

CURRICULUM GRADE 10-12 DIRECTORATE

No.	TOPIC	PAGE NO.
1.	Senetics	2 - 11
2.	Nervous System	12 -14
3.	Eye	15
4.	Ear	16 - 17
5.	Endocrine and Homeostasis	18 – 21

Topic: Genetics

Activity 1

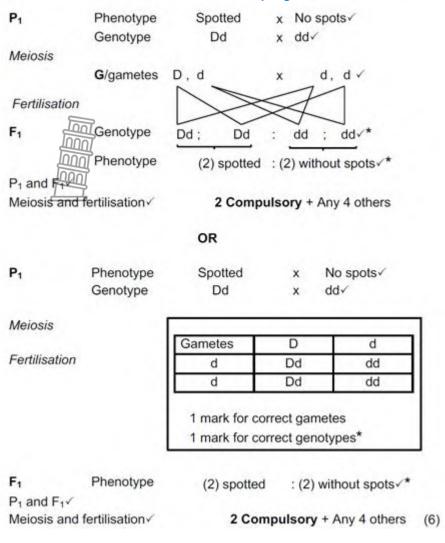
Give the correct **biological term** for each of the following descriptions.

No.	Description	Biological Term
1.1	The position of a gene on a chromosome	Locus
1.2	Undifferentiated cells that may be stimulated to develop into any type of body cell	Stem cells
1.3	Mendel's principle which states that an organism possesses two	Mendel's law of
	factors which separate so that each gamete contains only one of these factors	segregation
1.4	The biotechnological production of genetically identical offspring.	Cloning
1.5	The genetic crossing of two organisms in which two pairs of contrasting characteristics are studied.	Dihybrid
1.6	Individual having two alleles that influence a characteristic in different ways	Heterozygous
1.7	The physical and/or functional expression of a gene	Phenotype
1.8	An allele that expresses itself only when in the homozygous condition	Recessive
1.9	A sex linked disorder that affects the photoreceptors in the eye	Colour-blindness
1.10	The insertion of a gene from one organism into the genetic material of another organism	Genetic engineering
1.11	The number, shape and arrangement of all the chromosomes in the nucleus of a somatic cell	Karyotype
1.12	A genetic disorder resulting in the non-production of the clotting factor in blood	Haemophilia
1.13	A sudden change in the structure of a gene or chromosome	Mutation
1.14	Disorder caused by the presence of an extra copy of chromosome 21	Down syndrome
1.15	Characteristics controlled by alleles that are located on the gonosomes	Sex linked disorder

Activity 2

2.1 Spotted back ✓

2.2 Spotted frogs produced offspring without spots \checkmark


OR

The spotted offspring were three times more than offspring without spots $\checkmark \checkmark$ / ratio spotted offspring to offspring without spots is 3:1

(1)

Life sciDeas/nloaded from Stanmacephysics.com

Activity 2

- 2.1 Spotted back ✓
- 2.2 Spotted frogs produced offspring without spots $\sqrt{\checkmark}$

OR

The spotted offspring were three times more than offspring without spots $\sqrt[4]{}$ / ratio spotted offspring to offspring without (2) spots is 3:1

