

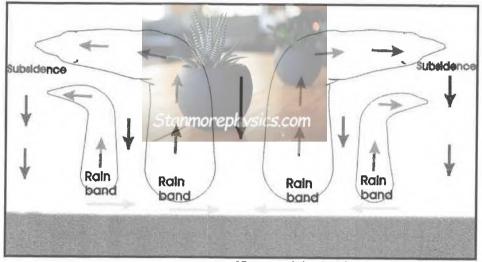
1. The paper consists of TWO QUESTIONS:

QUESTION 1: CLIMATE AND WEATHER QUESTION 2: GEOMORPHOLOGY

2. Answer ALL questions.

3 NSC – Grade 12

Downloaded from Stanmorephysics.com

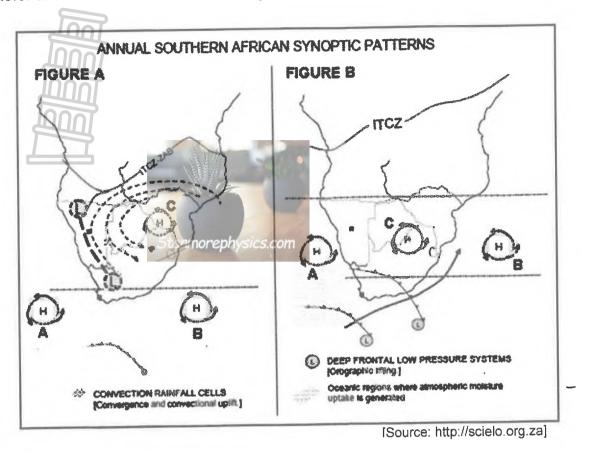

SECTION A

 QUESTION 1: CLIMATE AND WEATHER

 1.1

 Refer to Figure 1.1 Cross Section of a Low pressure cell.

FIGURE 1.1 CROSS SECTION OF A LOW PRESSURE CELL

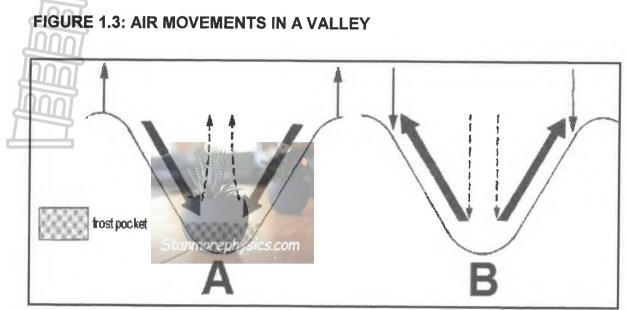


[Source: Adapted from Google images]

1.1.1	What is the name given to this Low pressure cell in Australia?	(1 x 1)(1)
1.1.2	State the prevailing winds that drive this Low pressure cell.	(1 x 1)(<u>1</u>)
1.1.3	Name the clouds found around the centre of this Low pressure cell.	(1 x 1) (1)
1.1.4	Name the zone where the weather is cool calm and cloudless.	(1 x 1)(1)
1.1.5	Where does this system originate?	(1 x 1)(1) [5]

NSC - Grade 12 Downloaded from Stanmorephysics.com

1.2 Refer to FIGURE 1.2 which shows High pressure systems over Southern Africa.


1.2.1 Identify the pressure cells at A and C respectively.

 $(2 \times 1)(2)$

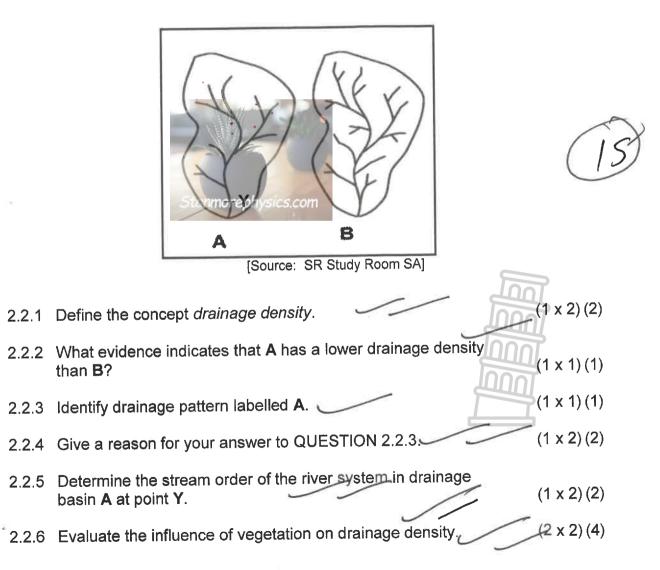
- 1.2.2 What weather feature could develop along the Low Pressure trough indicated in Figure **A**? (1 x 2)(2)
- 1.2.3 Identify the season represented by:
- (a) Figure A
 (b) Figure B
 1.2.4 Provide reasons for your answers to 1.2.3 (A) and 1.2.3 (B).
 (2 x 2) (4)
 1.2.5 Describe the formation of the weather feature that would develop (2 x 3) (6)

