

CURRICULUM GRADE 10-12 DIRECTORATE

2023

PREAMBLE

This document has been prepared as support material for Grade 11 Life Sciences.

The material has been arranged in such a way that studying can be undertaken topic-wise. Within each topic, questions on the different sub-topics are arranged in the same sequence as that in the 2023 Amended Annual Teaching Plan (ATP).

This document takes the following into account:

- Focus on core concepts and content per topic as well as the relevant Life Sciences skills.
- Activity based Revision sessions and constant feedback on assessments/activities given.
- Scaffolding of concepts according to cognitive/difficulty levels and a
 differentiated approach to cater for learners with different abilities.
- Addressing the Common errors & misconceptions in each topic.
- Providing multiple opportunities for learners to master concepts through multiple exposure using different source stimuli.
- A focus on **scientific investigations** and **biological terminology** for each topic.
- Consolidating and supplementing topics through the use of previous examination question papers.

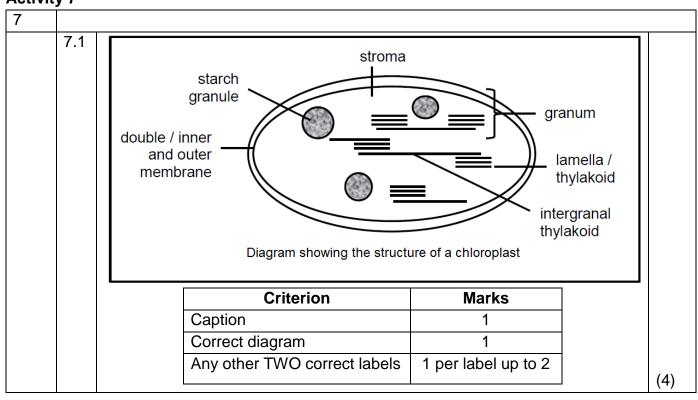
CONTENTS

No.	TOPIC	PAGE NO.
1.	Photosynthesis	2-6
2.	Cellular Respiration	7 – 10
3.	Animal Nutrition	11 – 20
4.	Gaseous Exchange	21 – 29
5.	Excretion	30 – 33
6.	Population Ecology	34 – 39

Topic: Photosynthesis

No.	Description	Biological Term
1.1	Chemical processes in organisms controlled by enzymes.	Metabolism√
1.2	Organisms that cannot photosynthesise and obtain food from other organisms.	Heterotrophic√
1.3	Building up chemical reactions.	Anabolic√
1.4	Green plants that produce their own food through photosynthesis.	Autotrophic√
1.5	Breaking down reactions.	Catabolic√
1.6	The liquid part of the chloroplast where light independent phase takes place.	Stroma√
1.7	The general energy carrier in the cells of living organisms.	ATP√
1.8	A glass structure that traps heat and allows light to enter and plants to grow.	Greenhouse√
1.9	Phenomenon where the heat from the sun is trapped on Earth by	Greenhouse
	CO ₂ in the atmosphere.	effect√
1.10	Site of photosynthesis.	Chloroplasts√
1.11	The form in which excess glucose is stored in plants.	Starch√
1.12	A chemical used to test for starch.	lodine√
1.13	The organic molecules that act as catalysts and control the	Enzymes√
	chemical reaction during photosynthesis.	
1.14	Energy from the sun, needed by plants for photosynthesis.	Radiant energy√
1.15	Stacks of thylakoids where light dependent phase takes place.	Grana√
1.16	The simple sugar formed during photosynthesis in green plants.	Glucose√
1.17	Stored form of glucose in animals.	Glycogen√
1.18	Stored form of glucose in plants.	Starch√
1.19	The green, light–trapping pigment in photosynthesis found in plant leaves.	Chlorophyll√
1.20	The splitting of water molecules into hydrogen and oxygen in the presence of light.	Photolysis√
1.21	The part of the chloroplast in which the light-independent reactions of photosynthesis take place.	Stroma√
		(21 X1) (21)

2			
	2.1	Photosynthesis is the process by which plants produce carbohydrates	
		(glucose) ✓ using radiant energy from the sun ✓	(2)
	2.2	Chloroplast ✓	(1)
	2.3	(a) Dark phase ✓	(1)
		(b) Stroma ✓	(1)
	2.4	- Occurs in the grana of the chloroplast ✓	
		- chlorophyll molecules absorb radiant energy from the sun ✓	
		- this energy is used to split water into hydrogen and oxygen ✓	
		- and some energy is used to form ATP (energy-carrier) ✓	
		- energised hydrogen atoms are released and used in the dark phase ✓	
		- Oxygen is released into the atmosphere √	(6)
			(11)


3			
	3.1	To investigate whether light is necessary for photosynthesis ✓	(1)
	3.2	(a) To destarch the plant ✓	(1)
		(b) To soften the leaves/break the cell walls√	(1)
		(c) To remove the chlorophyll√	(1)
	3.3	Care should be taken when working with alcohol – no open flame to be brought near alcohol ✓ as alcohol is highly flammable. ✓ OR Alcohol should be boiled using a water bath ✓ as alcohol is highly flammable. ✓	(2)
	3.4	Result of investigation: Chlorophyll is necessary for photosynthesis blue-black reddish-brown blue-black	
		Criterion Marks	
		Correct caption 1	
		Diagram with correct shading 1	
		Any TWO correct labels 2	(4)
	3.5	It can be concluded that light is required for starch ✓ to be produced	
		during photosynthesis. ✓	(2)
			(12)

4			
	4.1	(a) A ✓ starch grain ✓	(2)
		(b) B ✓ grana ✓	(2)
		(c) C √ stroma	(2)
	4.2	- has sets of stacked membranes called grana ✓	
		- Grana have thylakoids which contain chlorophyll√	
		- Stroma has enzymes√	
		- It has a double membrane ✓	
		- Stroma contains starch granules√	
		- Ribosomes are present in the stroma✓ (Any 2)	(2)
	4.3	· ·	
		- which is used to form glucose√	
		- Keeps the carbon dioxide concentration in the atmosphere fairly constant ✓	
		for the survival of animals	
		- Produces glucose and other energy-rich compounds ✓ that provide a	(4)
		source of food and energy to plants and animals	` ′
			(12)