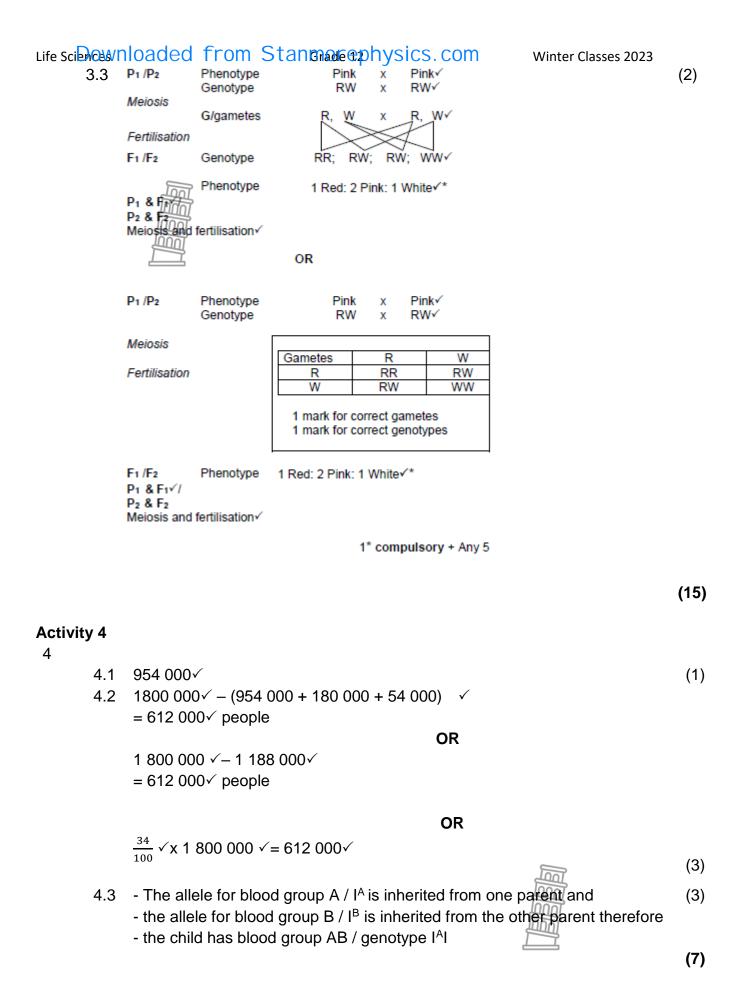
(9)

(1)

Life Science/nloaded from Stanmarephysics.com Winter Classes 2023

Phenotype	Spotted	x No spo	ots√	
Genotype	Dd	x dd√		
G/gametes	D, d	x d,	d√	
on		A	1	
Genotype	Dd; Dd	: dd ;	J dd√*	
Phenotype	(2) spotted	1 : (2) without	ut spots√*	
The second se				
nd fertilisation V	2 Com	oulsory + An	y 4 others	
	OR			
Phenotype	Spotted	x N	lo spots√	
Genotype	Dd			
				٦
	Gametes	D	d	
n	d	Dd	dd	
	d	Dd	dd	
	1 mark for c	orrect gamet	es	
Phenotype	(2) spotta	d : (2) wit	hout enote./*	
	(2) sporte	u . (2) Wi	nour spors*	
nd fertilisation	2 Co	mpulsory +	Any 4 others	(6)
	Genotype G/gametes on Genotype Phenotype Genotype Genotype	Genotype Dd G/gametes D, d Dd; Dd Dd; Dd Dd; Dd Dd; Dd C) spotted C) spotted CR Phenotype Spotted Dd CR Phenotype Dd CR Phenotype Cametes Dd CR Phenotype Dd CR Phenotype Dd CR CR CR CR CR CR CR CR CR CR	GenotypeDdxddG/gametesD, dxd, d, d	GenotypeDdxddG/gametesD, dxd, d onGenotypeDd;Dd;dd;Dd;Dd;Dd;dd;Dd;Dd;dd;dd Dd;Dd;dd;dd Dd;Dd;dd;dd Dd;Dd;dd;dd Dd;Dd;dd;dd Dd;Dd;dd;dd Dd;Dd;c2) spotted : (2) without spots onGametesDdonGametesDdonGametesDdonGametesDdonGametesDdonMGametesDondDdonMCorrect gametesonMCorrect gametesonMCorrect gametesonMCorrect gametesonMCorrect gametesonMCorrect gametesonMCorrect gametesonCorrect genotypes*

Activity 3


3

3.1	Incomplete dominant√	(1)
3.2	- The pink flower is an intermediate phenotype \checkmark / a blend of red and white	(1)

- indicating that neither of the alleles is dominant \checkmark

(9)

