \checkmark /diastema between the teeth in humans whereas African apes have gaps $\checkmark /$ diastema between the teeth

Question 34

34.1

Skull 1	Skull 2
Brow ridges pronounced \checkmark	Brow ridges less pronouncedr
More protruding jaws \checkmark /prognathous	Less protruding jaws $\checkmark /$ nonprognathous
Larger jaws \downarrow	Smaller jaws \checkmark
Smaller cranium size ${ }^{\text {r }}$	Larger cranium size \checkmark
Larger teeth \checkmark / canines	Smaller teeth \checkmark /canines
Poorly developed chin \checkmark	Well developed chin \checkmark
Sloping face r	Flat face $\sqrt{ }$
Mark first THREE only)	Table $1+(3 \times 2)$

34.2 - Freely rotating arms \checkmark

- Long upper arms \checkmark
- Rotation around elbow joints \checkmark
- Rotation around the wrists \checkmark
- Opposable thumbs \checkmark
- Bare fingertips $\checkmark /$ nails instead of claws
- Five fingers $\checkmark /$ pentadactyl limb
- Fingerprints present Any
(Mark first FOUR only)
34.3 - Since the cranium houses the brain \checkmark
- a large cranial volume indicates a larger brain $\checkmark /$ more brain cells
- which suggests greater intelligencer

35.2 - The foramen magnum is in a more forward position $\checkmark \checkmark$ (Mark first ONE only)
35.3

	A		B
1	Larger canines \checkmark	1	Smaller canines \checkmark
2	Jaws W/th teeth in a rectangular/U shape \checkmark	2	Jaws with teeth on a gentle/round curve \checkmark
3	Modepprtading jaw \checkmark / prognathous	3	Less protruding jaw $\checkmark /$ non-prognathous

(Mark first TWO only)
35.4 - The spine is S-shaped $\sqrt{ }$ *

- for flexibility \checkmark and
- shock absorption \checkmark

$$
1^{*} \text { compulsory + Any } 1
$$

6

Question 36

36.1 (a) $X \checkmark, Z \checkmark$ (in any order)
(Mark first TWO only)
(b) $C \checkmark$
36.2 - The pelvis is long \checkmark

- and narrow \checkmark
36.3
- The spine \checkmark
- is S-shaped for the bipedal organism \checkmark
- and C-shaped for the quadrupedal organism \checkmark

OR

- The foramen magnum \checkmark
- is in a more forward position in bipedal organisms \checkmark
- and in a backward position in quadrupedal organisms \checkmark
(Mark first ONE only)

Question 37

- The foramen magnum is located in a more forward position $\sqrt{ }$ below the skull
- showing that organism C is bipedal \checkmark
- This allows for the vertebral column/spine to extend vertically $\sqrt{ }$ from the base of the skull
- to batance the body weight in upright walking \checkmark

Any
(a)

(b) A
37.3

- There is an increase \checkmark
37.4 - in the cranium size $\sqrt{ }$ from organism \mathbf{B} to organism \mathbf{C}
- This will allow it to house a larger brain $\checkmark /$ cerebrum which suggests greater intelligence

Question 38

38.1 - The jaw is large in the chimpanzee $\sqrt{ }$ and small in Homo sapiens \checkmark

- The jaw/ palate is rectangular in the chimpanzeer $\sqrt{ }$ and rounded in Homo sapiens \checkmark
- Large spaces between the teeth in the chimpanzee \checkmark and small/no spaces in Homo sapiens \checkmark
- Large canines/teeth in the chimpanzeer and small canines/teeth in Homo sapiens \checkmark Any 1×2
(Mark first ONE only)
38.2 - The diet changed from eating raw food \checkmark in Australopithecus
- to a diet of cooked food \checkmark in Homo sapiens
38.3 (a) A transitional species shows intermediate characteristics
between two genera/species \checkmark

OR

It has characteristics common to both the ancestor species and the species that follows \checkmark

OR

The canines/ teeth are smaller than those of the chimpanzee but larger than those of Homo sapiens $\checkmark \checkmark$

Question 39

39.1 (a) -The foramen magnum was in a backward position \checkmark in the apelike beings

- but in more forward position \checkmark in modern humans
(b) - Modern humans have larger cranium \checkmark than ape-like beings
- Modern humans have less sloping forehead \checkmark than ape-like being
- Modern humans have cranium that is more rounded \checkmark than
ape- like being
Any 2
39.2 Foramen magnum
- This shows a change from quadrupedalism in ape-like beings to bipedalism in humans \checkmark *
- This creates increased awareness of the environment in sensing danger \checkmark /food
- Freeing hands to use implements $\checkmark /$ carry offspring
- Exposure of large surface area for thermoregulation \checkmark
- Display of sex organs/breast as part of courtship behaviour \checkmark 1* compulsory + Any 1
Cranium
- This allows space for larger brain \checkmark^{*} in humans than ape-like beings which makes the following possible:
- Better co-ordination of movement \checkmark
- Processing of large amount of information \checkmark
- Processing of information faster \checkmark
- Development of spoken and written languages to communicaten

$$
\begin{equation*}
1^{*} \text { compulsory + Ahy } 1 \tag{2}
\end{equation*}
$$

