Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

MATHEMATICS PAPER 2 NOVEMBER 2023

NAME:	CLASS:	

MARKS: 100 TIME: 2 hours

This question paper consists of 16 pages including 1 page of additional space.

				For educa	ator only				
Questions	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
Marks									

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- This question paper consists of 9 questions.
- Answer ALL the questions.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- Diagrams are NOT necessarily drawn to scale.
- Write neatly and legibly.
- Answer questions on spaces provided.

QUESTION 1

The data below shows the marks for a Mathematics test written out of 50 by 15 learners.

49 37 37 20 16 28 14 43 25 11 34 27 40 23 19

1.1 Calculate the range for the data.

(1)

1.2 Determine the median mark for the test.

(1)

1.3 Calculate the interquartile range (IQR).

(2)

1.4 Draw a box and whisker diagram for the data above.

(3)

[7]

Mathematics P2 Downloaded from Stanmerephysics.com

QUESTION 2

Employees who use company cars were asked to record the number of kilometres they travel to and from work each day. The table below shows the results:

Number of kilometres	Number of employees	midpoint	midpoint × frequency
5 ≤ x < 10	4		
10≤x<15	7		
15 ≤ x < 20	18		
20 ≤ x < 25	10		
$25 \le x < 30$	3		
$30 \le x < 35$	3		

2.1	How many employees were there?	(1)
2.2	Estimate the mean distance travelled.	(3)
2.3	Write down the modal class.	(1)
2.4	In which interval does the median distance lie?	(1)
2.5	Calculate the percentage of employees who travel at least 25 km in a day.	(2)
	у	
		F01

QUESTION 3

In the diagram below, A(4;4), B(2;-1), C(x;y) and D(-6;0) are four vertices of a quadrilateral ABCD.

3.1.1 Calculate the gradient of AD. (2)

3.1.2 Determine the equation of line BC which is parallel to AD. (4)

3.1.3 Determine the coordinates of E, the midpoint of line BD. (2)

	3.1.4	Given that the quadrilateral ABCD is a parallelogram, calculate the coordinates of point C.	(4)
3.2	Given PQ ⊥	the points $P(-2;3)$, $Q(1;4)$, $R(-4;1)$ and $S(x;4)$. Determine the value of x if RS.	(3)
			[15]
QUES	STION 4	•	
4.1	Given	$\sqrt{3}$ cosec $\theta + 2 = 0$ and $90^{\circ} < \theta < 270^{\circ}$.	
	4.1.1	Use a sketch to determine the value of the following WITHOUT USING A CALCULATOR .	
		(i) $\cos \theta$	(4)

		(ii) $\frac{\sin\theta\tan\theta}{\cos\theta}$	(4)
	4.1.2	If θ = 25° and α = 38°, determine the value of $\cos(2\alpha-\theta)$ correct to 1 decimal	
		place.	(3)
4.2	Simpli	ify the following expression WITHOUT using a calculator.	
		$cosec^2 60^\circ + tan^2 45^\circ + sec 60^\circ$	(6)

4.3 Solve for θ correct to TWO decimal places, if

$$2\tan(\theta - 45^{\circ}) = 1 \text{ and } 0^{\circ} \le \theta \le 90^{\circ}$$
 (3)

[20]

QUESTION 5

Given $f(x) = 3\sin x$ and $g(x) = 2\cos x + 1$

Sketch on the grid provided, the graphs of f and g for $0^{\circ} \le \theta \le 360^{\circ}$. (6)

5.2 Write down the following:

5.2.1 Amplitude of g

(1)

Period of f	(1)	
	Period of f	Period of f (1)

5.3 For which value(s) of x is:

5.3.1
$$g(x) - f(x) = 4$$
 (2)

5.3.2 $f(x).g(x) \ge 0$ (3)

Ĭ	
J	
1	
Ŋ	
1	
И	

[13]

QUESTION 6

A handyman attempts to reach the roof of a hall with a ladder 5 metres in length. Unfortunately, the ladder is too short, and a new ladder will be required. Suppose that the length of the ladder needed to reach the top has to be double the distance from the foot of the ladder to the wall. Also, the angle between his current ladder and the ground will need to be equal to the angle between the two ladders.