AC	tivity	5	
5			
	5.1	The light intensity ✓	(1)
	5.2	By counting the number of bubbles released per minute ✓✓	(2)
	5.3	(a) Oxygen ✓	(1)
		(b) The glowing splint ✓ burst into flame / glows brighter	
		which indicates that oxygen has been given off ✓ by the plant.	(2)
	5.4	To increase the concentration of carbon dioxide in the water ✓	(2)
	5.5	- Temperature ✓	
		- The voltage of the bulb √/ current	
		- The amount of carbon dioxide ✓	
		- Person counting the bubbles ✓	
		- Plant species ✓	
		- The surface tension of water ✓	
		- The purity of water used ✓	
		(Mark the first TWO only) (Any 2)	(2)
	5.6	(a)	
		28 – 8 = 20 ✓	
		$\frac{20}{8} \times 100 \checkmark = 250 \checkmark \%$	
		8 ~ 100 • = 250 • 70	(3)
		(b)	
		-It enables farmer to adjust the light to its optimal level ✓	
		- in order to increase the rate of photosynthesis ✓	
		- By increasing the rate of photosynthesis, the farmer is able to increase	
		agricultural yield to its maximum ✓	(3)
			16

6			
	6.1	- Occurs in the stroma of the chloroplast ✓	
		- Carbon dioxide from the atmosphere combines with energised	
		- hydrogen atoms ✓	
		- to form carbohydrates such as glucose and starch√	
		- using energy in the form of ATP from the light phase. ✓	(4)
	6.2	- No food (energy) available ✓ for heterotrophic organisms✓	
		- There won't be energy available ✓ for cell functioning ✓	
		- Imbalance of CO₂ in the atmosphere ✓ can influence breathing ✓	
		- and less oxygen ✓ for cellular respiration ✓ (Any 3 X 2)	(6)

Topic: Cellular Respiration

No.	Description	Biological Term
1.1	Respiration in the presence of oxygen	Aerobic respiration√
1.2	Organelle / site for respiration	Mitochondria✓
1.3	The process where a plant grows from a seed	Germination√
1.4	Acid formed in muscle cells, during anaerobic respiration;	Lactic acid√
	leads to muscle exhaustion / cramping	
1.5	The reagent used to test for the presence of carbon dioxide.	Clear lime water√
1.6	breaking down of glucose in absence of oxygen, to give rise	Alcohol
	to the production of alcohol in plant cells	fermentation √
1.7	The process during which glucose is converted into pyruvic	Glycolysis√
	acid	
1.8	Breaking down of glucose in absence of oxygen to form	Lactic Acid
	lactic acid in animal cells	fermentation √
1.9	Type of anaerobic respiration in yeast (and other) cells	Fermentation√
1.10	The final hydrogen acceptor during cellular respiration	Oxygen√
1.11	Folded structures found on the inner membrane of a	Cristae√
	mitochondria.	
1.12	Genetic material found in the mitochondrial matrix.	Mitochondrial DNA✓
1.13	The stage during aerobic respiration when water is released	Oxidative
	as a waste product.	phosphorylation√
1.14	A 6-carbon molecule that is broken down during cellular	Glucose√
	respiration to provide energy in a living cell	
1.15.	A micro-organism used in the manufacturing beer or bread	Yeast√
		(15 X 1) (15)

Activity 3

3			
	3.1.	Mitochondrion ✓	(1)
	3.2.	B – Stroma✓ C – Cristae ✓	(2)
	3.3.	(a) A✓ Ribosomes✓	(2)
		(b) B✓ Stroma✓	(2)
			(7)

4			
	4.1	Cheese, yoghurt, wine, beer, whisky, brandy (any other relevant products) ✓	
		(Mark first answer only)	(1)
	4.2	- Products are exported ✓ and earns foreign exchange ✓	
		- Jobs are created ✓ and reduces unemployment ✓	
		- Company profit increases ✓ and government earns more revenue as	
		taxes√ (Any 1 X 2)	(2)
	4.3	Derives energy ✓ for cellular activities ✓ 📛	(2)
			(5)

5			
	5.1	To prevent air from entering the test tubes ✓as it would alter the experimental	
		results / to stop gases from entering or leaving.	(1)
	5.2	- Test tube B contains a bag of live worms ✓	
		- They produce large amounts of carbon dioxide over time. ✓ / during	
		- cellular respiration which causes the indicator in test tube B to become	
		yellow✓	(2)
	5.3	Test tube C was set up as a control ✓/ to compare results ✓/ to determine	
		whether the factor under investigation was actually the one that caused the	
		change√	(1)
	5.4	- No photosynthesis will take place ✓ due to lack of light.	
		- the green leaves continue to respire ✓ at a rate slower than animals	
		- hence releases small amounts of carbon dioxide ✓ and later	
		- the amount of carbon dioxide increases ✓ due to gradual accumulation.	
		(Any 3 x 1)	(3)

6			
	6.1	(a) Anaerobic respiration ✓/ lactic acid fermentation	(1)
		(b) In the skeletal muscles ✓	(1)
	6.2	18/19 ✓ arbitrary units	(1)
	6.3	10 ✓ minutes	(1)
	6.4	 The intense physical activity leads to an increased rate of cellular respiration ✓ causing an accumulation of carbon dioxide ✓ and decrease in the level of available oxygen ✓ due to insufficient ventilation therefore, only glycolysis takes place ✓ In the absence of sufficient oxygen, the pyruvic acid molecules are converted to lactic acid ✓ which is stored in the muscle tissues. 	
		(Any 4 x 1)	(4)
	6.5.		(4)
		prisopriory autori (Arry + X-1)	(12

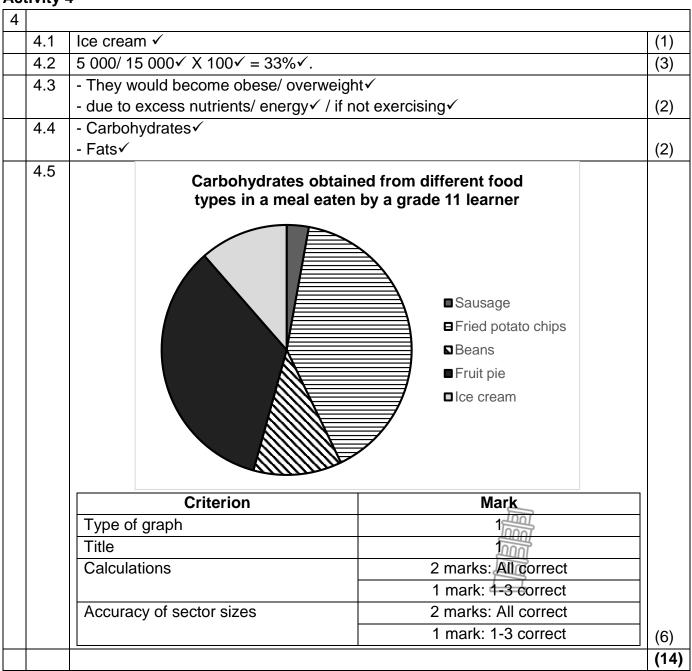
7			
	7.1	(a) Occurs in the cytosol ✓	
		Glucose is broken down ✓	
		To form pyruvic acid ✓	
		Releasing energised hydrogen and ATP ✓	(4)
		(b) Occurs in the mitochondria ✓	
		In the presence of Oxygen ✓	
		Pyruvic acid produced during glycolysis ✓	
		Is used in a cyclic series of reactions ✓	
		Energised hydrogen atoms are released ✓	
		CO₂ is released into the atmosphere ✓ (Any 4)	(4)
			(8)

