ownloaded from stanmorepfysics.com

KWAZULU-NATAL PROVINCE EDUCATION
REPUBLIC OF SOUTH AFRICA

MATHEMATICS
ANNUAL TEACHING PLAN
GRADE 10-2024

NAME OF SCHOOL:
NAME OF TEACHER:
\qquad
\qquad

TERM 1

NUMBER OF DAYS	$\begin{gathered} \text { DATE } \\ \text { STARTED } \end{gathered}$	$\begin{gathered} \text { DATE } \\ \text { COMPLETED } \end{gathered}$	TOPIC	TERM 1					
				CURRICULUM STATEMENT	ASSESSMENT	F/IF?	$\begin{gathered} \text { DH: } \\ \text { SIGNATURE } \\ \text { AND DATE } \\ \hline \end{gathered}$	\% COM-PLETED	
								Term	Year
$\begin{gathered} 17 / 01-19 / 01 \\ (3 \text { days }) \end{gathered}$				1. Understand that real numbers can be rational or irrational. Know the difference as far as the decimal expansions of the numbers are concerned. 2. Establish between which two integers a given simple surd lies.				8	2
$\begin{aligned} & 22 / 01-02 / 02 \\ & (10 \text { days }) \end{aligned}$			ALGEBRA PART 1 (ALGEBRAIC EXPRESSIONS)	3. Round decimal numbers to an appropriat5e degree of accuracy. 4. Multiplication of a binomial by a trinomial. 5. Factorisation to include types taught in grade 9 and: - trinomials - grouping in pairs - sum and difference of two cubes				35	10
$\begin{gathered} \hline 05 / 02 \\ \text { (1 day) } \\ \hline \end{gathered}$				6. Simplification of algebraic fractions using factorization.				38	11
$\begin{gathered} 06 / 02-07 / 02 \\ (2 \text { days }) \end{gathered}$				7. Addition and subtraction of algebraic fractions with denominators with denominators of cubes (limited to sum and difference of cubes).				43	12
$\begin{gathered} 08 / 02 \\ (1 \text { day }) \end{gathered}$			ALGEBRA PART 2 (Exponents)	1. Revise laws of exponents learnt in Grade 9 where $x, y>0 ; m, n \in Z$: - $x^{m} \times x^{n}=x^{m+n}$ - $x^{m} \div x^{n}=x^{m-n}$ - $\left(x^{m}\right)^{n}=x^{m n}$ - $x^{m} \times y^{m}=(x y)^{m}$ 2. Also, by definition: - $x^{-n}=\frac{1}{x^{n}}, x \neq 0$ and $x^{0}=1, x \neq 0$				46	13
$\begin{gathered} 09 / 02-14 / 02 \\ (4 \text { days }) \end{gathered}$				3. Use the laws of exponents to simplify expressions and solve equations, accepting that the rules also hold for $m, n \in Q$.	INVESTIGATION SBA weighting: 15	F		57	16

NUMBER OF DAYS	$\begin{aligned} & \text { DATE } \\ & \text { STARTED } \end{aligned}$	DATE COMPLETED	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF?	HOD:SIGNATUREAND DATE	\% COMPLETED	
								Term	Year
$\begin{gathered} 15 / 02-19 / 02 \\ (3 \text { days }) \\ \hline \end{gathered}$			ALGEBRA PART 3 (Equations and Inequalities)	1. Revise the solution of linear equations. 2. Solve quadratic equations (by factorisation).				65	18
$\begin{gathered} 20 / 02-23 / 02 \\ (4 \text { days }) \end{gathered}$				3. Solve simultaneous linear equations in two unknowns. 4. Solve word sums involving linear, quadratic or simultaneous linear equations.				76	21
$\begin{gathered} 26 / 02-28 / 02 \\ (3 \text { days }) \end{gathered}$				5. Solve literal equations (changing the subject of a formula). 6. Solve linear inequalities (and show solution graphically). Interval notation must be taught.				85	23
$\begin{gathered} 29 / 02-07 / 03 \\ (6 \text { days }) \end{gathered}$			$\begin{aligned} & \text { TRIGONO- } \\ & \text { METRY } \\ & \text { PART } 1 \end{aligned}$	1. Define the trigonometric ratios $\sin \theta, \cos \theta$, and $\tan \theta$ using right-angled triangles. 2. Define the reciprocals of the trigonometric ratios $\operatorname{cosec} \theta, \sec \theta$ and $\cot \theta$ using right-angled triangles. (These three reciprocals should be examined in grade 10 only.) 3. Derive values of the trigonometric ratios for the special cases (without using a calculator), $\theta \in\left\{0^{\circ} ; 30^{\circ} ; 45^{\circ} ; 60^{\circ} ; 90^{\circ}\right\}$.				100	28
$\begin{gathered} 08 / 03-19 / 03 \\ \text { (8 days) } \end{gathered}$			REVISION and MARCH TEST	MARCH TEST to cover all the work done during term 1.	MARCH TEST SBA weighting: 14	F			