6.1 Calculate the value of θ (4)

6.2	Hence, or otherwise, determine what length the ladder should be to get the handyman to the	
	roof.	(4)

[8]

QUESTION 7The diagram below shows a drinking glass with an inner diameter of 50 mm and a height h. Ignore the thickness of the glass,

The volume of the glass is 250 cm³.

7.1 Calculate the height h. (3)

I .	

7.2 Water is now poured into the glass until it is 65% full.

Calculate the total surface area covered by the water.

1	A	1	
•	Δ	. 1	
- 1	7		

[7]

QUESTION 8

8.1 In the diagram below BD \parallel EF, AB \parallel DE; BE = EC = 6cm and AD = 10cm

8.1.1 Show that FC = 5cm

•	9	n
	/	
١	_	

8.1.2 If
$$AB = \frac{16}{5}FC$$
, prove that $A\hat{B}C = 90^{\circ}$ (3)

8.2 In quadrilateral ABCD, AD || BC and $\hat{B} = \hat{D}$. Prove that ABCD is a parallelogram.

I	
I	
I	
I	

[10]

QUESTION 9

ABCD is a parallelogram. BH bisects ABC and HC bisects BCD.

 $\mbox{ABC}=60^{\circ}$, $\mbox{$\hat{F}=120^{\circ}$}$, BH || GC and BG || HC . AD is produced to E such that AB = DE = 30 cm. BC is produced to F.

Prove	that:
-------	-------

9.1	$\hat{C}_1 = 60^{\circ}$	(3)

9.2	BGCH is a rectangle	(2)

9.3	DC EF			(2)
9.4	DC = DE			(2)
9.5	DCFE is a rhombus			(3)
				[12] TOTAL MARKS: 100
		EXTRA SPA	ACE	

100

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1-ni)$$

$$A = P(1-i)$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}; r \neq$$

$$S_n = \frac{a(r^n - 1)}{r - 1}; r \neq 1$$
 $S_{\infty} = \frac{a}{1 - r}; -1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{X_1 + X_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area
$$\triangle ABC = \frac{1}{2} ab. sin C$$

 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

 $cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com

MATHEMATICS P2

NOVEMBER 2023

MARKING GUIDELINE

Stanmorephysics com

NATIONAL SENIOR CERTIFICATE

GRADE 10

MARKS: 100

This marking guideline consists of 14 pages.

Copyright Reserved Please turn over

QUESTION 1

1.1	range = 49 -11	8 0	
	= 38	✓ Answer	(1)
1.2	$Q_2 = 27$	✓ Answer	(1)
1.3	$IQR = Q_3 - Q_1$	\checkmark Q ₁ and Q ₃	
	= 37 - 19	✓ Answer	
	=18		(2)
1.4	10 20 30 40 50	\checkmark max and min \checkmark Q ₁ , Q ₂ and Q ₃ \checkmark box and whiskers	(3)
		<u>.</u>	[7]

QUESTION 2

2.2 $\overline{x} = \frac{\sum x \cdot f}{\sum f}$ $= \frac{837.5}{45}$ $= 18,61$ 2.3 $15 \le x < 20$ 2.4 $15 \le x < 20$ 2.5 $\frac{6}{45} \times 100\%$ $= 13,33\%$ $\checkmark 837.5$ $\checkmark 45$	[8]
2.2 $\overline{x} = \frac{\sum x.f}{\sum f}$ $= \frac{837,5}{45}$ $= 18,61$ 2.3 $15 \le x < 20$ 7837,5 745 78swer 7 Answer 7 Answer	(2)
2.2 $\bar{x} = \frac{\sum x.f}{\sum f}$ $= \frac{837,5}{45}$ $= 18,61$ 7837,5 785 785 787 787 788 788 788	
2.2 $\bar{x} = \frac{\sum x.f}{\sum f}$ $= \frac{837,5}{45}$ $= 18,61$ 7837,5 785 785 787 787 788 788 788	(1)
2.2 $\overline{X} = \frac{\sum X \cdot f}{\sum f}$ $= \frac{837,5}{45}$ $= 18,61$ $\checkmark 837,5$ $\checkmark 45$ $\checkmark 45$ $\checkmark Answer$	(1)
2.2 $\bar{x} = \frac{\sum x.f}{\sum f}$ $\sqrt{837,5}$ $\sqrt{45}$	(3)
2.1 45 ✓ answer	(1)