Life sciDrous/nloaded from Stanmagephysics.com Activity 5

5

6

One√ /1 5.1 (1) 5.2 Mrs Thomas√ (1) 5.3 -The child has the genotype ii√ / is homozygous recessive and - if both parents are heterozygous \checkmark / have the genotypes I^Ai or I^Bi - she inherits one recessive allele from each parent√ (3) Three 7/3 5.4 (1) loon (6) nnn Activity 6 P₁/parent phenotype: tortoise-shell female x orange male√ 6.1 (2) XBXO XOY genotype: x Meiosis G/gametes XB, XO Xº.YV х

Fertilisation

X°X°, X°Y ✓

F1/offspring genotype X^BX^O, X^BY,

1 tortoise-shell female, 1 black male, 1 orange phenotype female and 1 orange male√

(*1 mark for gender and fur colour with correct proportion) P1 and F1V Meiosis and fertilisation√ *Compulsory 1 + any 6 (7)

Life sciDeas/nloaded from Stanmagephysics.com

P₁/parent phenotype tortoise-shell female x orange male√

genotype

X^BX^O X X^OY

 Meiosis

 Fertilisation

 gametes
 X^B

 X^O
 X^BX^O

 Y
 X^BY

 Y
 X^BY

 1
 mark for correct gametes

 1
 mark for correct genotypes

F1/offspring phenotype: 1 tortoise-shell female, 1 black male, 1 orange female and 1 orange male√
 (*1 mark for gender and fur colour with correct proportion)
 P1 and F1√
 Meiosis and fertilisation√
 Compulsory 1 + any 6

6.2 The allele for the fur colour is carried on the X-chromosome ✓ Male have only one X-chromosome ✓ Tortoise shell is only expressed in the heterozygous condition/X^BX^O√

OR

-	If the	male	is	XBY	it	is	black√	
	20.41			VON	24			1

one X chromosome only.√

- if the male is X^oY it is orange√
 and therefore can never be tortoise shell as males have
- (3)

(7)

(10)

(1)

(2)

(4)

(7)

Activity 7

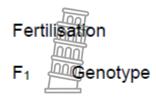
- 7
- 7.1 Dihybrid
- 7.2 TTrr
- 7.3 TR, Tr, tR, tr
- 7.4

Activity 8

8

- 8.1 Round shape, red flower
- 8.2 DE, De, dE, de

(2)


Life sciples/nloaded from Stanmalexphysics.com

8.3

- P1
- Phenotype Genotype

long, purple flower DdEe X round, red flower \checkmark X ddee \checkmark

Meiosis

Gametes	DE	De	dE	de
de	DdEe	Ddee	ddEe	ddee
de	DdEe	Ddee	ddEe	ddee
de	DdEe	Ddee	ddEe	ddee
de	DdEe	Ddee	ddEe	ddee

1 mark for correct gametes 1 mark for correct genotype

Phenotype	4 long, purple flower ; 4 long, red flower
	4 round, purple flower ; 4 round, red flower ✓

Phenotype proportion: 1:1:1:1 (* 1 compulsory mark)

P₁ and F₁ ✓ Meiosis and Fertilisation ✓

Activity 9

9 9.1 (a) RRLL√ (1) (b) Red fruit ✓ and spiny leaves ✓ (2) 9.2 √ x 128√ = 24√ (3) 9.3 -rrLL√√ (2) OR - One parent is rrLL and the other parent is $rrLI\sqrt{\sqrt{}}$ (8) Activity 10 10 High yield ✓ Short stem ✓ 10.1 (2) Ωn

(7)

(10)