Activity 8

8			
	8.1	(a) Glucose ✓	(1)
		(b) - Energy/ATP√	
		- Carbon dioxide ✓	
		- Water ✓ (Any 2)	(2)
	8.2	Aerobic respiration occurs in the presence of oxygen ✓ and anaerobic	
		respiration take place in the absence of oxygen. ✓	(2)
	8.3	- Alcohol ✓	
		- Carbon dioxide ✓	
		- ATP/energy ✓ (Any 1)	(1)
			(6)

9.1	•	T✓
	Aerobic respiration	Anaerobic respiration
	1. Occurs in the presence of	1. Occurs in the absence of
	Oxygen ✓	Oxygen ✓
	2. Products are CO₂ and H₂O✓	2. Products are lactic acid
		(animals) or CO ₂ and ethanol
		(plants and yeast cells) ✓
	3. Large amount of energy is	3. Small amount of energy is
	released (38 ATP) ✓	released (2 ATP) √
	4. Occurs in the cytosol and	4. Only occurs in the cytosol ✓
	inside the mitochondria ✓	

Topic: Animal Nutrition


Activity 1

No.	Description	Biological Term
1.1	The type of organisms that consume only plant matter	Herbivore√
1.2	The type of teeth responsible for piercing into food and	Canines√
	grasping/holding onto food in a meat based diet	
1.3	Intake of food	Ingestion√
1.4	Physical and chemical breakdown of food into its simplest form	Digestion√
1.5	The removal of undigested and unabsorbed waste from the	Egestion√
	body through the anus in the form of faeces	
1.6	The products of digestion diffuse into the blood stream	Absorption√
1.7	Nutrients such as amino acids are incorporated into the cells	Assimilation√
1.8	An automatic wave of muscle contraction and relaxation that	Peristalsis√
	moves food in one direction through the digestive tract	
1.9	A ball-like mixture of food and saliva that forms in the mouth	Bolus√
	during the process of chewing	
1.10	Is a fluid produced by the liver, and stored in the gall bladder,	Bile√
	that aids the digestion of lipids in the small intestine	
1.11	A semi-liquid mass of partially digested food which has gone	Chyme√
	through mechanical and chemical digestive processes while	
	passing through the stomach into the duodenum	
1.12	Tiny finger-like projections lining the wall of the small intestine	Villi✓
	and increasing the surface area for food absorption	
1.13	The ability of an organism to maintain stability of internal	Homeostasis√
	conditions (e.g. temperature, chemical balance) despite	
	changes in its environment	
1.14	A gland that uses ducts to drain and transport secretions or	Exocrine√
	chemicals out of the body or onto body surfaces	
1.15	An organ that secretes hormones directly into the blood stream	Endocrine√
	or lymphatic system instead of through ducts	
1.16	The disease experience by humans when glucose levels are	Diabetes√
	not being homeostatically maintained	
		(16 X 1) (16)

	•		
2.1			
	2.1	A ✓	(1)
	2.2	- Large pointed canines ✓	
		- Molars and premolars are also pointed / jiggered ✓	
		- Small diastema ✓	(2)
	2.3	(a) Incisors ✓ 8 ✓	(2)
		(b) 32 ✓	(1)
		(c) They do not have canines ✓ which are used for tearing meat ✓	(2)
			(8)

Life Spential oaded from Stangman physics.com Activity 3

3			
	3.1	Pure vegetarian✓	(1)
	3.2	140 000√ kJ√	(2)
	3.3	- Young children grow rapidly✓	
		- is difficult for them to consume enough vegetarian/ bulk food√	
		- insufficient nutrients/ proteins/ carbohydrates/ vitamins/ mineral ✓	
		- causes malnutrition/ kwashiorkor/ marasmus✓ (Any 2)	(2)
	3.4	10 000/40 000√ X 100√ = 25%√	(3)
	3.5	- Plants/ parts of plants√	
		- Specific name of plants/ supplements/ tablets√	(1)
			(9)

5			
	5.1	B - Oesophagus ✓	
		D - Small intestine ✓	
		E - Large intestine ✓	
		G - Rectum ✓	
		I -Liver ✓	(5)
	5.2	(a) A ✓ mouth ✓	(2)
		(b) C ✓ stomach ✓	(2)
		(c) F ✓ anus ✓	(2)
	5.3	- Tongue ✓ - moves the food around during chewing thus mixing food with saliva ✓	
		- and helps to form the bolus for swallowing ✓	(3)
			(14)

6			
	6.1	B - Stomach ✓	
		C - Pancreas ✓	
		D - Small intestine ✓	
		G - Gall bladder ✓	(4)
	6.2	(a) H ✓	(1)
		(b) B ✓	(1)
		(c) F ✓	(1)
	6.3	Presence of smooth muscles ✓* on its walls allow for peristaltic contractions	
		- that physically break down ✓ large food material into smaller pieces	
		- and this mixes food with digestive juices ✓ (1* + Any 1)	(2)
	6.4	- The liver secretes bile ✓	
		- Bile is stored in the gall bladder ✓	
		- and is released via bile duct ✓	
		- to the duodenum ✓	
		- Bile emulsify fat ✓ / breaks up fat globules into droplets	
		- Bile salts make fatty acids ✓/ glycerol	
		- more soluble in water ✓	
		- Enzymes now have a larger surface area to break down fats ✓ (Any 5)	(5)
			(14)

7			
	7.1	- Glycerol & fatty acids combined with bile salts✓	
		- absorbed into the lacteal by diffusion√	(2)
	7.2	- Produces mucous√	
		- to keep intestinal wall moist ✓ / assist in movement of food over villus ✓	(2)
	7.3	- Villus is finger-like ✓ projection/ elongated shape, which provides a	
		large surface area for maximum absorption√	
		- Transport system present ✓/ lacteal & capillary network, to transport	
		absorbed nutrients away from the intestine√	
		- Single layer of columnar epithelium lines the villus ✓, providing a thin	
		surface for the diffusion of nutrients√	
		- Columnar epithelium have microvilli√, increasing surface area for	
		absorption✓	
		(Mark the first TWO only) (Any 2 X 2)	(4)
	7.4	- Y contains high concentration of nutrients ✓ (glucose/ amino acids)	
		- X contains a low concentration of nutrients ✓ (glucose/ amino acids)	(2)
	7.5	- Through hepatic portal vein ✓ to liver	
		- then hepatic vein✓	4-3
		- to heart ✓ & rest of body	(3)
			(13)