Copyright Reserved Please turn over

QUESTION 3

	Marking Guidelin	ne	
	$m_{BC} = m_{AD} = \frac{2}{5}$ BC AD	√S√R	
	$\frac{y-(-1)}{x-2}=\frac{2}{5}$		
	$\frac{x-2}{y+1} = \frac{2}{5}$		
	$\frac{x-2}{5} = \frac{1}{5}$ $5(y+1) = 2(x-2)$	✓ equating	
	5(y+1) = 2(x-2) 5y+5=2x-4	Cquating	
	5y = 2x - 9		(4)
	$y = \frac{2}{5}x - \frac{9}{5}$	✓ Answer	(4)
	OR		
	$m_{BC} = m_{AD} = \frac{2}{5}$ BC AD	√S√R	
	$y - y_1 = m(x - x_1)$		
	$y-(-1)=\frac{2}{5}(x-2)$	✓ substitution	
	$y+1=\frac{2}{5}(x-2)$		
	$y = \frac{2}{5}x - \frac{9}{5}$	✓ Answer	(4)
	5 5		
3.1.3	(2+-6 0+-1)	✓ x-coordinate	
	midpt of BD=E $\left(\frac{2+-6}{2}; \frac{0+-1}{2}\right)$	✓ y-coordinate	
	$= E\left(-2; -\frac{1}{2}\right)$		(2)
	OR		
	0.7		
	$x = \frac{-6+2}{2}$, $y = \frac{0+(-1)}{2}$		
	$x = \frac{-6+2}{2}$, $y = \frac{0+(-1)}{2}$ $x = \frac{-4}{2}$ $y = \frac{-1}{2}$ $x = -2$ $y = -\frac{1}{2}$ $E\left(-2; -\frac{1}{2}\right)$		
	$x = -2 y = -\frac{1}{3}$		
	E(2.1)	✓ x-coordinate	\$60000
		✓ y-coordinate	(2)
3.1.4	midpt of BD = midpt of AC diagonals of a parm	✓ S/R	
1	I .	I .	1 1

$$\frac{x+4}{2} = -2$$

$$x = 8$$

$$\therefore C(-8; -5)$$

$$\frac{y+4}{2} = -\frac{1}{2}$$

$$\frac{y+4}{2} = -\frac{1}{2}$$
$$y = -\frac{1}{2}$$

$$\sqrt{\frac{x+4}{2}} = -2$$
 and $\frac{y+4}{2} = -\frac{1}{2}$

$$\sqrt{x} = -8$$
 $\sqrt{y} = -5$

(4)

OR

Transformation Rule is C

$$C(x-10; y-4)$$

 $C(2-10; -1-4)$
 $C(-8; -5)$

$$\checkmark$$
 Rule
 \checkmark x = -8
 \checkmark y = -5

OR

Equation of line BC: $y = \frac{2}{5}x - \frac{9}{5}$ (from 3.1.2)

Equation of line DC

$$m_{DC} = m_{AB}$$
 ... DC || AD

$$m_{DC} = \frac{4 - (-1)}{4 - 2}$$

$$m_{DC} = \frac{5}{2}$$

$$y = \frac{5}{2}x + c$$

$$0 = \frac{5}{2}(-6) + c$$

$$c = 15$$

$$\therefore y = \frac{5}{2}x + 15$$

$$\frac{2}{5}x - \frac{9}{5} = \frac{5}{2}x + 15$$

$$-\frac{21}{10}x = \frac{84}{5}$$

$$x = -8$$

when
$$x = -8$$

$$y = \frac{5}{2}(-8) + 15$$

$$y = -5$$

√ equation of line DC

√ equating

$$\checkmark$$
 x = -8

 \checkmark y = -5

(4)

	IVIAIN	ing Guideline	
3.2	$m_{PQ}.m_{RS} = -1 \dots PQ \perp RS$	$\sqrt{m_{PQ}.m_{RS}} = -1$	
	$\left(\frac{4-3}{1-(-2)}\right) \cdot \left(\frac{4-1}{x-(-4)}\right) = -1$	✓ substitution	
	$\frac{1}{x+4} = -1$		
	1 = -x - 4 $x = -5$	✓ Answer	(3)
23			[15]
			LTOI