Downloaded from stanmoreptysics.com									
NUMBER OF DAYS	DATESTARTED	$\begin{gathered} \text { DATE } \\ \text { COMPLETED } \end{gathered}$	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF?	DH: SIGNATURE AND DATE	\% COMPLETED	
								Term	Year
$\begin{aligned} & 03 / 04-09 / 04 \\ & \text { (5 days) } \end{aligned}$				4. Solve simple trigonometric equations for angles between 0° and 90°. 5. Extend the definitions of $\sin \theta, \cos \theta$, and $\tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$ 6. Use diagrams to determine the numerical values of ratios for angles from 0° to 360°				12	32
$\begin{gathered} \text { 10/04-26/04 } \\ \text { (13 days) } \end{gathered}$			EUCLIDEAN GEOMETRY	1. Revise basic results established in earlier grades regarding lines, angles and triangles, especially the similarity and congruence of triangles. 2. Define the following special quadrilaterals: the kite, parallelogram, rectangle, rhombus, square and trapezium. Investigate and make conjectures about the properties of the sides, angles, diagonals and areas of these quadrilaterals. Prove these conjectures. 3. The following proofs of theorems are examinable: - The opposite sides and angles of a parallelogram are equal. - The diagonals of a parallelogram bisect each other. - If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram. - The diagonals of a rectangle are equal. - The diagonals of rhombus bisect each other at right angles and bisect the interior angles of the rhombus.				43	42
$\begin{aligned} & \text { 29/04-02/05 } \\ & \text { (3 days) } \end{aligned}$				4. Investigate line segments joining the midpoints of two sides of a triangle				50	44
$\begin{aligned} & \text { 03/05-10/05 } \\ & \text { (6 days) } \end{aligned}$			$\begin{gathered} \text { ANALYTI- } \\ \text { CAL } \\ \text { GEOMETRY } \end{gathered}$	1. Represent geometric figures on a Cartesian coordinate system. 2. Derive and apply for any two points, $\left(x_{1} ; y_{1}\right)$ and $\left(x_{2} ; y_{2}\right)$, the formulae for calculating the: - distance between the two points; - gradient of the line segment connecting the two points (and from that identify parallel and perpendicular lines); - coordinates of the midpoint of the line segment joining the two points.	$\begin{gathered} \text { ASSIGNMEN } \\ T \\ \text { SBA weighting: } \\ 15 \end{gathered}$	F		64	48

Downloaded fromstanmoreptiysics.com TERM2 (continued)									
NUMBER OF DAYS	DATE STARTED	$\begin{gathered} \text { DATE } \\ \text { COMPLETED } \end{gathered}$		CURRICULUM STATEMENT	ASSESSMENT	F/IF?	DH: SIGNATURE AND DATE	\% COM-PLETED	
								Ter m	Year
$\begin{gathered} \text { 13/05-14/05 } \\ \text { (2 days) } \end{gathered}$				1. The concept of a function, where a certain quantity (Output value) uniquely depends on another quantity (input value). Work with relationships between variables using tables, graphs, words and formulae. Convert flexibly between these representations. Note that the graph defined by $y=x$ should be known from Grade 9.					50
$\begin{aligned} & 15 / 05-31 / 05 \\ & \text { (13 days) } \end{aligned}$			$\begin{aligned} & \text { FUNCTIONS } \\ & \text { AND } \\ & \text { GRAPHS } \end{aligned}$	2. Point by point plotting of basic graphs defined by $y=x^{2}, y=\frac{1}{x}$, and $y=b^{x}, b>0$ and $b \neq 1$ to discover shape, domain (input values), range (output values), asymptotes, axes of symmetry, turning points and intercepts on the axes (where applicable). 3. Investigate the effect of a and q on the graphs defined by $y=a . f(x)+q$, where $f(x)=x f(x)=x^{2}$, $f(x)=\frac{1}{x}$, and $f(x)=b^{x}, b>0$ and $b \neq 1$. 4. Sketch graphs, find the equations of given graphs and interpret graphs. Note: Sketching of the graphs must be based on the observation of number 3 above.				100	60
$\begin{gathered} \text { 03/06-13/06 } \\ (9 \text { days }) \end{gathered}$			REVISION and JUNE TEST	JUNE TEST to cover the work done during Term 2.	$\begin{gathered} \hline \text { JUNE TEST } \\ \text { SBA weighting: } \\ 14 \\ \hline \end{gathered}$	F			

