| | 2024 CUSTOMI | SED KZN Recovery ATP: Grade 12 – 1 | Term 1 | : PHYS | ICAL SCIE | NCES | | |------------------------------|---|--|---------------------|----------------|----------------------------|----------|-------------------| | | | | | | | % Cur | riculum
verage | | Weeks | Knowledge
Area | Concep
ts for week | Page in
CAPS doc | Date completed | SMT
Member
Signature | Per Term | Annual | | Week 1
17 – 19
Jan | MECHANICS:
Momentum &
Impulse | Define & calculate the momentum of a moving object: p = mv Describe the vector nature of momentum & draw vector diagrams. State Newton's second law in terms of momentum: | 99 | | | 8.6 | 2.9 | | Week 2
22 – 26
Jan | MECHANICS:
Momentum &
Impulse | Impulse and safety considerations. State the principle of conservation of linear momentum. Explain what is meant by an isolated system, internal and external forces. Prescribed Experiment (Formal) Verify the conservation of linear momentum Apply conservation of momentum to collisions of two objects (one dimension). Distinguish between elastic and inelastic collisions by calculation. | 101
100 | | | 31.4 | 10.7 | | Week 3
29 Jan –
02 Feb | MECHANICS:
Vertical projectile
motion | Explain what a projectile means. Use equations of motion to determine the position, velocity and displacement of a projectile at any given time. Sketch x vs t, v vs t and a vs t graphs for a free falling object, an object thrown vertically upwards, an object thrown vertically downwards & bouncing objects. | 102 | | | 42.8 | 14.6 | | Week 4
05 – 09
Feb | MECHANICS:
Vertical projectile
motion | For given x vs t, v vs t or a vs t graphs, determine position, displacement and velocity or acceleration at any time t. For given x vs t, v vs t or a vs t graphs, describe the motion of an object bouncing, thrown vertically upwards & thrown vertically downward. Recommended Experiment: (Informal)Investigate the motion of a falling body. Draw a graph of position vs time and velocity vs time for a free falling object and Use the data to determine the acceleration due to gravity | 102 -
103 | | | 54.2 | 18.4 | | Week 5
12 – 16
Feb | MATTER & MATERIALS: Organic molecules | Define organic molecules, functional group, hydrocarbon, homologous series, saturated and unsaturated compounds, and structural isomers. Write condensed, structural & molecular formulae (max 8 C atoms, 1 functional group per molecule) for alkanes (no rings), alkenes (no rings), alkynes, alcohols, haloalkanes (no rings), carboxylic acids, aldehydes, ketones and esters. Write IUPAC names for structural / condensed structural formulae for compounds from above series. | 104 | | | 65.6 | 22.3 | | Week 6
19 – 23
Feb | MATTER & MATERIALS: Organic molecules | Write IUPAC names from structural or condensed structural formulae for compounds listed (one functional group per molecule, max. two functional groups for haloalkanes). Identify alkyl substituents (methyl- and ethyl-); max. THREE alkyl substituents. Identify compounds that are saturated, unsaturated, structural isomers (chain, positional and functional). Physical properties: boiling point, melting point, vapour pressure | 104 -
108 | | | 77 | 26.2 | | | | | | | | | | | Weeks | | Concepts for week | Page in
CAPS doc | | | % Curriculu
Coverage | | |--------------------------------|---------------------------------------|--|---------------------|-------------------|----------------------------|-------------------------|--------| | | Knowledge
Area | | | Date
completed | SMT
Member
Signature | Per Term | Annual | | Week 7
26 Feb –
01 March | MATTER & MATERIALS: Organic molecules | Relationship between physical properties and strength of IMF, type of functional group, chain length and branching Combustion of alkanes in excess O₂ and use as fuels. Equation & reaction conditions for the formation of an ester and IUPAC names for reactant and products. Classify reactions as elimination, addition or substitution. Equations and reaction conditions for addition reactions of alkenes. | 106 | | | 88.4 | 30.1 | | Week 8
