SBA GUIDELINES

Practical work:

- Learners do TWO experiments (ONE Chemistry, ONE Physics) for SBA.
- Term 2: Heating/cooling curve of water.
- Term 3: Measurement of velocity \& position/time, velocity/time and acceleration/time graphs for a moving trolley.

Week		2024 ATP: Grade 10 - Term 1: PHYSICAL SCIENCES					
	Knowledge Area	Page in CAPS doc	Concepts for week	Date completed	SMT Member Signature	\% curriculum coverage	
						Per term	Annual
Week 1 17-19 Jan	WAVES, SOUND AND LIGHT: Transverse pulses on a string/spring -Transverse waves (2HRS)	26-28	- Define a pulse, a transverse pulse and amplitude. - Define the principle of superposition. - Define constructive interference and destructive interference. - Apply the principle of superposition to pulses to explain, using diagrams, how two pulses that reach the same point in the same medium superpose constructively and destructively and then continue in the original direction of motion. - Define a transverse wave. - Define wavelength, frequency, period, amplitude, crest and trough of a wave. - Explain the wave concepts in and out of phase. - Identify the wavelength, amplitude, crests, troughs, points in phase and points out of phase on a drawing of a transverse wave. Informal test			6\%	2\%
$\begin{aligned} & \text { Week } 2 \\ & \text { 22-26 Jan } \end{aligned}$	WAVES, SOUND AND LIGHT: - Transverse waves - Longitudinal waves (4HRS)	26-28	Transverse waves - Use the relationship between frequency and period to solve problems. $\mathrm{f}=\frac{1}{\mathrm{~T}}$ - Define wave speed as the distance travelled by a point on a wave per unit time. - Use the wave equation $(v=f \lambda)$ to solve problems involving waves. Longitudinal waves - Define a longitudinal wave. - Draw a diagram to represent a longitudinal wave in a spring, showing the direction of motion of the wave relative to the direction in which the particles move. - Define the wavelength and amplitude of a longitudinal wave. - Define a compression and a rarefaction. - Differentiate between longitudinal and transverse waves. - Informal test			18\%	6\%
$\begin{aligned} & \text { Week } 3 \\ & 29 \text { Jan- } 2 \\ & \text { Feb } \end{aligned}$	WAVES, SOUND AND LIGHT: Longitudinal waves (2HRS) Sound (2HRS)	27-29	- Define the period and frequency of a longitudinal wave. - Use the relationship between frequency and period to solve problems. $\text { ○ } f=\frac{1}{T}$ - Define wave speed as the distance travelled by a point on a wave per unit time. - Use the wave equation $(v=f \lambda)$ to solve problems longitudinal waves. Sound - Describe a sound wave as a longitudinal wave. - Explain the relationship between wave speed and the properties of the medium in which the wave travels (gas, liquid or solid). - Describe echoes as reflections of sound waves. - Use the wave equation $(v=f \lambda)$ to solve problems involving sound waves including echoes, e.g. sonar, bats and dolphins.			30\%	9\%

- ALL INFORMAL experiments should be done.

2024 ATP: Grade 10 - Term 2: PHYSICAL SCIENCES							
Week	Knowledge Area	Page in CAPS doc	Concepts for week	Date completed	SMT Member Signature	\% curriculum coverage	
						Per term	Annual
Week 1 3-5 April	CONTROL TEST (Discussion, and Remedial Work of Control Test) (2 HRS)		Discussion, and Remedial Work of Control Test			6\%	32\%
$\begin{aligned} & \text { Week } 2 \\ & \text { 8-12 April } \end{aligned}$		43-45	- Explain why a battery in a circuit goes flat by referring to the energy transformations in the battery and the resistors in a circuit. - Know that current is the same through each resistor in a series circuit. - Describe series circuits as potential difference dividers. - Calculate the total resistance of resistors connected in series: $\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+$ - Know that potential difference is the same across resistors connected in parallel. - Describe parallel circuits as current dividers because the - total current in the circuit is equal to the sum of the branch currents. - Calculate the total resistance of resistors connected in parallel: $\frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\ldots$ - Solve problems using $R=V / I$ for circuits containing resistors that are connected in series and/or in parallel (maximum four resistors).			18\%	35\%
$\begin{aligned} & \text { Week } 3 \\ & \text { 15-19 April } \end{aligned}$	MATTER AND MATERIAL: States of matter and the kinetic molecular theory (2 HRS)	15-19	- Describe matter as being made up of particles. - State and define the properties of material: - Strength - Brittle, malleable or ductile - Density (lead / aluminium) - Melting points and boiling points - Define a mixture, a pure substance, an element and a compound and give examples. - Describe the particle nature of matter by referring to diffusion and Brownian motion - List and characterise the three states of matter. - Define freezing point, melting point and boiling point. Interpret/Draw heating and cooling curves and interpret data given on such curves.			24\%	37\%
Week 4 22-26 April	MATTER AND MATERIAL: States of matter and the kinetic molecular theory (2 HRS) The atom (1 HR)	15-19 20-21	- Identify the physical state of a substance at a specific temperature, given its melting point and the boiling point. - Define melting, evaporation, freezing, sublimation and condensation as changes in state. - Describe a solid, a liquid and a gas according to the Kinetic Molecular Theory in terms of particles of matter - Describe the structure of an atom (nucleus in centre and electrons in the space around). - Define atomic number. - Determine for an atom/ion the: o Atomic number o Number of protons o Number of electrons o Number of neutrons o Mass number - Determine the charge on an ion after removing/ adding electrons to an atom.			33\%	40\%