Copyright Reserved

QUESTION 4

	Marking Guideline		
	$\frac{\sin^2 \theta}{\cos^2 \theta} = \left(\frac{\sqrt{3}}{2}\right)^2 \div \left(-\frac{1}{2}\right)^2$ $= 3$	$\sqrt{\frac{\sin^2 \theta}{\cos^2 \theta}}$ $\sqrt{-\frac{\sqrt{3}}{2}}$ $\sqrt{-\frac{1}{2}}$	(4)
4.1.2	$cos(2\alpha - \theta)$ $= cos[2(38^\circ) - 25^\circ]$ $= cos 51^\circ$ $= 0, 6$	✓ Answer ✓ substitution ✓ cos 51° ✓ Answer	(3)
4.2	$\cos c^{2} 60^{\circ} + \tan^{2} 45^{\circ} + \sec 60^{\circ}$ $= \frac{1}{\sin^{2} 60^{\circ}} + \tan^{2} 45^{\circ} + \frac{1}{\cos 60^{\circ}}$ $= \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}} + (1)^{2} + \frac{1}{\left(\frac{1}{2}\right)}$ $= \frac{4}{3} + 1 + 2$ $= \frac{13}{3}$	$\sqrt{\frac{1}{\sin^2 60^\circ}}$ $\sqrt{\frac{1}{\cos 60^\circ}}$ $\sqrt{\frac{\sqrt{3}}{2}}$ $\sqrt{1}$ $\sqrt{\frac{1}{2}}$ $\sqrt{\text{Answer}}$	(6)
	OR $ cosec^{2}60^{\circ}+tan^{2}45^{\circ}+sec60^{\circ} $ $ = \frac{1}{\sin^{2}60^{\circ}}+tan^{2}45^{\circ}+\frac{1}{\cos60^{\circ}} $ $ = \left(\frac{2}{\sqrt{3}}\right)^{2}+(1)^{2}+2 $ $ = \frac{13}{3} $	$\sqrt{\frac{1}{\sin^2 60^\circ}} \sqrt{\frac{1}{\cos 60^\circ}}$ $\sqrt{\frac{2}{\sqrt{3}}}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{1}$ $\sqrt{2}$ $\sqrt{3}$	
	G		(6)

	40	9	
4.3	$2\tan(\theta-45^\circ)=1$		
	$\tan(\theta - 45^\circ) = \frac{1}{2}$	$\checkmark \tan(\theta - 45^\circ) = \frac{1}{2}$	
	$\theta - 45^{\circ} = 26,57^{\circ}$ $\theta = 71,57^{\circ}$	\checkmark θ − 45° = 26,57° \checkmark Answer	(3)
			[20]

QUESTION 5

QUESTION 6

6.1	$\cos 2\theta = \frac{x}{2x}$	$\sqrt{\cos 2\theta} = \frac{x}{2x}$	
	$\cos 2\theta = \frac{1}{2}$	$\checkmark \cos 2\theta = \frac{1}{2}$	
	$2\theta = 60^{\circ}$	✓ 2 <i>θ</i> = 60°	
	∴ θ = 30°	✓ Answer	(4)
6.2	$\frac{x}{5} = \cos 30^{\circ}$	✓ trig ratio	
	x = 5 cos 30°	$\sqrt{x} = 5\cos 30^{\circ}$	
	ladder = 2x		
	$= 2(5\cos 30^{\circ})$	✓ substitution in 2x	
	$=5\sqrt{3}m$	✓ Answer	(4)
		.1	[8]

QUESTION 7

7.1	r = 25mm	200 00	
	= 2,5cm	✓ r in cm	
	$V = \pi r^{2}h$ $250 = \pi (2,5)^{2}h$ $h = \frac{250}{19,63}$	✓substitution in correct formula	
	h = 12,736 cm	✓ Answer	(3)
7.2	$h_{water} = 0,65 \times 12,736 = 8,034$	$\checkmark h_{water} = 0,65 \times 12,736 = 8,034$	3 3 12 3
	$TSA = \pi r^2 + (2\pi r \times h)$	✓ TSA formula	
	$= \pi (2,5)^{2} + [2\pi (2,5) \times 8,034]$	✓ substitution	(4)
	= 70,11cm ²	✓ Answer	
			[7]

Copyright Reserved Please turn over

QUESTION 8

8.2	Consider ΔACD and ΔCAB		
	D=B (given)		
	$\hat{A}_2 = \hat{C}$ (alt \angle s, AD BC)	✓ S/R	
	AC is common	√ S	
	∴ ΔACD ≡ ACAB (AAS)	✓ R	
	AD=BC $(\equiv \Delta s)$	✓ S/R	
	(-20)		
	ABCD is a parallelogram (opp sides = and)	✓ R	(5)
			[10]