04 – 08
March | MATTER & MATERIALS: Organic molecules | Equations and reaction conditions for elimination reactions: dehydrohalogenation of haloalkanes, cracking of alkanes, dehydration of alcohols Equations and reaction conditions for substitution reactions: hydrolysis of haloalkanes, halogenation of alkanes | 107 –
117 | | | 100 | 34 | | Week 9
11 – 15
March | CONTROLLED
TEST
(2 Hours) | ONE PAPER (100 Marks) Newton's laws of motion Momentum and impulse Vertical projectile motion Organic molecules | | | | | | | Week 10
18 – 20
March | CONTROLLED
TEST
(2 Hours) | ONE PAPER (100 Marks) Newton's laws of motion Momentum and impulse Vertical projectile motion Organic molecules | | | | | | | | | | | | | 0/ 0 | urriculum | |------------------------------|---|--|---------------------|------|----------------------------|----------|----------------------| | | | | | | | | urriculum
overage | | Weeks | Knowledge
Area | Concepts for week | Page in
CAPS doc | Date | SMT
Member
Signature | Per Term | Annual | | \$ | | Discussion and corrections of March Controlled Test | N/A | | | 8.6 | 36.9 | | Veek 1
3 – 05
April | MECHANICS:
Work, energy and
power | Work Define the work done on an object. Draw force diagrams & free body diagrams. Calculate the net work done on an object. Distinguish between positive work and negative net work done on a system. | 117 | | | | | | Veek 2
8 – 12
pril | MECHANICS:
Work, energy and
power | State the work-energy theorem. Apply the work-energy theorem on horizontal, vertical and inclined planes. Define conservative and non-conservative forces and give examples. State the principle of conservation of mechanical energy. Solve problems using the equation W_{nc} = ΔEk + ΔEp Show that E_{mech} is conserved in absence of non-conservative forces | 118 | | | 17.2 | 39.8 | | Veek 3
5 – 19
April | MECHANICS:
Work, energy and
power | Define power and calculate the power involved when work is done Perform calculations using P_{ave}= Fv_{ave} when an object moves at a constant speed along a rough horizontal surface or a rough inclined plane Calculate the minimum power required of an electric motor to pump water from a borehole of a particular depth at a particular rate using W_{nc} = ΔEk + ΔEp Recommended practical investigating(Informal) Perform simple experiments to determine the work done in walking up (or running up a flight of stairs). Record the time for the run or the walk and calculate the power in each case | 117 -
120 | | | 25.8 | 42.7 | | Veek 4
22 – 26
April | WAVES, SOUND &
LIGHT: Doppler
Effect | State the Doppler Effect and explain (using illustrations) the change in pitch observed when a source moves toward or away from a listener (sound and ultra sound). State applications of the Doppler Effect. Solve problems using the Doppler formula. f_L = \frac{V\pmu}{V\pmu V V L} f_s \text{ when EITHER source or listener moves.} | 121 -
122 | | | 34.4 | 45.6 | | Veek 5
29 Apr –
33 May | WAVES, SOUND & LIGHT: Doppler Effect CHEMICAL CHANGE: Rate and | Calculations involving Doppler formula. With light, explain 'red shifts' & use the Doppler Effect to explain why we conclude that the universe is expanding Rates of reaction and factors affecting rate (nature of reacting substances, concentration [pressure for | 122 | | | 43 | 48.5 | | Veek 6
06 − 10
May | extent of reaction Chemical Change: Rate & Extent of reaction | gases], temperature and presence of a catalyst). Explain in terms of the collision theory, how various factors affect the rate of chemical reactions. Answer questions, and interpret data (graphs or tables) on different experimental techniques for measuring the rate of reaction. Define the term <i>positive catalyst</i> Interpret graphs of distribution of molecular energies to explain how a catalyst, temperature and concentration affect the reaction rate. Recommended experiment (Informal) | 123 -
