Downloade d from Stanmorepfysids.com MATHEMATICS
KWAZULU-NATAL PROVINCE EDUCATION
REPUBLIC OF SOUTH AFRICA

ANNUAL TEACHING PLAN

GRADE 11-2024
NAME OF SCHOOL:
NAME OF TEACHER:

$\begin{aligned} & \text { NUMBER OF } \\ & \text { DAYS } \end{aligned}$	$\begin{aligned} & \text { DATE } \\ & \text { STARTED } \end{aligned}$	DATE COMPLETED	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	DH: SIGNATURE and DATE	\% COMPLETED	
								Term	Year
$\begin{aligned} & 17 / 01-22 / 01 \\ & (4 \text { days }) \end{aligned}$			EXPONENTS AND SURDS	1.Simplify expressions using the laws of exponents for rational exponents where $x^{\frac{p}{q}}=\sqrt[q]{x^{p}} ; x>0 ; q>0$ 2. Solve equations using the laws of exponents for rational exponents where $x^{\frac{p}{q}}=\sqrt[q]{x^{p}} ; x>0 ; q>0$				11	3
$\begin{gathered} 23 / 01-24 / 01 \\ (2 \text { days }) \\ \hline \end{gathered}$				3. Add, Subtract, Multiply and Divide Simple Surds.				16	4
$\begin{gathered} 25 / 01-26 / 01 \\ (2 \text { days }) \\ \hline \end{gathered}$				4. Solve simple equations involving surds.				21	6
$\begin{aligned} & 29 / 01-06 / 02 \\ & \text { (7 days) } \end{aligned}$			EQUATIONS	1. Revision of factorisation. 2. Quadratic equations (by factorisation). 3. Complete the square. 4. Quadratic equations (by using the quadratic formula).				39	11
$\begin{array}{\|c\|} \hline 07 / 02-12 / 02 \\ \text { (4 days) } \end{array}$			INEQUALITIES	Quadratic inequalities in one unknown (interpret solutions graphically).				50	14
$\begin{gathered} 13 / 02-16 / 02 \\ (4 \text { days }) \end{gathered}$			$\begin{aligned} & \text { SIMULTA- } \\ & \text { NEOUS } \\ & \text { EQUATIONS } \end{aligned}$	Equations in two unknowns, one of which is linear and the other quadratic. NB: To apply this skill also in other contexts, e.g. to determine the points of intersection of a straight line and a hyperbola				61	17
$\begin{gathered} 19 / 02-21 / 02 \\ \text { (3 days) } \end{gathered}$			$\begin{aligned} & \text { NATURE OF } \\ & \text { ROOTS } \end{aligned}$	Nature of roots.	INVESTI- GATION SBA Weighting: 15	F		68	19

$\begin{aligned} & \text { NUMBER OF } \\ & \text { DAYS } \end{aligned}$	DATE STARTED	$\begin{array}{\|c\|} \text { DATE } \\ \text { COMPLETED } \end{array}$	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	$\begin{gathered} \text { DH: } \\ \text { SIGNATURE } \\ \text { and DATE } \\ \hline \end{gathered}$	\% COM-PLETED	
								Term	Year
$\begin{gathered} 22 / 02-08 / 03 \\ (12 \text { days }) \end{gathered}$			TRIGONOMETRIC IDENTITIES and REDUCTION FORMULAE	1. Derive and use the identities: - $\tan \theta=\frac{\sin \theta}{\cos \theta} ; k \neq k .90^{\circ}, k$ an odd integer; and - $\sin ^{2} \theta+\cos ^{2} \theta=1$ 2. Derive and use reduction formulae to simplify the following expressions: - $\sin \left(90^{\circ} \pm \theta\right) ; \cos \left(90^{\circ} \pm \theta\right)$ - $\sin \left(180^{\circ} \pm \theta\right) ; \cos \left(180^{\circ} \pm \theta\right) ; \tan \left(180^{\circ} \pm \theta\right)$ - $\sin \left(360^{\circ} \pm \theta\right) ; \cos \left(360^{\circ} \pm \theta\right) ; \tan \left(360^{\circ} \pm \theta\right)$ and - $\sin (-\theta) ; \cos (-\theta) ; \tan (-\theta)$. 3. Proving trigonometric identities 4. Determine for which values of a variable an identity holds.				100	28
$\begin{gathered} 11 / 03-20 / 03 \\ \text { (8 days) } \end{gathered}$			REVISION and MARCH TEST	MARCH TEST to cover the work done during Term 1.	MARCH TEST SBA Weighting: 14	F			

