

	2024 CUSTOMI	SED KZN Recovery ATP: Grade 12 – 1	Term 1	: PHYS	ICAL SCIE	NCES	
						% Cur	riculum verage
Weeks	Knowledge Area	Concep ts for week	Page in CAPS doc	Date completed	SMT Member Signature	Per Term	Annual
Week 1 17 – 19 Jan	MECHANICS: Momentum & Impulse	 Define & calculate the momentum of a moving object: p = mv Describe the vector nature of momentum & draw vector diagrams. State Newton's second law in terms of momentum:	99			8.6	2.9
Week 2 22 – 26 Jan	MECHANICS: Momentum & Impulse	 Impulse and safety considerations. State the principle of conservation of linear momentum. Explain what is meant by an isolated system, internal and external forces. Prescribed Experiment (Formal) Verify the conservation of linear momentum Apply conservation of momentum to collisions of two objects (one dimension). Distinguish between elastic and inelastic collisions by calculation. 	101 100			31.4	10.7
Week 3 29 Jan – 02 Feb	MECHANICS: Vertical projectile motion	 Explain what a projectile means. Use equations of motion to determine the position, velocity and displacement of a projectile at any given time. Sketch x vs t, v vs t and a vs t graphs for a free falling object, an object thrown vertically upwards, an object thrown vertically downwards & bouncing objects. 	102			42.8	14.6
Week 4 05 – 09 Feb	MECHANICS: Vertical projectile motion	 For given x vs t, v vs t or a vs t graphs, determine position, displacement and velocity or acceleration at any time t. For given x vs t, v vs t or a vs t graphs, describe the motion of an object bouncing, thrown vertically upwards & thrown vertically downward. Recommended Experiment: (Informal)Investigate the motion of a falling body. Draw a graph of position vs time and velocity vs time for a free falling object and Use the data to determine the acceleration due to gravity 	102 - 103			54.2	18.4
Week 5 12 – 16 Feb	MATTER & MATERIALS: Organic molecules	 Define organic molecules, functional group, hydrocarbon, homologous series, saturated and unsaturated compounds, and structural isomers. Write condensed, structural & molecular formulae (max 8 C atoms, 1 functional group per molecule) for alkanes (no rings), alkenes (no rings), alkynes, alcohols, haloalkanes (no rings), carboxylic acids, aldehydes, ketones and esters. Write IUPAC names for structural / condensed structural formulae for compounds from above series. 	104			65.6	22.3
Week 6 19 – 23 Feb	MATTER & MATERIALS: Organic molecules	 Write IUPAC names from structural or condensed structural formulae for compounds listed (one functional group per molecule, max. two functional groups for haloalkanes). Identify alkyl substituents (methyl- and ethyl-); max. THREE alkyl substituents. Identify compounds that are saturated, unsaturated, structural isomers (chain, positional and functional). Physical properties: boiling point, melting point, vapour pressure 	104 - 108			77	26.2

Weeks		Concepts for week	Page in CAPS doc			% Curriculu Coverage	
	Knowledge Area			Date completed	SMT Member Signature	Per Term	Annual
Week 7 26 Feb – 01 March	MATTER & MATERIALS: Organic molecules	 Relationship between physical properties and strength of IMF, type of functional group, chain length and branching Combustion of alkanes in excess O₂ and use as fuels. Equation & reaction conditions for the formation of an ester and IUPAC names for reactant and products. Classify reactions as elimination, addition or substitution. Equations and reaction conditions for addition reactions of alkenes. 	106			88.4	30.1
Week 8 04 – 08 March	MATTER & MATERIALS: Organic molecules	 Equations and reaction conditions for elimination reactions: dehydrohalogenation of haloalkanes, cracking of alkanes, dehydration of alcohols Equations and reaction conditions for substitution reactions: hydrolysis of haloalkanes, halogenation of alkanes 	107 – 117			100	34
Week 9 11 – 15 March	CONTROLLED TEST (2 Hours)	ONE PAPER (100 Marks) Newton's laws of motion Momentum and impulse Vertical projectile motion Organic molecules					
Week 10 18 – 20 March	CONTROLLED TEST (2 Hours)	 ONE PAPER (100 Marks) Newton's laws of motion Momentum and impulse Vertical projectile motion Organic molecules 					