Life sciDew/nloaded from Stanmakephysics.com Winter Classes 2023 Activity 11 11 11.1 - Embryo√ - Umbilical cord√ - Bone marrow√ (Mark first THREE only) (3) 11.2 - Stem cells are undifferentiated √ - and have the potential to develop into any type of cell \checkmark - to replace affected / defective cells causing a disorder \checkmark Any (2) 11.3 - Heart disease√ - Spinal injuries√ (Mark first ONE only) (1) Any (6) Activity 12 12 12.1 -The manipulation of genetic material \checkmark (2) -to produce a genetically different √ / identical organism / repair tissues and organs OR - The manipulation of genetic material ✓ - to produce something of benefit to humans \checkmark / society 12.2 - A plasmid / circular DNA is removed from the bacteria cell \checkmark (4) - it is cut ✓ using enzymes - The insulin gene is removed from a human cell \checkmark and - inserted into the plasmid v to form the recombinant DNA 12.3 - Bacteria reproduce very rapidly√ (2) - forming many copies of the gene ✓ in a short period of time OR Bacteria reproduce as exually \checkmark / by mitosis, forming identical copies of itself√ -OR - The bacteria DNA is in the form of a plasmid \checkmark for easy insertion of genes√ -OR Bacteria exist everywhere \checkmark , So they can be obtained with no difficulty \checkmark / expense OR Bacteria are simple organisms \checkmark , so their use is unlikely to raise ethical issues√ (Any 1x 2) 12.4 - Expensive √/ research money could be used for other needs (3) - Interfering with nature √/ immoral ட nnn - Potential health impacts√ -Unsure of long-term effects ✓ (Any 3) (Mark first THREE only)

9

(11)

Activity 13	loaded from Stanmae physics.com Winter Classes 2023	
13		(0)
13.1		(2)
13.2	(a) 3 / Three√	
40.0	(b) 3 / Three✓	
13.3	(a) T√	
		(2)
	(b) $\mathbf{X}^{H}\mathbf{X}^{h} \checkmark \checkmark$	(2)
		(7)
Activity 14		
14		
14.1	3 /Three√	(1)
14.2	(a) H√	(1)
	(b) Rr√	(1)
	(c) C √and F√	(2)
		(5)

Activity 15

15

)			
	15.1	Incomplete dominance√	(1)
	15.2	(a) RR√√	(2)
		(b) RW√√	(2)
		(c) WW√√	(2)
			(7)

Activity 16

16

- 16.1 Decide on the sample size \checkmark
 - Decide on the sample selection√
 - Get permission from the school \checkmark to conduct the investigation
 - Decide on the appropriate time / day / venue to conduct the investigation \checkmark
 - Decide on how to record the results of the investigation \checkmark
 - Ask permission from participants√

(Mark the first THREE only)

- 16.2 -Same person counted√
 - Equal number of boys and girls√
- 16.3 To ensure / increase the reliability \checkmark of the investigation

16	.4
----	----

	Boys	Girls
Tongue rollers	260	220
Non tongue rollers	15	55 📠
Marking Criteria Columns heading (C)		1
Rows heading (R)		1
Data correct in the table (T)		1: 1-3 correct
		2: All correct

(10)

(3)

(2)

(1) (4)

Life Sci ence Activity 1	vnloaded from Stanmaephysics.com Winter Classes 2023	
17.1	 Glyphosate resistance increased√ from 2009 to 2015√ and remained constant in 2016 √ 	(3)
17.2	$\frac{45}{20}\rangle$ × 100 × =225	(3)
17.3	 The glyphosate will not kill the maize√ A greater yield√ of maize Means greater profit√ OR Application of the glyphosate does not have to be selective√ this will save on labour√ / time / costs which 	(3)
17.4	 means greater profit Glyphosate resistance in weeds over 4 years/ 2009 to 2012 45 40 35 30 20 30 15 10 2009 2010 2011 2012 	

G		Year
Guideline for ass	sessing the graph	

CRITERIA	ELABORATION	MARK
Correct type of graph (T)	Bar graph drawn	1
Caption of graph (C)	Both variables included	1
Axes labels (L)	X- and Y-axis correctly labelled with units	1
Scale for X- and Y-axis (S)	 Equal space and width of bars for X-axis and Correct scale for Y-axis 	1
Plotting of co-ordinates (P)	 1 to 3 co-ordinates plotted correctly The 4 required co-ordinates plotted correctly 	1

lon nnn nnn

No.	Description	Biological Term
1.1	The functional gap at which a nerve impulse passes from neuron to another	Synapse
1.2	A disease characterised by the degeneration of brain cells and memory loss	Alzheimer
1.3	Type of neurons that joins sensory and motor neurons	Interneuron /connector neuron
1.4	Part of a neuron which contains the nucleus	Cell body
1.5	Fluid around the brain and spinal cord that aids in protection	Cerebro-spinal fluid
1.6	The part of the skull that protects the brain	Meninges
	(1 x 6)	(6)