40.1 (a) - Sahelanthropus \checkmark

- Australopithecusr
- Homor Any
(Mark first TWO only)
(b) - Taung child $\sqrt{ }$
- Mrsples
- Dittle foot) \checkmark Any
(Markfirst TWO only)

(c) Sahelanthropus
40.2 Homo neanderthalensis \checkmark
$40.3 \quad 650 \checkmark \mathrm{~cm}^{3}$
40.3 ma

40.4

2,0 mya $/ 2000000$ years ago
40.5 Cultural evidence
(Mark first TWO only)

Question 41

41.1 Karabor
41.2 Australopithecus africanus \checkmark
41.3
a) (Lee) Berger \checkmark
b) (Raymond) Dart \checkmark

Question 42

42.1 Phylogenetic
42.2 (a) 5
(b) $4 \checkmark$
42.3 (Paranthropus) robustus \checkmark and (Paranthropus) boiseiv
42.5 (a) Accept any value in the range 4,3 to 4,5 million years ago $/$ /mya
(b) 1 mya
42.6
(a) Homo neanderthalensis
(b) Homo habilis

(9)

Question 43

43.1 Dothombidaéd from S tanmorepfysics.com

- Evidence such as tools \checkmark /weapons/ language/ artefacts
43.2 - is used to show advances \checkmark in human development

3 myar
43.3

- H. ergaster shows characteristics of both $\checkmark A$. afarensis and Homeldelbergensis
43.4
- thereforenit is a transitional \checkmark species \square

Question 44

44.1 Phylogenetic tree \checkmark /cladogram
$44.2 \quad 2 \checkmark$ /Two
44.3 (a) Homo habilis \checkmark
(b) (Homo) naledi \checkmark
44.4 (Homo) sapiens \checkmark
44.5 - Fossil \checkmark evidence

- Cultural \checkmark evidence
- Genetic \checkmark evidence
(Mark first TWO only)

$$
\text { Any } 2
$$

44.6 - A large cranial capacity \checkmark in Homo sapiens

- indicates a larger brain \checkmark
- leading to greater intelligence \checkmark

OR

- A small cranial capacity \checkmark in Australopithecus africanus
- indicates a smaller brain \checkmark
- leading to lower intelligence \checkmark
44.7 - Fossils of Australopithecus spp. were found in Africa only \checkmark and
- fossils of species X/Homo habilis were found in Africa only \checkmark
- The oldest fossils of Homo erectus were found in Africa \checkmark /the younger fossils were found elsewhere
- indicating that modern humans originated in Africa and migrated out of Africa \checkmark

Question 45

45.1 Phylogenetic tree $\checkmark /$ cladogram

45.2
(a) $P \checkmark$
(b) $R \checkmark$
45.3 (a) Bonobo \checkmark Chimpanzee \checkmark
(Mark first TWO only)

Dourloade of from Stanmorepfysics.com Gorilla \checkmark
Bonobor
Chimpanzee \checkmark
Any 2
45.4 - Foramen magnum at a more backward position \checkmark

- C-shaped spine \checkmark
- Pelvis long and narrow \checkmark
(Mark first THREE only)

Question 46

1090
\square
$0 n$

46.1 - Modern humans originated in Africa \checkmark and

- then migrated to other continents \checkmark
46.2 Hominidae \checkmark

46.3 Mitochondrial DNA \checkmark

46.4 - Fossils of Ardipithecus were found in Africa only \checkmark

- Fossils of Australopithecus were found in Africa only \checkmark
- Fossils of Homo habilis were found in Africa only \checkmark
- The oldest fossils of Homo erectus were found in Africa \checkmark
- The oldest fossils of Homo sapiens were found in Africar

> Any

Question 47

47.1 (Modern) humans originated in Africa and migrated to other parts of the world
47.2 - Fossils of Ardipithecus were found in Africa only \checkmark

- Fossils of Australopithecus were found in Africa only \checkmark
- Fossils of Homo habilis were found in Africa only \checkmark

- The oldest fossils of Homo erectus were found in Africa \checkmark / while the younger fossils of Homo erectus were found in other parts of the world \checkmark
- The oldest fossils of Homo sapiens were found in Africa \checkmark / while the younger

Doussils of Homosapienswere found in ether parts of the world \checkmark and

[^0]: (6)