						0/ 0	urriculum
							urriculum overage
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date	SMT Member Signature	Per Term	Annual
\$		Discussion and corrections of March Controlled Test	N/A			8.6	36.9
Veek 1 3 – 05 April	MECHANICS: Work, energy and power	 Work Define the work done on an object. Draw force diagrams & free body diagrams. Calculate the net work done on an object. Distinguish between positive work and negative net work done on a system. 	117				
Veek 2 8 – 12 pril	MECHANICS: Work, energy and power	 State the work-energy theorem. Apply the work-energy theorem on horizontal, vertical and inclined planes. Define conservative and non-conservative forces and give examples. State the principle of conservation of mechanical energy. Solve problems using the equation W_{nc} = ΔEk + ΔEp Show that E_{mech} is conserved in absence of non-conservative forces 	118			17.2	39.8
Veek 3 5 – 19 April	MECHANICS: Work, energy and power	 Define power and calculate the power involved when work is done Perform calculations using P_{ave}= Fv_{ave} when an object moves at a constant speed along a rough horizontal surface or a rough inclined plane Calculate the minimum power required of an electric motor to pump water from a borehole of a particular depth at a particular rate using W_{nc} = ΔEk + ΔEp Recommended practical investigating(Informal) Perform simple experiments to determine the work done in walking up (or running up a flight of stairs). Record the time for the run or the walk and calculate the power in each case 	117 - 120			25.8	42.7
Veek 4 22 – 26 April	WAVES, SOUND & LIGHT: Doppler Effect	 State the Doppler Effect and explain (using illustrations) the change in pitch observed when a source moves toward or away from a listener (sound and ultra sound). State applications of the Doppler Effect. Solve problems using the Doppler formula. f_L = \frac{V\pmu}{V\pmu V V L} f_s \text{ when EITHER source or listener moves.} 	121 - 122			34.4	45.6
Veek 5 29 Apr – 33 May	WAVES, SOUND & LIGHT: Doppler Effect CHEMICAL CHANGE: Rate and	 Calculations involving Doppler formula. With light, explain 'red shifts' & use the Doppler Effect to explain why we conclude that the universe is expanding Rates of reaction and factors affecting rate (nature of reacting substances, concentration [pressure for 	122			43	48.5
Veek 6 06 − 10 May	extent of reaction Chemical Change: Rate & Extent of reaction	 gases], temperature and presence of a catalyst). Explain in terms of the collision theory, how various factors affect the rate of chemical reactions. Answer questions, and interpret data (graphs or tables) on different experimental techniques for measuring the rate of reaction. Define the term <i>positive catalyst</i> Interpret graphs of distribution of molecular energies to explain how a catalyst, temperature and concentration affect the reaction rate. Recommended experiment (Informal) 	123 - 124			54.4	52.4
/eek 7 3 – 17	CHEMICAL CHANGE: Chemical	 Rate of chemical reactions with sodium thiosulfate and hydrochloric acid. Recommended experiment (Informal) Rate of chemical reactions with sodium thiosulfate and hydrochloric acid Explain: open & closed systems; reversible reactions; dynamic equilibrium 	124			65.8	56.3

2	2024 CUSTOMI	SED KZN Recovery ATP: Grade 12 –	Term 2	2: PHYS	ICAL SCI	ENCES	
							rriculum verage
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	Per Term	Annual
		 List the factors that influence the position of an equilibrium. State Le Charterlier's principle and use it to explain changes in equilibria. Interpret simple graphs illustrating equilibrium. List the factors that influence the value of the equilibrium constant K_c. 					
Week 8 20 - 24 May	CHEMICAL CHANGE: Chemical equilibrium	 Write an expression for the equilibrium constant from a given equation. Perform calculations(Stoichometry) based on K_c values. Recommended experiment (informal): Investigate equilibrium and the factors influencing equilibrium in the equilibrium of CoCl₂ and H₂O. Design and perform an experiment to investigate effects of pH on equilibrium systems such as Br₂ in water, and Cr₂O₇²⁻ in water. Explain the significance of high and low values of the equilibrium constant. 	125			77.2	60.2
Week 9 27 – 31 May	CHEMICAL CHANGE: Acids & bases	 Define acids and bases according to Arrhenius and Lowry-Brønsted. Distinguish between strong and weak acids/bases with examples. Distinguish between concentrated and dilute acids/bases. Identify conjugate acid-base pairs for given compounds. Write neutralisation reactions of common laboratory acids and bases. Prescribed experiment (formal) How do you use the titration of oxalic acid against sodium hydroxide to determine the concentration of sodium hydroxide? Perform calculations(Stoichometry) based on titration reactions & motivate the choice of an indicator. 	125 - 126			88.6	64.1
Week 10 03-07 June	CHEMICAL CHANGE: Acids and bases	 Titration calculations Determine the approximate pH of salts in salt hydrolysis. Explain the pH scale and calculate pH values of strong acids and strong bases. Define the concept of K_w and explain the auto ionization of water. Compare the K_a and K_b values of strong and weak acids and bases. Compare strong and weak acids by looking at pH, conductivity & reaction rate. 	126 - 128			100	68
Week 11 10 – 14 June	JUNE EXAMINATION 2hours Duration for each of papers 1 and 2	June Examination (200 marks) Paper 1 Newton's laws of motion Momentum and impulse Vertical projectile motion Work, energy and power Doppler effect Electricity and Magnetism (Grade 11)					
		Paper 2 Stoichiometry Organic Molecules Rate and Extent of Chemical Reactions Chemical Equilibrium Acids & Bases					