Topic: Nervous System

Activity 1

Activity 2

2.1	Reflex arc ✓	(1)
2.2	(a) B Motor neuron /efferent neuron√	(1)
	(b) C Interneuron /connector neuron√	(1)
	(c) E Sensory neuron /efferent neuron ✓	(1)
2.3	(a) F ✓	(1)
	(b) A ✓	(1)
2.4	(a) D√ Synapse√	(2)
	(b) G ✓ Myelin sheath✓	(2)
		(10)

Activity 3

3

3.1	The pathway along which nerve impulses are carried from a receptor to an	(2)
	effector to bring about a reflex action. $\checkmark \checkmark$	

- 3.2 A person would be able to feel the sensation ✓ but is unable to react ✓ to the (1) stimuli.
- 3.3 Multiple sclerosis \checkmark (2)
 - (5)

(2)

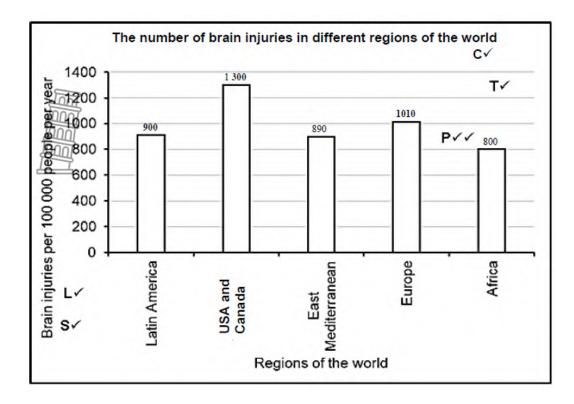
Activity 4

4

4.1 Smooth muscles ✓
 Heart ✓ muscle
 Glands ✓

(Mark first TWO only)

- 4.2 Every organ/gland are controlled by two sets of nerves ✓
 that act antagonistically ✓
 - Autonomic nervous system is divided into
 - Sympathetic nerves \checkmark and


Life Scie	9099\	 Inloaded from Stanmaeephysics.com Parasympathetic nerves ✓ Sympathetic nerves stimulate ✓ fight of flight function ✓ in emergency situations 	023
		- Parasympathetic inhibits ✓ a response and	
		- restores the body to normal ✓	(5)
Activit	ty 5		(7)
	5.1	(a) Myelin sheath ✓	(2)
		(b) Axon ✓	
	5.2		(2)
	5.3	(b) C✓ B D✓ Synapse✓	(2)
	0.0	b Dv Synapsev	(2) (6)
			(0)
Activit	t y 6 brain	1	
(6.1	Corpus callosum✓	(1)
(6.2	 It controls vital processes ✓/heartbeat/breathing which will stop ✓ when it is damaged 	(2)
(6.3	(a) Spinal cord✓	(1)
		(b) - The impulses from the cerebrum ✓	(2)
		 are not transmitted to the skeletal muscles 	
			(6)
Activit	ty 7		

7.1	Africa	(1)
7.2	 Not all brain injuries are recorded 	(2)

- due to poor health facilities√

(9)

Criteria for marking graph:

Criteria	Mark allocation
Bar graph is drawn (T)	1
Caption of the graph includes both variables (C)	1
Correct labels on X-axis and Y-axis (L)	1
Correct scale for Y-axis	1
Equal spaces between bars and equal width of bars	
for X-axis (S)	
Plotting: (P)	
1-4 co-ordinates plotted correctly	1
All 5 co-ordinates plotted correctly	2