8			
	8.1	Villus✓	(1)
	8.2	(a) (Ciliated) columnar epithelium ✓	(1)
		(b) Lacteal ✓ vessel	(1)
	8.3	Small intestine√	(1)
	8.4	 It is long ✓, meaning that it has a very large surface area for absorption ✓ It has many folds ✓ that enlarge the surface area for maximum 	
		absorption of nutrients√	
		- Has many/ millions of villi and micro-villi ✓ which enlarge the surface area even further ✓	
		- Has circular and longitudinal muscles ✓ responsible for the movement of food by peristalsis. ✓	
		- Is a coiled tube which slows down the movement of food ✓ (increases transit time) to ensure maximum absorption of nutrients. ✓	
		- The thin-walled ✓ villi (outer walls of villi are lined by a single layer of columnar epithelium) facilitate easy absorption ✓	
		- Absorptive surface is kept moist ✓ by digestive juices and mucus to facilitate diffusion of nutrients. ✓	
		- Villi are well supplied with blood capillaries and lacteals ✓ to ensure that absorbed nutrients are quickly transported away ✓	
		(Mark the first TWO only) (Any 2 X2)	(4)
	8.5	C√	(1)
	8.6	- The blood flows in at D ✓ to the capillary network	
		- Then absorption of nutrients will take place ✓	
		- From the small intestine into the capillaries in the villus ✓	
		- When the blood leaves at C, it will be rich with nutrients ✓	(4)
			(13)

9			
	9.1	- The cellular imbalance between the supply of nutrients and energy ✓	
		- and the body's demand for them to ensure growth, maintenance, and	
		specific functions. ✓	(2)
	9.2	Kwashiorkor✓	(1)
	0.2	Coatrie glands / in the stampeh	
	9.3	- Gastric glands ✓ in the stomach	
		- secrete gastric juices✓	
		- that contain enzyme proteases√	
		- that hydrolyse/ digest proteins✓	
		- into polypetides/ peptones ✓	
		- and eventually amino acids. ✓	
		- Protease function best in an acidic medium. ✓ (Any 5)	(5)
			(8)

10			
	10.1	7530kJ ÷ 746kJ✓ = 10✓	(2)
		Fat content per 50g serving of a cereal 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
		CriterionMarkType of graph1Title1Labels on x axis and y axis with units1Scale of x axis (equal width and spacing of bars) and y axis1Drawing of bars2 marks: All correct1 mark: -1 to 3 correct	(6)
	10.3	- Gastric glands in the stomach ✓ - secretes gastric juices ✓ which - contains the enzyme proteases. ✓ - The enzyme proteases hydrolyse/digest ✓ - proteins into polypeptides/peptones ✓ - and eventually into amino acids. ✓ - Protease only function best in an acidic medium. ✓ (Any 5)	
		I = FTOLEASE OHIV TUHCHOH DESCHLAN AGIGIG HIEGIGIH. Y TAHV SI	

11			
	11.1	To determine the time taken to form chyme when egg is prepared/ cooked differently 🗸 🗸	(2)
	11.2	(a) Substrate/ condition of egg√	(1)
		(b) Time taken for the formation of chyme√	(1)
	11.3	- To create a similar condition to that of the body OR It is the optimum body temperature.	
	11.4	- It is the optimum body temperature ✓ Mass/ amount (50g) of sample ✓	(1)
	11.5	(a) Fried eggs ✓	
	11.5	(b) Scrambled eggs ✓	(1)
	11.6	- Stomach is faster/ test tube is slower✓	(1)
	11.6		(2)
	11.7	- due to churning of stomach✓ (a)	(2)
	11.7	- Glucose ✓ from - small intestine ✓ moves - by active transport ✓ - which requires energy ✓ - and by diffusion ✓ - that is passive/ no energy required ✓ - through columnar epithelial cells ✓ - into the blood capillaries ✓	
		- of the villus✓ (Any 4)	(4)
		 (b) The blood capillaries in the villi join together ✓ and eventually form the hepatic portal vein ✓ This blood vessel carries the product to the liver ✓ Some may be converted to glycogen/ some may be processed ✓ Remainder leaves liver in hepatic vein ✓ that joins with the inferior vena cava ✓ which takes blood to the heart ✓ The heart pumps the blood with nutrients/ glucose to body ✓ 	
		- via the aorta✓ (Any 4)	(4)
			(18

	•		
12			
	12.1	300 mg / dL ✓	(1)
	12.2	(a) 2 hours 30 minutes / 150 minutes ✓ ✓	(2)
		(b) 3 hours 30 minutes / 210 minutes ✓ ✓	(2)
	12.3	- Regular in-jections of insulin would lower the blood glucose	
		concentration of the diabetic to normal. ✓	
		OR .	
		- It will also shorten the time it takes for the blood glucose concentration	
		to return to normal after ingestion. ✓	(1)
	12.4	-To reduce the blood glucose levels ✓	
		OR	
		-To convert glucose into glycogen ✓	(1)
	12.5	- Insulin is a protein and therefore digested in the human digestive	
		system. ✓	
		- It would therefore not be absorbed as insulin, but as its amino acids. ✓	(2)
			(9)

13				
	13.1	The level increases√	(1	1)
	13.2	T√		
		Fewer larger meals	More smaller meals	
		ДППП	Maximum blood insulin concentration is	
		higher√/between 160-180 ld	ower√/between 120-140 ng/dl	
		concentration is c	/linimum blood insulin concentration is higher√/40 ng/dl	
		rises and falls three times a ri	Blood insulin concentration ises and falls six times a lay√/more often	
		concentration√/between 140- c	Small changes in insulin concentration√/between 80- 00 mg/dl	
		below minimum glucose a	nsulin concentration varies bove and below minimum Jucose concentration√	
			(1 + Any 2 X 2)	5)
	13.3	 A diabetic may not produce sufficient insulation. When eating many smaller meals, less glucture. less insulin√ is needed. to return blood glucose to normal√ OR. A diabetic may not produce sufficient insulation. When eating fewer larger meals, more glucture. 	lin√ ucose√ enters the blood	
		 more insulin ✓ is needed to return blood glucose to normal ✓ 		4)
		and the same of th	,	10)