NUMBER OF DAYS	$\begin{gathered} \text { DATE } \\ \text { STARTED } \end{gathered}$	$\begin{gathered} \text { DATE } \\ \text { COMPLETED } \end{gathered}$	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF?	DH: SIGNATURE AND DATE	$\begin{aligned} & \text { \% COM- } \\ & \text { PLETED } \end{aligned}$	
								Term	Year
$\begin{gathered} 12 / 08-23 / 08 \\ (10 \text { days }) \end{gathered}$			PROBABILITY	1. The use of probability models to compare the relative frequency of events with the theoretical probability. 2. The use of Venn diagrams to solve probability problems, deriving and applying the following for any two events A and B in a sample space S : - $\quad \mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$; - A and B are mutually exclusive if $\mathrm{P}(\mathrm{A}$ and B$)=0$; - A and B are complementary if they are mutually exclusive and $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=1$; Then: $\mathrm{P}(\mathrm{B})=\mathrm{P}($ not A$)=1-\mathrm{P}(\mathrm{A})$.				77	85
$\begin{aligned} & 26 / 08-06 / 09 \\ & (10 \text { days }) \end{aligned}$			FINANCE AND GROWTH	1. Use the simple and compound growth formulae [$\mathrm{A}=\mathrm{P}(1+i n)$ and $A=P(1+i)^{n}$] to solve problems, including annual interest, hire purchase, inflation, population growth and other real-life problems. 2. Understand the implication of fluctuating foreign exchange rates (e.g. on the petrol price, imports, exports, overseas travel).	TERM 3 TEST SBA weighting: 14			100	92
$\begin{gathered} 09 / 09-19 / 09 \\ (9 \text { days }) \end{gathered}$			REVISION and SEPTEMBER TEST	SEPTEMBER TEST to cover the work done during Term 3.	SEPTEMBER TEST SBA weighting: 14	F			
$\begin{aligned} & \frac{10 n}{n 90} \\ & \frac{10 n}{n 09} \\ & \hline \end{aligned}$									

				Downloaded from Stanmorephysics.com TERM4					
NUMBER OF	$\begin{gathered} \text { DATE } \\ \text { STARTED } \end{gathered}$	DATE COMPLETED	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF?	DH: SIGNATURE AND DATE	\% COM- PLETED	
								Term	Year
$\begin{aligned} & 01 / 10-07 / 10 \\ & \quad(5 \text { days }) \end{aligned}$			MEASUREMENT	1. Revise the volume and surface areas of rightprisms and cylinders. 2. Study the effect on volume and surface area when multiplying any dimension by a constant factor k. 3. Calculate the volume and surface areas of spheres, right pyramids and right cones. - In case of pyramids, bases must either be an equilateral triangle or a square. - Problem types must include composite figures.	TERM 4 TEST SBA weighting: 14	F		50	96
$\begin{aligned} & 08 / 10-14 / 10 \\ & \text { (5 days) } \end{aligned}$			NUMBER PATTERNS	Investigate number patterns leading to those where there is a constant difference between consecutive terms, and the general term is therefore linear. Do not use the formula $T_{n}=a+(n-1) d$.				100	100
$\begin{aligned} & \text { 15/10-15/11 } \\ & \text { (24 days) } \end{aligned}$			REVISION and NOVEMBER EXAM	NOVEMBER EXAMINATION to cover all the work done during Terms 1, 2, 3 and 4.	NOVEMBER EXAMINATION	F			