124 | | | 54.4 | 52.4 | | /eek 7
3 – 17 | CHEMICAL
CHANGE:
Chemical | Rate of chemical reactions with sodium thiosulfate and hydrochloric acid. Recommended experiment (Informal) Rate of chemical reactions with sodium thiosulfate and hydrochloric acid Explain: open & closed systems; reversible reactions; dynamic equilibrium | 124 | | | 65.8 | 56.3 | | 2 | 2024 CUSTOMI | SED KZN Recovery ATP: Grade 12 – | Term 2 | 2: PHYS | ICAL SCI | ENCES | | |----------------------------|---|--|---------------------|-------------------|----------------------------|--------------|--------------------| | | | | | | | | rriculum
verage | | Weeks | Knowledge
Area | Concepts for week | Page in
CAPS doc | Date
completed | SMT
Member
Signature | Per Term | Annual | | | | List the factors that influence the position of an equilibrium. State Le Charterlier's principle and use it to explain changes in equilibria. Interpret simple graphs illustrating equilibrium. List the factors that influence the value of the equilibrium constant K_c. | | | | | | | Week 8
20 - 24
May | CHEMICAL
CHANGE: Chemical
equilibrium | Write an expression for the equilibrium constant from a given equation. Perform calculations(Stoichometry) based on K_c values. Recommended experiment (informal): Investigate equilibrium and the factors influencing equilibrium in the equilibrium of CoCl₂ and H₂O. Design and perform an experiment to investigate effects of pH on equilibrium systems such as Br₂ in water, and Cr₂O₇²⁻ in water. Explain the significance of high and low values of the equilibrium constant. | 125 | | | 77.2 | 60.2 | | Week 9
27 – 31
May | CHEMICAL
CHANGE:
Acids & bases | Define acids and bases according to Arrhenius and Lowry-Brønsted. Distinguish between strong and weak acids/bases with examples. Distinguish between concentrated and dilute acids/bases. Identify conjugate acid-base pairs for given compounds. Write neutralisation reactions of common laboratory acids and bases. Prescribed experiment (formal) How do you use the titration of oxalic acid against sodium hydroxide to determine the concentration of sodium hydroxide? Perform calculations(Stoichometry) based on titration reactions & motivate the choice of an indicator. | 125 -
126 | | | 88.6 | 64.1 | | Week 10
03-07
June | CHEMICAL
CHANGE:
Acids and bases | Titration calculations Determine the approximate pH of salts in salt hydrolysis. Explain the pH scale and calculate pH values of strong acids and strong bases. Define the concept of K_w and explain the auto ionization of water. Compare the K_a and K_b values of strong and weak acids and bases. Compare strong and weak acids by looking at pH, conductivity & reaction rate. | 126 -
128 | | | 100 | 68 | | Week 11
10 – 14
June | JUNE EXAMINATION 2hours Duration for each of papers 1 and 2 | June Examination (200 marks) Paper 1 Newton's laws of motion Momentum and impulse Vertical projectile motion Work, energy and power Doppler effect Electricity and Magnetism (Grade 11) | | | | | | | | | Paper 2 Stoichiometry Organic Molecules Rate and Extent of Chemical Reactions Chemical Equilibrium Acids & Bases | | | | | | | | | | | | | | urriculum
overage | |--------------------------------|---|--|---------------------|-------------------|----------------------------|----------|----------------------| | Weeks | Knowledge
Area | Concepts for week | Page in
CAPS doc | Date
completed | SMT
Member
Signature | Per Term | Annual | | <u> </u> | | Discussion and corrections of June Controlled Test | N/A | | | | | | Veek 1
9 – 12
uly | ELECTRICITY & MAGNETISM: Electrostatics | Electrostatics: Coulomb's Law Electric field | 84 –