Activity 8

8

8.1 - From the dendrite ✓ (2) - to the axon ✓ 0 to 1 ✓ µm ✓ / 0 to 0.9 µm 8.2 (2) As the axon diameter increases the speed of impulse increases $\checkmark \checkmark$ 8.3 OR nnn (2) As the axon diameter decreases the speed of impulses decreases $\checkmark \checkmark$ 8.4 - The speed of the impulse will decrease ✓ - resulting in taking longer for impulses to reach the effectors ✓ - and the person will react more slowly \checkmark (3) (9)

(3)

Activity 1

No.	Description	Biological Term
1.1	The type of vision where both eyes are used to focus on an object	Binocular Vision
1.2	The visual defect characterised by a cloudy lens	Cataracts
1.3	The nerve that transmits impulses from the eye to the brain	Optic nerve
1.4	The protective membrane covering the cornea of the eye	Conjunctiva
1.5	A visual defect caused by the uneven curvature of the cornea	Astigmatism
1.6	The area of the retina that contains the highest concentration of cones	Yellow
		spot/Fovea
	(1 x 6)	(6)

Activity 2

2

2.1	B – Sclera ✓	(1)
	G – Iris ✓	(1)
	I – Cornea ✓	(1)
2.2	(a) H ✓ – Pupil ✓	(2)
	(b) F✓ – Optic nerve ✓	(2)
	(c) A ✓ – Eyelid ✓	(2)
2.3	(a) It contracts ✓	(1)
	(b) It slackens ✓/loosens	(1)
	(c) Becomes more convex √/more rounded	(1)
2.4	(a) Concave lenses ✓/ Concave Glasses/(Laser) surgery	(1)
	(b) Surgery ✓/synthetic lens	(1)
		(14)

Activity 3

2
J

3.1	(a) Different light conditions✓	(1)
	(b) Diameter of the pupil✓	(1)
3.2	Only one person \checkmark participated in the experiment/small sample size The	
	experiment was not repeated ✓/only done once	(2)

$$\frac{8-5}{8} \xrightarrow{7} x \frac{100}{1} \sqrt{1}$$

3.4	lris√		(1)
3.5	Pupil mechanism√		(1)
3.6	Circular muscles of the iris relax \checkmark		
	Radial muscles of the iris contract \checkmark	<u>loon</u>	
	Pupil diameter increases√		(3)
3.7	(a) 5√mm		(1)
	(b) 3√		(1)
			(14)

Life sciDewnloaded from Stanmaneephysics.com Topic: EAR

Activity 1

No.	Description	Biological Term
1.1	A structure in the ear that absorbs excess pressure waves from	
	inner ear	Round window
1.2	Part of the ear that equalises pressure on the either side of the	
	tympanic membrane	Eustachian tube
1.3	A structure in the ear that absorbs excess pressure waves from	Round window
	the inner ear	
1.4	Receptors in the semi-circular canals that are sensitive speed	cristae
	and direction	
1.5	Structure inserted to the tympanic membrane to allow air to pass	Grommets
	into the middle ear	
1.6	The structure within the cochlea responsible for picking up the	Organ of Corti
	stimulus of sound	
	(1 x 6)	(6)

Activity 2

-
ົ
_
_

~			
	2.1	Cochlea 🗸	(1)
	2.2	(a) Absorbs excess pressure waves ✓/releases pressure from the inner ear/	
		prevents an echo	(1)
		(b) It converts stimuli/pressure waves into impulses√	(1)
	2.3	5 1	(2)
	2.4	•	
		- which can block the Eustachian tube ✓	.1
		- The grommet will release the pressure ✓ that will build up in the middle ear	r/
		drain the fluid from the middle ear	
		- The pressure on either side of the tympanic membrane is equalised \checkmark - preventing the tympanic membrane from rupturing \checkmark and	
		- allowing the ossicles to vibrate freely ✓ Any	(4)
	2.5		(4)
	2.0	- convert the stimuli into impulses√	
		- The impulses are sent via the auditory nerve \checkmark	
		- to the cerebellum√	
		- which interprets the information \checkmark and	
		- sends impulses to the skeletal muscles \checkmark to restore balance	
		Any	(4)
			(13)
	vity 3		
3			
	3.1	(a) Semi-circular canals✓	(1)
		(b) Auditory canal ✓	(1)
	3.2	(a) E✓ - Oval window✓	(2)
		(b) $D \checkmark$ - Round window \checkmark	(2)