Downloaded from stanmoreptiysics.com TERM 2 (continued)									
$\begin{array}{\|c\|} \hline \text { NUMBER OF } \\ \text { DAYS } \end{array}$	$\begin{gathered} \text { DATE } \\ \text { STARTED } \end{gathered}$	$\begin{gathered} \text { DATE } \\ \text { COMPLETED } \end{gathered}$	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	HOD: SIGNATURE and DATE	\% COM- PLETED	
								Term	Year
$\begin{gathered} 26 / 04-29 / 04 \\ (2 \text { days }) \end{gathered}$			$\begin{aligned} & \ln 0 \pi \\ & \square n \\ & \square \end{aligned}$	1. Revise: - Distance between the two points - Gradient of the line segment connecting the two points (and from that identify parallel lines); and - Coordinates of the midpoint of the line segment joining the two points.				46	41
$\begin{gathered} 30 / 04-10 / 05 \\ (8 \text { days }) \end{gathered}$			ANALYTICAL GEOMETRY	2. Derive and apply: - The equation of a line through two given points. - The equation of a line through one point and parallel or perpendicular to a given line. - Collinear points. 3. The inclination (θ) of a given line, where $m=\tan \theta$ is the gradient of the line $\left(0^{\circ} \leq \theta \leq 180^{\circ}\right)$. 4. Applications.				67	47
$\begin{gathered} 13 / 05-16 / 05 \\ (4 \text { days }) \end{gathered}$				1. Revise the effect of the parameters a and q and investigate the effect of p on the graph of the function defined by $y=f(x)=a(x+p)^{2}+q$				77	50
$\begin{gathered} 17 / 05-22 / 05 \\ (3 \text { days) } \end{gathered}$			FUNCTIONS	2. Revise the effect of the parameters a and q and investigate the effect of p on the graph of the function defined by $y=f(x)=\frac{a}{x+p}+q$				85	52
$\begin{gathered} 23 / 05-28 / 05 \\ (4 \text { days }) \end{gathered}$				3. Revise the effect of the parameters a and q and investigate the effect of p on the graph of the function defined by $y=f(x)=a \cdot b^{x+p}+q$, where $b>0$ and $b \neq 1$.		F		95	55
$\begin{gathered} 29 / 05-30 / 05 \\ (2 \text { days }) \end{gathered}$			FUNCTIONS	4. Investigate numerically the average gradient between two points on a curve. 5. Develop an intuitive understanding of the concept of the gradient of a curve at a point. 6. Interpretations, applications and practical problems. NB: Integration between Nature of roots and Functions.	SBA Weighting: 15			100	57
$\begin{array}{\|c} 31 / 05-14 / 06 \\ \text { (11 days) } \end{array}$			REVISION and JUNE EXAM	JUNE TEST to cover the work done during Term 2.	JUNE EXAM SBA Weighting: 14	F			

TERM 3

$\begin{aligned} & \text { NUMBER OF } \\ & \text { DAYS } \end{aligned}$	$\begin{gathered} \text { DATE } \\ \text { STARTED } \end{gathered}$	DATE COMPLETED	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	$\begin{gathered} \text { DH: } \\ \text { SIGNATURE } \\ \text { and DATE } \end{gathered}$	\% COM- PLETED	
								Term	Year
$\begin{aligned} & 09 / 07-17 / 07 \\ & (7 \text { days }) \end{aligned}$			TRIGONOMETRIC FUNCTIONS	7. Investigate the effect of the parameter k on the graphs of the functions defined by, $y=\sin (k x), y=\cos (k x)$ and $y=\tan (k x)$ 8. Investigate the effect of the parameter p on the graphs of the functions defined by, $y=\sin (x+p)$, $y=\cos (x+p) \text { and } y=\tan (x+p)$ 9. Draw sketch graphs defined by: - $a \sin k(x+p)$ - $\quad a \cos k(x+p)$ and - $a \tan k(x+p)$ at most two parameters at a time				18	62
$\begin{gathered} \hline 18 / 07-23 / 07 \\ (4 \text { days }) \\ \hline \end{gathered}$			TRIGONO-	1. Prove and apply the sine, cosine and area rules.				28	65
$\begin{gathered} 24 / 07-30 / 07 \\ \text { (3 days) } \\ \hline \end{gathered}$				2. Solve problems in two dimensions using the sine, cosine and area rules.				35	67
$\begin{gathered} 31 / 07-08 / 08 \\ (7 \text { days }) \end{gathered}$			STATISTICS	1. Revise Grade 10 statistics 2. Histograms - Frequency polygons - Variance and standard deviation of ungrouped data - Ogives (cumulative frequency curves). - Symmetric and skewed data. - Identification of outliers	TERM 3 TEST SBA Weighting: 14	F		53	72
$\begin{aligned} & 12 / 08-21 / 08 \\ & (8 \text { days }) \end{aligned}$			PROBABILITY	1. Revise Grade 10 Probability. 2. Identify dependent and independent events and the product rule for independent events: $P(A \text { and } B)=P(A) \times P(B)$ 3. The use of Venn diagrams to solve probability problems, 4. deriving and applying formulae for any three events A, B and C in a sample space S . 5. Use tree diagrams for the probability of consecutive or simultaneous events which are not necessarily independent. 6. Use contingency tables to solve probability problems.				73	78