			2024 ATP: Grade 10 - Term 3: PHY	CAL S	ENCES		
Week	Knowledge Area	Page in CAPS doc	Concepts for week	Date completed	SMT Member Signature	\% curriculum coverage	
						Per term	Annual
Week 1 9-12 July	CONTROL TEST (Discussion and Remedial Work on Control Test) (1 HR) CHEMICAL CHANGE: Quantitative aspects of chemical change (2 HRS)	50-52	- Define concentration. - Calculate concentration in mol $\cdot \mathrm{dm}-3$ using $\mathrm{c}=\frac{n}{v}$. - Determine percentage composition of an element in a compound. - Determine the empirical formula for a substance from percentage composition. - Define an empirical formula as the simplest. - Determine the number of moles of water of crystallization in salts like $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H} 2 \mathrm{O}$. - Define water of crystallization.			8\%	62\%
$\begin{array}{r} \text { Week } 2 \\ \text { 15-19 July } \end{array}$	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 HRS)	50-52	- Perform stoichiometric calculations based on balanced equations (concentration, mass, moles, molar mass, number of particles and volume). - Determine the theoretical yield of a product in a chemical reaction when you start with a known mass of reactant. - Determine the percentage yield of a chemical reaction:			19\%	66\%
$\begin{aligned} & \text { Week } 3 \\ & \text { 22-26 July } \end{aligned}$	MECHANICS: Vectors and scalars (4 HRS)	53	- List physical quantities, for example time, mass, weight, force, charge, etc. - Define a vector and a scalar quantity. - Represent vectors graphically with an arrow. - Use the force vector as an example to show equality of vectors, negative vectors and addition of vectors in one dimension only. - Define a resultant. - Determine a resultant graphically using the tail-tohead method as well as by calculation for a maximum of four force vectors in one dimension.			29\%	69\%
Week 4 29 July- 2 Aug	MECHANICS: Motion in one dimension (3 HRS)	54-55	- Describe the concept of a frame of reference (has an origin and a set of directions, e.g. east and west or up and down). - Define one-dimensional motion. - Define position relative to a reference point and understand that position can be positive or negative.			37\%	72\%
Week 5 5-9 Aug	MECHANICS: Motion in one dimension (4 HRS)	54-55	- Define: distance, displacement - Describe and illustrate the difference between displacement and distance. - Calculate distance and displacement for onedimensional motion. - Define: average speed, average velocity - Calculate average speed and average velocity for one-dimensional motion.			47\%	76\%
$\begin{aligned} & \text { Week } 6 \\ & \text { 12-16 Aug } \end{aligned}$	MECHANICS: Motion in one dimension (4 HRS)	54-55	- Define acceleration. $\left(\mathrm{a}=\frac{\Delta v}{\Delta t}\right) .$ - Differentiate between positive acceleration, negative acceleration and deceleration. - Calculate acceleration one-dimensional motion.			57\%	79\%
Week 7 19-23Aug	MECHANICS: Instantaneous speed and velocity and the equations of motion (4 HRS)	56-57	- Define instantaneous velocity and instantaneous speed. - Describe in words and distinguish between motion with uniform velocity and uniformly accelerated motion. - Describe the motion of an object given its position versus time, velocity versus time and acceleration versus time graph. Determine the velocity of an object from the gradient of the position versus time graph.			67\%	82\%

2024 ATP: Grade 10 - Term 4: PHYSICAL SCIENCES

Week	Knowledge Area	Page in CAPS doc	Concepts for week	Date completed	SMT Member Signature	\% curriculum coverage	
						Per term	Annual
Week 1 1-4 Oct	SEPT CONTROL TEST (Discussion and Remedial Work) (3 HRS)	3	Discussion and Remedial Work			43\%	95\%
Week 2 7-11 Oct	MECHANICS: Energy (4 HRS)	58-59	- Define mechanical energy. - Calculate mechanical energy using EM = Ek + Ep. $\text { OR EM }=K+U$ - State the law of conservation of energy. - State the principle of conservation of mechanical energy. - Apply the principle of conservation of mechanical energy to various contexts, viz. objects dropped or thrown vertically upwards, the motion of a pendulum bob, roller coasters and inclined plane problems.			100\%	100\%
$\begin{aligned} & \text { Week } 3 \\ & 14-18 \text { Oct } \end{aligned}$	CONSOLIDATION AND REVISION (4 HRS)		All topics				
$\begin{aligned} & \text { Week } 4 \\ & 21-25 \text { Oct } \end{aligned}$	CONSOLIDATION AND REVISION (4 HRS)		All topics				
$\begin{array}{\|l} \hline \text { Week } 5 \\ 28 \text { Oct- } \\ 1 \text { Nov } \\ \hline \end{array}$	CONSOLIDATION AND REVISION (4 HRS)		All topics				
$\text { Week } 6$	CONSOLIDATION AND REVISION (4 HRS)		All topics				
Week 7 11-15 Nov	CONSOLIDATION AND REVISION (4 HRS)		All topics				
$\begin{aligned} & \text { Week 8- } \\ & 10 \\ & 18 \text { Nov- } \\ & 11 \text { Dec } \end{aligned}$	FINAL EXAMINATION P1: 2 hrs P2: 2 hrs		Physics Paper 1 (100 marks) - Transverse pulses - Transverse waves - Longitudinal waves - Sound - Electromagnetic radiation - Electrostatics - Electric circuits - Vectors and scalars - Motion in one dimension - Instantaneous speed and velocity and the equations of motion - Energy Chemistry Paper 2 (100 marks) - Matter and classification - States of matter and the kinetic molecular theory. - The atom - The periodic table - Chemical bonding - Physical and chemical change - Representing chemical change Quantitative aspects of chemical change				