14				
	14.1	(a) Pancreas✓		(1)
		(b) Insulin√		(1)
		(c) Glucagon√		(1)
	14.2	Diabetes√ mellitus		(1)
	14.3	- Pancreas is stimulated√		
		- secretes insulin√		
		- transported by blood to liver✓		
		- that is stimulated to convert excess glucose ✓		
		- to glycogen√		
		- which is then stored✓		
		- insulin increases rate of glucose absorption/ uptake ✓		
		- in body/ muscle cells√	(Any 6)	(6)
	14.4	- When glucose level is low√		
		- Glucagon/ Hormone 3 travels via the blood✓		
		- to stimulate the liver - which then converts stored glycogen ✓		
		- into glucose	(Any 4)	(4)
		9	\	(14)

Topic: Gaseous Exchange

No.	Description	Biological Term
1.1	A cartilaginous flap that closes the trachea when swallowing to	Epiglottis√
	prevent choking.	
1.2	Taking in of oxygen-rich air into the lungs.	Inhalation√
1.3	Taking out of air rich in carbon dioxide from the lungs.	Exhalation√
1.4	Two membranes surround the lungs.	Pleura√
1.5	A flap of breathing muscle that separates the chest cavity from the	Diaphragm√
	abdominal cavity.	
1.6	Breathing in of oxygen- rich air and breathing out of air rich in	Ventilation√
	carbon dioxide.	
1.7	Air sac membrane from the bronchiole in the lungs.	Alveolus√
1.8	The form in which carbon dioxide is carried by blood away from	Carboxy-
	tissues.	haemoglobin√
1.9	The form in which oxygen is carried by blood to the tissues.	Oxyhaemoglobin√
1.10	A system in which the body maintains normal limits of oxygen by	Homeostasis√
	blood in the body.	
1.11	The blood cells that transport oxygen.	Erythrocytes√
1.12	The cartilaginous structure that contains vocal cords.	Larynx√
1.13	The region of the brain that controls the rate of breathing in	Medulla
	humans.	oblongata√
1.14	The structure in the human respiratory system that closes the	Epiglottis√
	larynx.	
		(14 x 1) (14)

2			
	2.1	(a) Both processes involve movement/in and/or out of gases/oxygen and	
		carbon dioxide✓	(1)
		(b)	
		Breathing	
		- Is concerned with the movement of air between the lungs and the	
		atmosphere√	
		Gaseous exchange	
		- Is concerned with movement of gases between alveoli and blood/blood and	
		cells√	(2)
	2.2	- The external intercostal muscles relax√	
		- Causing the ribs to move downwards and inwards√	
		- The diaphragm relaxes ✓ and become dome-shaped ✓	
		- The volume of the thoracic cavity is decreased ✓	
		- The abdominal muscles contract ✓ and force the abdominal content upwards against the diaphragm	
		- The pressure in the thoracic cavity and lungs increase✓	
		- The elastic lungs are compressed ✓	
		- Air pressure in the lungs is higher than in the atmosphere✓	
		- Air rich with carbon dioxide (CO₂) flows out of the lungs✓ (Any 6)	(6)
			(13)

3	ity 5			
	3.1	A - Trachea✓		(1)
		B - lung√		(1)
		C - diaphragm√		(1)
		D - intercostal muscles√		(1)
	3.2	- Has (C-shaped) cartilaginous rings ✓ that times to allow free flow of air.	keep the trachea open ✓ at all	
		- Has cilia ✓ that constantly move to push o	ut dust particles√ and germs.	
		- Contains mucus ✓ which traps dust particl		
		(Mark first ONE only)	(Any 1 X 2)	(2)
	3.3	- Lung inflates ✓ / enlarges ✓ / volume incre		(2)
	3.4	- Diaphragm flattens√ becomes less conve	exy / contractsy	(2)
		CO ₂ diffusing into alveolus		
		Criterion	Marks	
		Diagram	1	
		Oxygen diffusion into blood	1	
		Carbon dioxide diffusion out of blood	1	
		Any other TWO correct labels	1 per label up to 2	(5)
				(13)

4			
	4.1	(a) Larynx ✓	(1)
		(b) Trachea ✓	(1)
		(c) Bronchioles ✓	(1)
	4.2	Process 2√	(1)
	4.3	- Ribs are lifted/ chest expands/ moves outwards√	
		- Theracic cavity enlarges/ lungs are larger ✓	
		- Diaphragm contracts/ flattens/moves downwards✓	
		(Mark first TWO only) (Any 2 X 1)	(2)
	4.4	D√ - intercostal muscle√	
		E√ - diaphragm√	(4)
	4.5	- Increases the amount of moisture in the air✓	
		- because water evaporates ✓	
		- prevents drying out of inner surface of the lung ✓ which would	
		- prevent gaseous exchange ✓/ gasses can only diffuse in a solution ✓.	(4)
	4.6	- Cannot breathe/ inhale/exhale/lungs collapse ✓	
		- No pressure difference between exterior and thoracic cavity ✓	(2)
	4.7	- numerous alveoli/ large surface area√ for exchange of gases	
		- thin epithelium made of single layer of cells ✓ for rapid diffusion	
		- presence of blood capillaries ✓ for transport of gases.	(3)
			(19)

5	Τ		
	5.1	(a) bronchus ✓ /bronchiole ✓	(1)
		(b) Gaseous exchange ✓ /diffusion ✓	(1)
	5.2	(a) Carbon dioxide✓	(1)
		(b) Oxygen✓	(1)
	5.3	 -numerous alveoli/ large surface area ✓ for exchange of gases - thin epithelium made of single layer of cells ✓ for rapid diffusion - presence of blood capillaries ✓ for transport of gases. (Any 2) 	(2)
	5.4	 -In the cells at tissue surfaces, the process of cellular respiration takes place✓ -More carbon dioxide (CO2) is released during the process and move out of the cells as it is highly concentrated✓ -via the tissue fluid ✓ -into the blood capillaries around the tissue cells✓ where it is less concentrated✓ -and is transported away from the tissues✓. 	(4)
	5.5	- Bicarbonate ions✓ - carboxyhaemoglobin✓ - blood plasma✓ (Any 2)	(2)
			(12)