							urriculum overage
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	Per Term	Annual
<u> </u>		Discussion and corrections of June Controlled Test	N/A				
Veek 1 9 – 12 uly	ELECTRICITY & MAGNETISM: Electrostatics	 Electrostatics: Coulomb's Law Electric field	84 – 85			9.1	70.9
uiy <u> </u>		 Electric circuits Solve problems involving current, voltage and resistance for circuits containing arrangements of resistors in series and in parallel (maximum four resistors excluding internal resistance) 	85				
/eek 2 5 – 19 uly	ELECTRICITY & MAGNETISM: Electric circuits	 Explain the term internal resistance. Solve circuit problems using ε = IR_{ext}+ Ir or ε = V_{load} + V_{int resistance}. Solve problems, with internal resistance, for circuits containing arrangements of resistors in series and in parallel (maximum four resistors). 	129			21.2	74.8
Veek 3 2-26 uly	ELECTRICITY & MAGNETISM: Electrodynamics	 State the energy conversion in generators & use principle of electro-magnetic induction to explain how generators work. Give examples of uses of AC & DC generators & functions of components. State the energy conversion in motors & use motor effect to explain how motors work. Explain the functions of components of motors and give examples of uses of motors. State the advantages of alternating current over direct current. Draw and interpret sketch graphs of voltage vs time and current vs time for AC and DC generators. 	130			33.3	78.6
/eek 4 9 July – 2 August	ELECTRICITY & MAGNETISM: Electrodynamics	• Define the term rms for an alternating voltage or an alternating current. • Solve problems using $I_{rms} = \frac{I_{max}}{\sqrt{2}}$ $R_{rms} = \frac{R_{max}}{\sqrt{2}}$ $P_{ave} = I_{rms}^2 R$ $P_{ave} = \frac{V_{rms}^2}{R}$ $P_{ave} = \frac{1}{2} I_{rms} V_{rms}$	130			39.4	80.6
	M & M: Optical phenomena and properties of materials	Optical phenomena and properties of materials Describe the photoelectric effect and state its significance. Define threshold frequency, fo. Define work function, Wo. Perform calculations using the photoelectric	130			51.5	84.5
/eek 5 5 – 08 ugust	MATTER & MATERIALS: Optical phenomena and properties of materials	 equation: E = W_o + K_{max}, where E = hf and W_o= hf_o and K_{max} = ½ m(v_{max})² Explain the effect of intensity and frequency on the photoelectric effect. Explain the formation of atomic spectra by referring to energy transition. Explain the difference between atomic absorption spectra and atomic emission spectra 	102				
eek 6 2 – 16 ugust	CHEMICAL CHANGE: Electrochemical reactions	 Define oxidation & reduction in terms of electron transfer & oxidation numbers. Define oxidising & reducing agents in terms of oxidation and reduction. Define an anode and cathode in terms of oxidation and reduction. Define an electrolyte 	134 - 138			63.6	88.3