Downloaded from stanmorephysics.com TERM3 (continued)

NUMBER OF DAYS	$\begin{array}{\|c\|} \text { DATE } \\ \text { STARTED } \end{array}$	DATE COMPLETED	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	DH: SIGNATURE and DATE	\% COM- PLETED	
								Term	Year
$\begin{gathered} 22 / 08-27 / 08 \\ (4 \text { days }) \end{gathered}$			FINANCE, GROWTH AND RATES OF CHANGE.	1. Use the simple and compound growth formulae to solve problems, including interest, hire purchase, inflation, population growth and other real-life problems. 2. Understand the implication of fluctuating foreign exchange rates (e.g. on petrol price, imports, exports, overseas travel).				83	81
$\begin{gathered} 28 / 08-05 / 09 \\ \text { (7 days) } \end{gathered}$			FINANCE, GROWTH AND DECAY	3. Use the simple and compound decay formulae, $A=P(1-n i)$ and $A=P(1-i)^{n}$, to solve problems (including straight line depreciation and depreciation on a reducing balance). 4. Different periods of compound growth and decay. 5. Effective and nominal interest rates.				100	886
$\begin{gathered} 06 / 09-20 / 09 \\ (11 \text { days }) \end{gathered}$			REVISION and SEPTEMBER TEST	SEPTEMBER TEST to cover the work done during Term 3.	SEPTEMBER TEST SBA Weighting: 14	F			

				Downloaded from stanmoreptysics.com TERM4					
NUMBER OF DAYS	DATE STARTED	DATE	TOPIC	CURRICULUM STATEMENT	ASSESSMENT	F/IF	DH: SIGNATURE and DATE	\% COM- PLETED	
	STARTED	COMPLETED						Term	Year
$\begin{gathered} 01 / 10-07 / 10 \\ (5 \text { days }) \\ \hline \end{gathered}$			NUMBER	1. Revise linear number patterns.				26	90
$\begin{gathered} 08 / 10-18 / 10 \\ (9 \text { days }) \end{gathered}$			PATTERNS	2. Investigate number patterns leading to those where there is a constant second difference between consecutive terms, and the general term is therefore quadratic.				74	96
$\begin{gathered} 21 / 10-25 / 10 \\ (5 \text { days }) \end{gathered}$			MEASUREMENT	1. Revise the volume and surface areas of right-prisms and cylinders. 2. Study the effect on volume and surface areas when multiplying any dimension by a constant factor k. 3. Calculate volume and surface areas of spheres, right prisms, right cones and combination of those objects (figures).	TERM 4 TEST SBA Weighting: 14			100	100
$\begin{gathered} 28 / 10-01 / 11 \\ \text { (5 days) } \\ \hline \end{gathered}$			$\begin{gathered} \text { REVISION OF } \\ \text { ALGEBRA } \\ \hline \end{gathered}$	Revision					
$\begin{gathered} 04 / 11-08 / 11 \\ (5 \text { days }) \end{gathered}$			$\begin{aligned} & \text { REVISION OF } \\ & \text { TRIGONO-- } \\ & \text { METRY } \\ & \hline \end{aligned}$	Revision					
(23 days)			REVISION and NOVEMBER EXAM	NOVEMBER EXAMINATION to cover all the work done during Terms 1, 2, 3 and 4.	$\begin{aligned} & \text { NOVEMBER } \\ & \text { EXAMI- } \\ & \text { NATION } \end{aligned}$	F			