 		,	
6.1	- The volume of air inhaled will be less from the beginning	=	(2)
	- because of the narrowing of the of the air passages. ✓		(2)
6.2	-1001		(2)
6.3	- The volume of air increased ✓ from 60 to 80 seconds		
	- to supply the muscles enough oxygen√and		
	- remove the excess carbon dioxide√	(Any 2)	(2)
6.4	The volume inhaled air over 70 seconds (30 seconds) 6 5 5 5 5 5 5 6 43,5 3,5 3,5	4,5	
	Volume of inhaled air (litres) 2 3 5 2 1		
	30 40 50 60 70 80 Time (seconds)	90 100	
	30 40 50 60 70 80	90 100 Marks	
	30 40 50 60 70 80 Time (seconds)		
	30 40 50 60 70 80 Time (seconds) Criterion	Marks	
	30 40 50 60 70 80 Time (seconds) Criterion Line graph is drawn	Marks 1	
	Criterion Line graph is drawn Title of the graph	Marks 1 1	
	Criterion Line graph is drawn Title of the graph Correct scale for x-axis and y-axis	Marks 1 1	
	Criterion Line graph is drawn Title of the graph Correct scale for x-axis and y-axis Correct labels and units for the x-axis and y-axis	Marks 1 1 1 1	
	Criterion Line graph is drawn Title of the graph Correct scale for x-axis and y-axis Correct labels and units for the x-axis and y-axis Plotting of the points: 0 points correct	Marks 1 1 1 1	

7			
	7.1	(a) Wearing of a facemask✓	(1)
		(b) Carbon dioxide levels in blood✓	(1)
	7.2	- Age	
		- Healthy✓ individuals	
		(Mark first TWO only)	(2)
	7.3	150 volunteers were used√	
		(Mark first ONE only)	(1)
	7.4	-To allow the carbon dioxide levels in the blood to go back to normal✓	
		- so that each phase will have the same carbon dioxide level as a starting	
		point✓	(2)
	7.5	-To act as a control ✓ / baseline	
		-To see if it is the facemask that affects the carbon dioxide levels and not	
		the physical activity✓ (Any 1)	(1)
	7.6	- Receptors in the carotid artery are stimulated ✓ and	
		- impulses are sent to the medulla oblongata✓	
		- The medulla oblongata stimulates the heart ✓ causing	
		- to beat faster ✓ causing	
		- more carbon dioxide to be taken to the lungs√	
		- The breathing muscles ✓ /intercostal muscles and diaphragm	
		- contract more actively ✓ and	
		- the rate/ depth of breathing increases ✓	
		- More carbon dioxide is exhaled✓	
		- The carbon dioxide level in the blood decreases ✓ /returns to normal	
		(Any 7)	(7)
			(15)

8			
	8.1	Physical activity✓	(1)
	8.2	- Asked learners' permission√	
		- Decided on the type of physical activities ✓	
		- Decided how to measure the heart rate and breathing rate ✓	
		- Decided on how to record the result of the investigation ✓	
		- Decided the venue ✓	
		(Mark first TWO only) (Any 2	(2)
	8.3	- learners are same age√	
		- learners walked same distance√/ 5km	
		- learners ran same distance√/ 5km	
		(Mark first ONE only) (Any 1) (1)
	8.4	The learners' breathing rate increased✓	(1)
	8.5	Enables more carbon dioxide to be removed out of the body quickly/	
		exhaled 🗸 🗸	(2)
	8.6	120 - 71√ = 49 beats per minute√	(2)
	8.7	Physical activities increase heart rate and breathing rate ✓ ✓	(2)
			(11)

	vicy o		
9			
	9.1	The red blood cell count increases ✓ at altitude; haemoglobin concentration	
		increases ✓ at altitude	(2)
	9.2	Erythrocytes✓	(1)
	9.3	Transport of oxygen✓	(1)
	9.4	Iron (Fe) ✓	(1)
	9.5	5,37- 4,69✓	
		= 0,68÷4,69 x 100✓	
		= 14,5% √	(3)
	9.6	RBC (mill/mm3) OR Haemoglobin (g/dl) ✓	(1)
	9.7	Their increased number of RBC and haemoglobin will enable them to carry	
		more oxygen√ and then improve their performance√	(2)
	9.8	Males and females ✓ were used in the experiment and this could influence the	
		validity of the results obtained✓	(2)
			(13)

10			
	10.1	It becomes more deeper√/depth is increased	(1)
	10.2	200cm ³ √/60√	
		=3,3cm ³ /	(3)
	10.3	-There is high amount of CO₂ in blood just after an exercise ✓	
		-which the man sheds away as he breathes in and out deeply ✓, then after	
		some few minutes, breathing returns to normal.	(2)
	10.4	Walking	(2)
	10.5	If a man's activity uses 20 kJ per minute, since each activity is conducted per	
		hour, we multiply 20 kJ by 60 ✓ minutes, the total is 1200 kJ ✓ of which that	
		amount is spent on walking.	(2)
	10.6	As the man is less active at night ✓, 300kJ is used for heartbeat ✓/ breathing/	
		cellular respiration /and minimal turning on sides (slight movements) during	
		sleep.	(2)
			(12)

11			
	11.1	Mortality rate ✓ per 100 000	(1)
	11.2	- Passive smokers can inhale enough smoke to cause lung damage. ✓	
		- In public places people must smoke outside a building to prevent smoke in	
		the air conditioning system. ✓	
		- Smoking in a car with a child younger than 12 is against the law as it causes	
		serious lung damage to the child's lungs. ✓ (Any 2)	(2)
	11.3	358 ✓ (220 + 138)	(1)
	11.4	60 : 56 : 12 OR 15 : 14 : 3 ✓ ✓	(2)
	11.5	Same gender individuals ✓, same age group ✓	(2)
	11.6	Smoking increases the risk of cancer ✓	(1)
	11.7	- Smoke gets trapped in the alveoli ✓	
		- causing inflammation ✓	(0)
	11 0	- This inflammation activates enzymes ✓ that destroys the lung tissue ✓.	(3)
	11.8	Montality rate of active amplears non-100,000	
		Mortality rate of active smokers per 100 000 due to various diseases	
		8 250	
		Mortality rate per 100 00 250 150 100 100 100 100 100 100 100 100 1	
		7 150	
		<u>a</u> 150	
		ğ 100	
		<u>₹</u> 50	
		af and a second an	
		of t sory ser	
		Lung cancer and the cancer cancer cancer cancer cancer cancer cancer cancer cancer cases cases are med ditions ditions de, etc	
		Lung cancer Mouth / larynx cancer Other cancer Respiratory diseases diseases Other med. conditions Suicide, homicide, etc.	
		Mour larynx o Other c Other cond Suici	
		<u>a</u> 0	
		Diseases	
		Criterion Marks	
		Title 1	
		Correct type of graph 1	
		x-axis: correct label and scale 1	
		y-axis: correct label and scale 1	
		Bars drawn correctly 1 for 1 – 5 drawn correctly	
		2 for 6 – 7 drawn correctly	(6)
			(6) (18)