85 | | | 9.1 | 70.9 | | uiy <u> </u> | | Electric circuits Solve problems involving current, voltage and resistance for circuits containing arrangements of resistors in series and in parallel (maximum four resistors excluding internal resistance) | 85 | | | | | | /eek 2
5 – 19
uly | ELECTRICITY & MAGNETISM: Electric circuits | Explain the term internal resistance. Solve circuit problems using ε = IR_{ext}+ Ir or ε = V_{load} + V_{int resistance}. Solve problems, with internal resistance, for circuits containing arrangements of resistors in series and in parallel (maximum four resistors). | 129 | | | 21.2 | 74.8 | | Veek 3
2-26
uly | ELECTRICITY & MAGNETISM: Electrodynamics | State the energy conversion in generators & use principle of electro-magnetic induction to explain how generators work. Give examples of uses of AC & DC generators & functions of components. State the energy conversion in motors & use motor effect to explain how motors work. Explain the functions of components of motors and give examples of uses of motors. State the advantages of alternating current over direct current. Draw and interpret sketch graphs of voltage vs time and current vs time for AC and DC generators. | 130 | | | 33.3 | 78.6 | | /eek 4
9 July –
2 August | ELECTRICITY & MAGNETISM: Electrodynamics | • Define the term rms for an alternating voltage or an alternating current. • Solve problems using $I_{rms} = \frac{I_{max}}{\sqrt{2}}$ $R_{rms} = \frac{R_{max}}{\sqrt{2}}$ $P_{ave} = I_{rms}^2 R$ $P_{ave} = \frac{V_{rms}^2}{R}$ $P_{ave} = \frac{1}{2} I_{rms} V_{rms}$ | 130 | | | 39.4 | 80.6 | | | M & M: Optical phenomena and properties of materials | Optical phenomena and properties of materials Describe the photoelectric effect and state its significance. Define threshold frequency, fo. Define work function, Wo. Perform calculations using the photoelectric | 130 | | | 51.5 | 84.5 | | /eek 5
5 – 08
ugust | MATTER & MATERIALS: Optical phenomena and properties of materials | equation: E = W_o + K_{max}, where E = hf and W_o= hf_o and K_{max} = ½ m(v_{max})² Explain the effect of intensity and frequency on the photoelectric effect. Explain the formation of atomic spectra by referring to energy transition. Explain the difference between atomic absorption spectra and atomic emission spectra | 102 | | | | | | eek 6
2 – 16
ugust | CHEMICAL
CHANGE:
Electrochemical
reactions | Define oxidation & reduction in terms of electron transfer & oxidation numbers. Define oxidising & reducing agents in terms of oxidation and reduction. Define an anode and cathode in terms of oxidation and reduction. Define an electrolyte | 134 -
138 | | | 63.6 | 88.3 | | | 2024 CUSTOM | ISED KZN Recovery ATP: Grade 12 – 1 | Term : | 3: PHYS | ICAL SC | IENCES | , | |--|--|--|---------------------|-------------------|----------------------------|----------|----------------------| | | | | | | | | urriculum
overage | | Weeks | Knowledge
Area | Concepts for week | Page in
CAPS doc | Date
completed | SMT
Member
Signature | Per Term | Annual | | Week 6
12 – 16
August
Continued | | State the function of a salt bridge. Predict the movement of ions and the direction of electron flow in external circuit. Write half-reactions at each electrode & the overall cell reaction. Predict in which half-cell oxidation / reduction takes place. Use cell notation or diagrams to represent a galvanic cell. Calculate emf for a galvanic cell. Explain that V_{cell} decreases as [product ions] increases and [reactant ions] decreases and V_{cell} = 0 when equilibrium is reached, (the cell is 'flat'). State the standard conditions under which standard electrode potentials are determined. Describe the standard hydrogen electrode and explain its role as the reference electrode. | 134 | | | 75.7 | 92.2 | | Week 7
19 - 23
August | CHEMICAL
CHANGE:
Electrochemical