QUESTION 9

Copyright Reserved

-	Marking Guideline		
	$A\hat{B}C = 60^{\circ}$ (given)	✓ S/R	
	$\hat{D}_1 = 60^{\circ}$ (app \angle s of a parm)	√ S √R	
	$\hat{BCD} = 120^{\circ}$ (co-int $\angle s$, AD BC)		
	But HC bisects BCD		(3)
	$\therefore \hat{C}_1 = 60^{\circ} \qquad \text{(proved)}$		
9.2	BH bisects ABC (given)		
	$\therefore \hat{B}_1 = \hat{B}_2 = 30^{\circ}$		
	$\hat{B}_2 = \hat{C}_4 = 30^\circ$ (alt \angle s, BH GC)		
	$\hat{C}_1 = \hat{B}_3 = 60^\circ$ (alt \angle s, BG HC)		
	\Rightarrow GBH = $60^{\circ} + 30^{\circ} = 90^{\circ}$	✓ GBH/GCH = 90°	
	$\hat{GCH} = 60^{\circ} + 30^{\circ} = 90^{\circ}$		
	∴ BGCH is a rectangle (BGCH is a Parm with \angle s = 90°)	√ R	(2)
9.3	$\hat{F} = 120^{\circ}$ (given)		
	$\hat{C}_1 + \hat{C}_2 = 120^\circ$ (calculated in 9.1)		
	$\therefore \hat{F} = \hat{C}_1 + \hat{C}_2$	$\checkmark \hat{F} = \hat{C}_1 + \hat{C}_2$	
	DC EF (corr \angle s =)	✓ R	(2)
	(6011 23 -)		(2)
	OR		
	$\hat{C}_3 = 180^\circ - \hat{C}_1 - \hat{C}_2$ (adj \angle s on a str.line)		
	$\hat{C}_3 = 180^\circ - 60^\circ - 60^\circ$		
	$\hat{C}_3 = 60^{\circ}$		
	$\hat{C}_3 + \hat{F} = 60^{\circ} + 120^{\circ}$	$\sqrt{\hat{C}_3 + \hat{F}} = 60^\circ + 120^\circ$	
	=180°	3	
	∴ DC EF (co-int ⊕s supplementary)	√R	
9.4	ADF and BCF are straight lines (ABCD is a parm)		
	ADE and BCF are straight lines (given) ∴ DE CF		
	DC EF (proven in 9.3)		
	∴ DCFE is a parm (both pairs of opp sides)		
	DC=30 cm (opp sides of a parm are=)	✓S✓R	(2)
	∴ DC= DE =30 cm		
	OR		
			-

	Marking Guideline		
DE = AB = 30cm	(given)	/ 0 / 0	(0)
DC = AB = 30cm	(opp sides of a parm)	✓S✓R	(2)
∴ DC = DE	(both = to AB)		
9.5 DE = DC = 30cm	(proven in 9.4)	√S	
∴ DCFE is a rhombus		✓ S ✓ R	(3)
Dei E is a monibus	(au) sides –)		
	OR		
C	D M F		
Construct diagonal Cl	E and consider ∆CDE		
$\hat{D} = \hat{F} = 120^{\circ}$	(opp ∠s of a parm)		
CD = DE = 30cm	(proven in 9.4)		
∴ DĈE = DÊC = 30°	$(\angle s \text{ opp} = \text{sides})$		
DC EF	(proven in 9.3)		
∴ DE = CF = 30cm			
But DC= DE	(proven in 9.4)		
∴ DC = CF = 30cm	(both = DE)		
Construct diagonal Di	F and consider ΔCDF		
Ĉ ₃ = 60°	(calculated in 9.3)		
CDF = CFD = 60°			
consider ΔCDM			
554 C 954 SA TINA DENG C MASSER ACCORDAN	:180° (sum of ∠s in Δ)		
$30^{\circ} + 60^{\circ} + \text{CMD} = 1$		(OVED 1000	
729		✓ CMD = 90°	
CMD = 9			
.: DCFE is a rhombus	(diagonals bisect at 90°)	√s √R	(3)
			[12]

TOTAL MARKS = 100

Copyright Reserved Please turn over