Topic: Excretion

Activity 1

No.	Description	Biological Term
1.1	The process by which the body eliminates metabolic waste	Excretion√
	products	
1.2	The ejection of solid waste from the body	Egestion ✓
1.3	The release of useful substances of useful	Secretion ✓
	substances(enzyme, saliva)from cells or glands	
1.4	A pair of bean-shaped organs in the abdominal cavity on either side of the mid-line below the diagram	Kidneys√
1.5	A pair of ducts which carry urine from the kidneys to the bladder	Urethra ✓
1.6	The functional and structural unit of the kidney	Nephron√
1.7	A tube which runs through the penis carries urine and the semen to the outside	Urethra ✓
1.8	The main artery leaving the heart, supplying the body with blood	Aorta√
1.9	A part that brings oxygenated, unfiltered blood to the kidneys	Renal vein√
1.10	An outer membrane covering the kidney	Renal capsule√
1.11	A control of water levels in the body	Osmoregulation ✓
1.12	A blood vessels bringing blood from the renal artery into the Bowman's capsule of the nephron and forming the glomerulus	Afferent arteriole√
1.13	A blood vessel taking blood from the renal artery that leaves the Bowman's capsule	Efferent arteriole√
1.14	A cup shaped structure surrounding the glomerulus	Bowman's capsule√
1.15	Specialised cells that lines Bowman's capsule and responsible for ultrafiltration	Podocytes √
1.16	A hormone responsible for osmoregulation	ADH/anti-diuretic
		hormone√
		(16 X 1) (16)

2		
2.1	(a) inferior vena cava√	(1)
	(b) Aorta√	(1)
	(c) Renal artery√	(1)
	(d) Renal vein√	(1)
2.2	(a) Inferior vena cava√	(1)
	(b) Urethra ✓	(1)
	(c) Renal vein√	(1)
2.3	(a) E√- bladder√	(2)
	(b) C√- Renal artery√	(2)
	(c) D√- Ureter√	(2)
2.4	The urine will not be transported to the bladder√	
	Leading to the pains in the kidney√	
	And that can results to death√	(3)
		(16)

3			
	3.1	kidney√	(1)
	3.2	- Excretion√	
		- Osmoregulation ✓	
		- pH regulation√	
		- Mineral salt regulation ✓	
		(Mark first THREE only) (Any 3)	(3)
	3.3	Renal cortex ✓	(1)
	3.4	(a) Renal pyramid√	(1)
		(b) Renal pelvis√	(1)
	3.5	(a) Covers the kidney√	(1)
		(b) Transport urine from the kidney to the bladder√	(1)
			(9)

ACII	VILY 4		
4			
	4.1	(a) Afferent arteriole√	(1)
		(b) Efferent arteriole√	(1)
		(c) Glomerulus ✓	(1)
	4.2	Ultrafiltration√	(1)
	4.3	- Part labelled B is narrower than part labelled A√	
		- Narrower diameter of part labelled B therefore, resist the flow of blood by slowing down the rate of blood flow√	
		- This creates higher blood pressure√ in part labelled C	
		- High blood pressure thus generated leads to leakage of blood plasma√	
		- with a smaller substances such as glucose, amino acids, water, urea and	
		other nitrogenous waste products through the micro pores√ on the capillary network at C	
		- Blood cells, plasma proteins and other large solutes are left behind blood√	(6)
	4.4	Podocytes √	(1)
	4.5	- Presents of slit pores√	
		- between the podocytes act as selective filters ✓	
		- allowing only small particles to pass through into the capsular space√	
		(Any 2)	(2)
	4.6	- Walls are made up of a single/thin layer√ to facilitate diffusion √ of substances	
		- Many tiny pores√ acts as micro filters, restricting large substances such as proteins/blood corpuscles	
		- Has lot of capillaries√ to ensure large surface area ultrafiltration	(4)
			(17)

5			
	5.1	Too much water loss√	
		High intake of salt√ / sodium	(2)
	5.2	- The high concentration of sodium√ creates	
		- a steeper concentration gradient√	
		- Which leads to the passive absorption of water√	
		- From the collecting tubule into the surrounding fluid√	
		- Surrounding the cells at the medulla ✓ (Any 3 X 1)	(3)
	5.3	- The lower level of sodium in the blood stimulates√	
		- the adrenal gland √to secrete and release	
		- More aldosterone into the blood√	
		- Which causes reabsorption of more sodium by the capillaries√	
		- At the distal and collecting tubules ✓ / less sodium ions are excreted	
		- From the kidneys√	
		- Sodium ions are reabsorbed until its level in the blood returns to	
		normal ✓ (Any 4 X 1)	(4)
	5.4	- The diarrhoea and vomiting leads to excessive loss of water and salts√	
		- Drops the level of water in the blood√/causes dehydration	
		- That stimulates the hypothalamus√/ pituitary gland to release more ADH	
		into the blood (Any 2 X 1)	(2)
			(11)

	•••		
6			
	6.1	- The volume of water in the blood decreases√	
		- Osmoreceptors in the hypothalamus are stimulated√ and the message is	
		sent to the pituitary gland√	
		- The pituitary gland secretes more ADH into the blood√	
		- ADH increases the permeability of the walls of the distal convoluted tubule	
		and the collecting tubule√	
		- This causes more water to leave the medulla is re-absorbed√at the faster	
		rate by blood capillaries which surround the tubule√	
		- The amount of water in the blood thus increases ✓ and concentrated urine	
		is formed and less water is excreted from the body√ (Any 4 X 1)	(4)

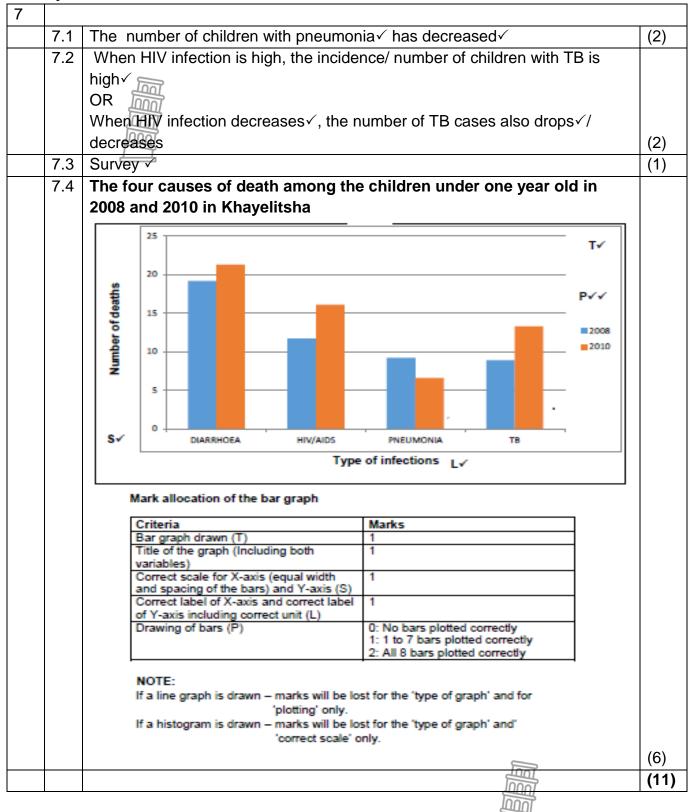
7			
	7.1	(b) A-Glomerulus√	(1)
		(b) B- Bowman's capsule✓	(1)
	7.2	Ultra-filtration√	(1)
	7.3	(a) Proteins√	(1)
		(b) Glucose√	(1)
		(c) Urea	(1)
	7.4	 The tubule is convoluted√, to allow sufficient time for re-absorption of useful nutrients√/ increases surface area for maximum absorption The capillary network is in close contact with the tubule√ to facilitate faster re-absorption of nutrients√ The cells of the inner wall of the tubule are richly supplied with many mitochondria√ to generate energy for active absorption√ (active transport) of nutrients back to the surrounding capillaries The cells of the tubule have microvilli√ to increase the surface area for maximum absorption√ (Any 2 X 2) 	(4)
			(10)