reactions | Explain how standard electrode potentials can be determined using the reference electrode; state the convention regarding positive and negative values. Electrolytic cells Define an electrolytic cell. Describe the movement of ions in the solution. State the direction of electron flow in the external circuit. Write equations for the half-reactions at the anode and cathode. Write down the overall cell reaction. Describe, using half-reactions and the equation for the overall cell reaction as well as the layout of the particular cell using a schematic diagram, the following electrolytic processes: The decomposition of copper(II) chloride Electroplating, e.g. the electroplating of an iron spoon with silver/nickel Refining of copper The electrolysis of a concentrated solution of sodium chloride. | | | | 87.8 | 96.1 | | Week 8
26 – 30
August | Paper 2
Revision Paper 1 Revision | Paper 2 Representing chemical change (Gr 10) Intermolecular forces Energy and chemical change (Gr 11) Stoichiometry (application only) (Gr 11) Chemical Change Matter & Materials Newton's laws (Gr 11) Electrostatics (Gr 11) Electric circuits (Gr 11) | | | | 100 | 100 | | 02 – 06
Sept | | Mechanics Waves, Sound and light Electricity and magnetism Matter & Materials | | | | | | | Week 10,
11
09 – 20
Sept | PREPARATORY
EXAMINATION
P1: 3 hrs
P2: 3 hrs | PAPER 1: 150 marks Mechanics (65) Waves, Sound and light (15) Electricity and magnetism (55) Matter & Materials (15) PAPER 2: 150 marks Chemical Change (92) Matter & Materials (58) The following gr 10 and 11 topics will form part the two papers: Paper 1: | | | | | | | | | two papers: Paper 1: Newton's laws (Gr 11) Electrostatics (Gr 11) Electric circuits (Gr 11) Paper 2 | | | | | | | 2024 (| CUSTOMI | SED KZN Recovery ATP: Grade 12 | – Term 3 | B: PHYS | ICAL SCIE | NCES | | |--|-------------------|---|---------------------|---------|----------------------------|----------|------------------| | 5 | 3 | | | | | | riculum
erage | | Weeks | Knowledge
Area | Concepts for week | Page in
CAPS doc | Date | SMT
Member
Signature | Per Term | Annual | | Week 10,
11
09 – 20
Sept
Continued | | Representing chemical change (Gr 10) Intermolecular forces Energy and chemical change (Gr 11) Stoichiometry (application only) (Gr 11) | | | | | | | Те | rm 3 Reflection | on: | · | | | | | NB: week ending, duration written is the content guide. | 20 | J24 CUSTOM | ISED KZN Recovery ATP: Grade 12 – T | erm | 4: PH15 | PHI SICAL SCI | | Curriculum | |------------------------------|--|--|---------------------|---------|----------------------------|----------|------------| | Weeks | Knowledge
Area | Concepts for week | Page in
CAPS doc | Date | SMT
Member
Signature | Per Term | Panual | | Veek 1
01 – 04 Oct | REVIEW:
PREPARATORY
EXAMINATIONS | Discussion and correction of errors in Preparatory Exams (P1 & P2) | | | | | | | Veek 2
07 – 11 Oct | REVIEW:
PREPARATORY
EXAMINATIONS | Discussion and correction of errors in Preparatory Exams (P1 & P2) | | | | | | | Week 3
14 – 18 Oct | CONSOLIDATION
AND REVISION | Preparation for final Exams | | | | | | | Week 4
21-25 Oct | CONSOLIDATION
AND REVISION | Preparation for final Exams | | | | | | | Week 5
28 Oct – 01
Nov | | PAPER 1: 150 marks Mechanics (65) Momentum and impulse; Vertical projectile motion, Work, energy and power, Newton's laws (Gr 11) Waves, Sound and light (15) Doppler effect Electricity and magnetism (55) Electric circuits, Electrodynamics, Electrostatics (Gr 11), Electric circuits (Gr 11) Matter & Materials (15) Optical phenomena and properties of materials PAPER 2: 150 marks Chemical Change (92) Rate and extent of reaction, Chemical equilibrium, Acids and bases, Representing chemical change (Gr 10), Energy and chemical change (Gr 11), Stoichiometry (application only) (Gr 11), Electrochemical reactions Matter & Materials (58) Organic molecules, Intermolecular forces (Gr 11) | | | | | |