Life Sciences/nloaded from Stanmaleephysics.com Winter Classes 2023 3.3 (a) Cerebellum√ (b) Hair cells/Organ of Corti√	(1) (1)
3.4 -The pinna of the ear traps sound waves ✓	
 The auditory canal directs the sound waves to the tympanic membrane ✓ -causing the tympanic membrane to vibrate ✓ -which causes the ossicles to vibrate ✓ and -pass the vibrations to the oval window ✓ / amplify the vibrations -(Pressure) waves are set up in the inner ear ✓ / perilymph/endolymph -The organ of Corti is stimulated ✓ -and converts the stimuli into impulses ✓ -which are transmitted by the auditory nerve ✓ 	
-to the cerebrum ✓ for interpretation Any	(7) (15)

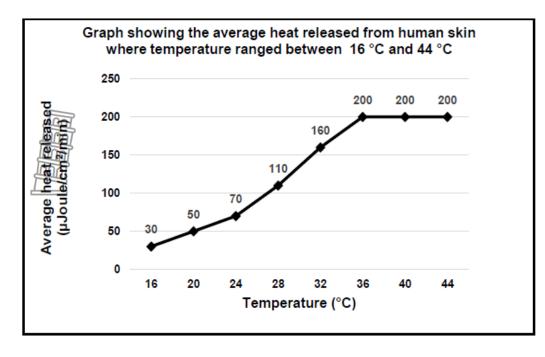
Topic: Homeostasis and Endocrine Systems

No.	Description	Biological Term
1.1	Joint linking and working together of systems and activities within the body to bring about a harmonious response.	Coordination
1.2	A system responsible for chemical co-ordination and regulation of various activities in the body	Endocrine system
1.3	Organic chemical messengers secreted directly into the blood by an endocrine gland.	Hormones
1.4	Organs which respond to specific hormones received through the bloodstream	Target organs
1.5	It is the process of maintaining a constant internal environment Within narrow limits, despite changes that take place internally and externally.	Homeostasis
1.6	When there is an increase from normal, a corrective mechanism causes a decrease and vice versa to maintain a balanced system.	Negative feedback mechanism
1.7	Regulation of water balance in the internal environment	Osmoregulation
1.8	To work in opposite ways; if one hormone causes an increase of a substance, the other hormone will cause a decrease of that substance.	Antagonistically
	(1 x 8)	(8)

Activity 2

2

- Thermoregulation ✓ 2.1
- 2.2 - As the environmental temperature increases
 - the hypothalamus is stimulated \checkmark
 - and sends impulses to the blood vessels ✓ of the skin
 - Blood vessels dilate /blood vessels become wider/vasodilation occurs
 - More blood flows to the surface of the skin \checkmark
 - − More heat radiates from the skin ✓
 - (So average heat released/lost increases)
- As the environmental temperature increases above/beyond body 2.3 temperature ✓
 - the average heat released/lost through radiation reaches its maximum ✓ /levels out/no gradient for radiation of heat
 - therefore, increased sweating will occur √/sweat glands become more active nnn
 - − As the sweat is evaporated ✓
 - it allows the body temperature to decrease \checkmark /more cooling of the skin will occur (Any 4) (4)


(3)

(Any 3)

(2)

Life sciDrawnloaded from Stanmarephysics.com

2.4

Criteria for assessment of the graph

CRITERIA	ELABORATION	SYMBOL	MARKS
Correct type of graph	Line graph drawn	(T)	1
Caption of graph	Both variables included (Heat released AND temperature)	(C)	1
Axes labels	Correct label and unit for X- and Y-axes	(L)	1
Scale of X- and Y- axes	Equal spacing and correct scaling on X-axis and Y-axis	(S)	1
Plotting of points	1 to 7 points plotted correctly All 8 points plotted correctly	(P)	1 2