Topic: Population Ecology

No.	Description	Biological Term
1.1	The group of organism of the same species, occupying the	Population √
	same habitat, at the same time.	
1.2	A group of organisms that share similar characteristics and are	Species√
	capable of interbreeding and producing fertile offspring.	
1.3	A group of different species or population that occupy the same	Community ✓
	habitat.	
1.4	A percentage increase of a population as a results of a number	Natality ✓
	of births in a given season or year.	
1.5	A permanent movement of organism out of specific area.	Emigration ✓
1.6	The death of all member of a particular species.	Extinction ✓
1.7	A movement of individuals into a habitat.	Immigration ✓
1.8	The relationship between two organisms where one completely	Competitive
	outcompetes the other.	exclusion√
1.9	The type of competition between two members of different	Interspecific
	species.	competition√
1.10	The position an organism occupies in an ecosystem.	Niche √
1.11	The general term which describes the plant species which is	Pioneer√
	first to inhabit an environment.	
1.12	The maximum number of individuals that can be	Carrying
	accommodated by the resources of a particular habitat.	capacity√
1.13	A removal of animals from a flock when population size	Culling ✓
	exceeds the carrying capacity.	
1.14	The kind of completion when individuals of the same species	Intraspecific
	living in the same habitat compete for the same food resource.	competition√
1.15	The rate at which individuals die in a population.	Mortality ✓
1.16	An illegal hunting and killing of animals.	Poaching √
1.17	A symbiotic relationship where one organism benefit and the	Parasitism√
	other is harmed.	
1.18	A symbiotic relationship where both organisms benefit from the	Mutualism ✓
	relationship.	
1.19	A symbiotic relationship where one organism benefit and other	Commensalism ✓
	one does not benefit and does not get harmed.	
1.20	An animal that hunts, kills and eat other organism.	Predator ✓
		(20 X1) (20)

2			
	2.1	Logistic√ / S-shaped	(1)
	2.2	A - lag phase√/ establishment phase	(1)
		B - exponential graph√ / geometric phase	(1)
		C - Decelerating growth phase√	(1)
		D - equilibrium phase√/ stationary phase	(1)
	2.3	(a) D	(1)
		(b) B√	(1)
		(c) B√	(1)
		(d) C✓	(1)
			(9)

3			
	3.1	A✓	(1)
	3.2	- Growth slowed down and became constant√	
		- Since the population reached carrying capacity√	
		- Due to environmental resistance√/ available resource	(3)
	3.3	Starts slowly and then increases rapidly√	(1)
	3.4	- Human population has not reached the carrying capacity√ yet	
		- Due to attempts to increase availability of resources such as food√	
		- using advancement in agricultural technology√	
		- And the production of GMO's using biotechnology√	(4)
	3.5	Regulation of population growth by proper family planning√	
		Allocation of subsides to people that have small families√	(2)
			(11)



4			
	4.1	A group of organism of the same species, occupying the same habitat at the	
		same time, and capable of random interbreeding√√	(2)
	4.2	4%√ 万元	(1)
	4.3	5-9 years old√	(1)
	4.4	Females /	(1)
	4.5	Nigeria	(1)
	4.6	- High birth-rate√/high number of younger people in population	
		- High death rate√/ less older people in population/short life expectancy	(2)
	4.7	- Disease√	
		- Lack of food√	
		- Lac of water√	
		- Lack of space√ (Any 1 X 1)	(1)
	4.8 - Disease√ – human have developed medical technology√ so there are		
		fewer deaths	
		- Lack of food – mass produce crops ✓ / monoculture / GM foods to increase crop production ✓	
		- Lack of water – building dams√ to store water for when needed√	
		- Lack of space – building high rise apartment building and skyscrapers√/	
		creating cities and towns so that people can live in a smaller area of	
		space√ (Any 1 X 2)	(2)
			(11)

5.1	Census ✓	(1)
5.2	B√	(1)
5.3	 The base of the age pyramid is wide but it narrows towards the top√ This indicates high proportion of individuals in the younger age group√ When they grow up and reproduce the population will increase in size√ The narrowing of the pyramid towards the top also indicates high death rate with increasing age√ 	(4)
5.4	 The population size at each of the age groups remains almost equal√ This indicates that the birth and death rates are almost the same√. Therefore, the population will remain more or less the same√ 	(3)
5.5	Stable population√	(1)
		(10)

6			
	6.1	(a) community consists of populations of populations of different species that	
		live and interact in the same place at the same time√√	(2)
		(b) ecological role of species within the structure and function of a	
		community√√	(2)
	6.2	Tribolium confusum√	
		100 survived in bottle 6 when the temperature was 24 °C and the relative	
		humidity was 30%√	(2)
	6.3	Density independent factors√	(1)
	6.4	Since there are two different species involved it can be regarded as	
		interspecific competition√	(1)
			(8)

8					
	8.1	T✓			
		Developed countries	Developing countries		
		1. Low rates of population growth ✓	1. High rates of population growth ✓		
		2. Highly industrialised✓	2. Less industrialised ✓		
		3. Low birth rates/ natality ✓	3. High birth rates/ natality ✓		
		4. Low infant mortality rates/ death√	4. High infant mortality rates/ death✓		
		5. Longer life expectancy√	5. Lower life expectancy√		
			(1 + Any 2 X 2)	(5)	

9			
	9.1	$P = F \times S$	
		M	
		$= 20 \times 25 \checkmark$	
		8 ✓	
		= 63 √ fish	(3)
	9.2	Mark-recapture method ✓	(1)
			(4)