	2024 CUSTOM	ISED KZN Recovery ATP: Grade 12 – 1	Term :	3: PHYS	ICAL SC	IENCES	,
							urriculum overage
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date completed	SMT Member Signature	Per Term	Annual
Week 6 12 – 16 August Continued		 State the function of a salt bridge. Predict the movement of ions and the direction of electron flow in external circuit. Write half-reactions at each electrode & the overall cell reaction. Predict in which half-cell oxidation / reduction takes place. Use cell notation or diagrams to represent a galvanic cell. Calculate emf for a galvanic cell. Explain that V_{cell} decreases as [product ions] increases and [reactant ions] decreases and V_{cell} = 0 when equilibrium is reached, (the cell is 'flat'). State the standard conditions under which standard electrode potentials are determined. Describe the standard hydrogen electrode and explain its role as the reference electrode. 	134			75.7	92.2
Week 7 19 - 23 August	CHEMICAL CHANGE: Electrochemical reactions	 Explain how standard electrode potentials can be determined using the reference electrode; state the convention regarding positive and negative values. Electrolytic cells Define an electrolytic cell. Describe the movement of ions in the solution. State the direction of electron flow in the external circuit. Write equations for the half-reactions at the anode and cathode. Write down the overall cell reaction. Describe, using half-reactions and the equation for the overall cell reaction as well as the layout of the particular cell using a schematic diagram, the following electrolytic processes: The decomposition of copper(II) chloride Electroplating, e.g. the electroplating of an iron spoon with silver/nickel Refining of copper The electrolysis of a concentrated solution of sodium chloride. 				87.8	96.1
Week 8 26 – 30 August	Paper 2 Revision Paper 1 Revision	 Paper 2 Representing chemical change (Gr 10) Intermolecular forces Energy and chemical change (Gr 11) Stoichiometry (application only) (Gr 11) Chemical Change Matter & Materials Newton's laws (Gr 11) Electrostatics (Gr 11) Electric circuits (Gr 11) 				100	100
02 – 06 Sept		 Mechanics Waves, Sound and light Electricity and magnetism Matter & Materials 					
Week 10, 11 09 – 20 Sept	PREPARATORY EXAMINATION P1: 3 hrs P2: 3 hrs	 PAPER 1: 150 marks Mechanics (65) Waves, Sound and light (15) Electricity and magnetism (55) Matter & Materials (15) PAPER 2: 150 marks Chemical Change (92) Matter & Materials (58) The following gr 10 and 11 topics will form part the two papers: Paper 1:					
		two papers: Paper 1: Newton's laws (Gr 11) Electrostatics (Gr 11) Electric circuits (Gr 11) Paper 2					

2024 (CUSTOMI	SED KZN Recovery ATP: Grade 12	– Term 3	B: PHYS	ICAL SCIE	NCES	
5	3						riculum erage
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date	SMT Member Signature	Per Term	Annual
Week 10, 11 09 – 20 Sept Continued		 Representing chemical change (Gr 10) Intermolecular forces Energy and chemical change (Gr 11) Stoichiometry (application only) (Gr 11) 					
Те	rm 3 Reflection	on:	·				

NB: week ending, duration written is the content guide.

20	J24 CUSTOM	ISED KZN Recovery ATP: Grade 12 – T	erm	4: PH15	PHI SICAL SCI		Curriculum
Weeks	Knowledge Area	Concepts for week	Page in CAPS doc	Date	SMT Member Signature	Per Term	Panual
Veek 1 01 – 04 Oct	REVIEW: PREPARATORY EXAMINATIONS	Discussion and correction of errors in Preparatory Exams (P1 & P2)					
Veek 2 07 – 11 Oct	REVIEW: PREPARATORY EXAMINATIONS	Discussion and correction of errors in Preparatory Exams (P1 & P2)					
Week 3 14 – 18 Oct	CONSOLIDATION AND REVISION	Preparation for final Exams					
Week 4 21-25 Oct	CONSOLIDATION AND REVISION	Preparation for final Exams					
Week 5 28 Oct – 01 Nov		 PAPER 1: 150 marks Mechanics (65) Momentum and impulse; Vertical projectile motion, Work, energy and power, Newton's laws (Gr 11) Waves, Sound and light (15) Doppler effect Electricity and magnetism (55) Electric circuits, Electrodynamics, Electrostatics (Gr 11), Electric circuits (Gr 11) Matter & Materials (15) Optical phenomena and properties of materials PAPER 2: 150 marks Chemical Change (92) Rate and extent of reaction, Chemical equilibrium, Acids and bases, Representing chemical change (Gr 10), Energy and chemical change (Gr 11), Stoichiometry (application only) (Gr 11), Electrochemical reactions Matter & Materials (58) Organic molecules, Intermolecular forces (Gr 11) 					