Activity 3

3

Thyroxin ✓ 3.1 (1) 3.2 Regulates the rate of: - Respiration √/energy production Energy consumption ✓/metabolism − Heat production ✓ - Heart rate ✓ Mark first TWO only (2) 3.3 - Fat ✓ - (Muscle) protein ✓ Mark first ONE only (1) Glycogen√ 3.4 (1) 3.5 - Blood glucose level decreased below normal ✓ − The pancreas/islets of Langerhans will be stimulated ✓ 19

(14)

(6)

Life Sci	Dices/1	Note the second of the second	
		- Glucagon is secreted ✓	
		 – which is transported via blood ✓ 	
		- to the liver ✓	
		- and muscle cells ✓	
		– which converts glycogen ✓ into glucose	(\mathbf{o})
Activ	ity 4	 – increasing blood glucose levels ✓ to normal (Any) 	(6) (11)
4			
	4.1	Negative feedback ✓ mechanism	(1)
	4.2	(a) Thyroid \checkmark	(1)
		 (b) TSH√/thyroid stimulating hormone (c) Thyroxin√ 	(1) (1)
	4.3	Goitre	(1)
	4.4	Hormone A√	(1)
			(6)
Activ	ity 5		
5			
	5.1	Insulin√	(1)
	5.2	(a) Pancreas✓	(1)
		(b) Islets of langerhans✓	(1)
	5.3	Negative feedback reaction	(6)
		 The glucose concentration in the blood drops below normal ✓ 	
		- The alpha cells/islets of Langerhans/pancreas detect the drop and	
		secretes glucagon ✓	
		- in the blood ✓	
		- which is transported to the liver \checkmark /muscle cells	
		- Glucagon stimulates the conversion of glycogen to glucose \checkmark	
		- The glucose concentration in the blood returns to normal \checkmark	
			(9)
A ativ	C		
Activ	11 0		
6	C 1	(a) Meaning of a factomorph ((1)
	6.1	(a) Wearing of a facemask ✓	(1)
	<u> </u>	(b) Carbon dioxide levels in blood ✓	(1)
	6.2	-Age ✓	(0)
	6.2	-Healthy ✓ individuals (Mark first TWO only)	(2)
	6.3	150 volunteers were used ✓ (Mark first ONE only)	(1)
	6.4	- To allow the carbon dioxide levels in the blood to go back to normal \checkmark	
		- so that each phase will have the same carbon dioxide level as a starting	(2)
	6 5	point ✓	(2)
	6.5	- To act as a control √/baseline	
		- To see if it is the facemask that affects the carbon dioxide levels and not	(4)
	6.6	the physical activity ✓ Any	(1)
	6.6	- Receptors in the carotid artery are stimulated \checkmark and	
		- impulses are sent to the medulla oblongata \checkmark	

Life Sciences/	nloaded from Stanmarephysics.com Winter Classes 2023	
	- The medulla oblongata stimulates the heart ✓	
	- to beat faster ✓ causing	
	- more carbon dioxide to be taken to the lungs \checkmark	
	 The breathing muscles ✓/intercostal muscles and diaphragm 	
	 contract more actively ✓ and 	
	- the rate/ depth of breathing increases \checkmark	
	- More carbon dioxide is exhaled イ	
	 The carbon dioxide level in the blood decreases ✓ /returns to normal Any 	(7) (15)
Activity 7		
7		
7.1	71.53 – 34.72√ = 36.81√ ml/h	(2)
7.2	- The high level of ADH✓ at night	
	 Increases the permeability of the renal tubules ✓/collecting duct/distal convoluted tubules in the kidney 	
	- More water is re-absorbed √/less water is excreted	
	- Less urine is produced✓	(4)
7.3	- Less urine produced √/more water is retained	(2)
	 A person will not need to urinate often √/ will not be thirsty/sleep will not be interrupted 	
7.4	- Water will not be reabsorbed from the renal tubules \checkmark	
	- The volume of water in the blood will be low \checkmark	
	- The pituitary gland will be stimulated ✓	(
	- to release more ADH√ all the time Any 3	(3) (11)