ography 5 NSC - Grade 12 Downloaded from Stanmorephysics.com

FIGURE 1.3 shows two different types of air movements in a valley. 1.3

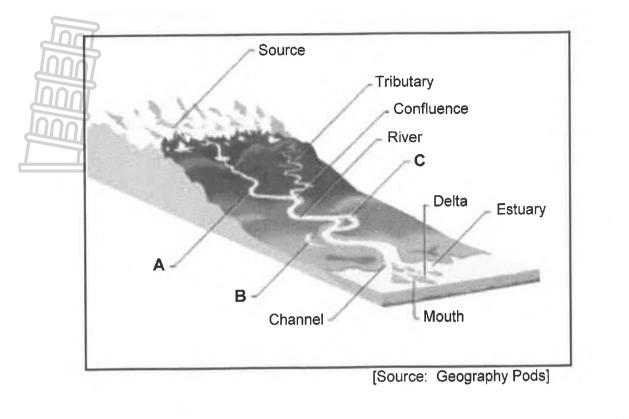
[Source: Adapted from Platinum]

1.3.1	Identify the TWO types of air movements at A and B .	(2 x 1) (2)
1.3.2	Account for the change in direction of the air flow at A and B .	(1 x 2)(2)
1.3.3	Give ONE condition that promote a frost pocket forming at the bottom of the valley in winter.	(1 x 2)(2)
1.3.4 米	Suggest TWO strategies that farmers can use to overcome the challenge that frost poses to their crops.	(2 x 2) (4) O


Downloaded from Stanmorephysics.com

QUESTION 2: GEOMORPHOLOGY

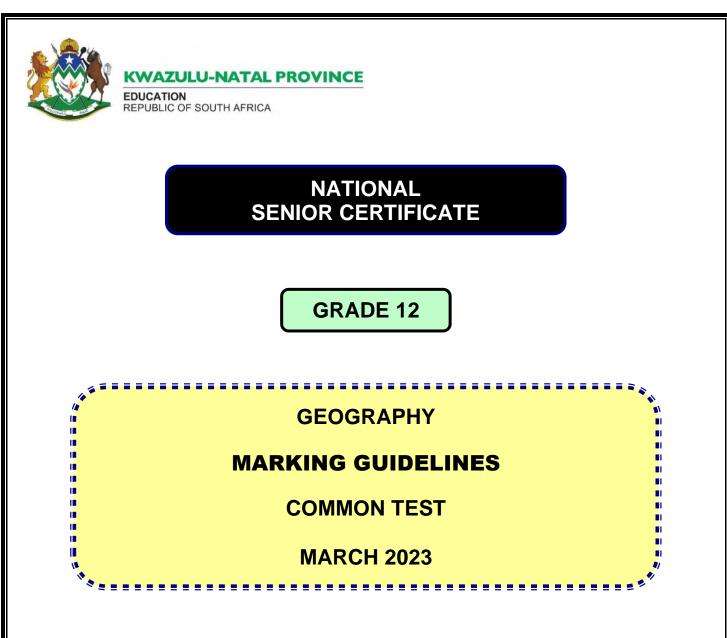
2.1 Choose a term from COLUMN B that matches the geomorphological description in COLUMN A. Write only the letter (A – G) next to the question number (2.1.1 to 2.1.6) in the ANSWER BOOK, for example 2.1.7 H.


COLUMN A	COLUMN B
2.1.1 High-lying area that separates two drainage basins.	A. Catchment area
2.1.2 High-lying area separating streams in the same drainage basin.	B. Base flow
2.1.3 Area from where a river gets its source of water.	C. Confluence
2.1.4 Point where two or more streams join.	D. Interfluve
2.1.5 Ground water that contributes to river flow.	E. Watershed
	F. Run-off

2.2 Refer to the sketch below on drainage density.

raphy 7 NSC - Grade 12 Downloaded from Stanmorephysics.com

2.3 Refer to the sketch below on fluvial landforms.



		TOTAL. 00
		TOTAL: [30]
	forms at a river mouth.	(3 x 2)(6)
2.3.5	In a paragraph of approximately 6 lines, explain how a delta	
2.3.4	In which stage (course) of the river is the feature labelled C found?	(1 x 1)(1)
2.3.3	Identify the fluvial landforms labelled A and B .	(2 x 1) (2)
2.3.2	Give a reason for your answer to QUESTION 2.3.1.	(1 x 2) (2)
2.3.1	State the river profile illustrated in the above sketch.	(1 x 1)(1)

Copyright Reserved

ŀ

-1

MARKS: 60

This marking guideline consists of 5 pages.

Please Turn Over

NSC – Marking Guideline- Grade 12

QUESTION 1: CLIMATE AND WEATHER

1.1

- 1.1.1 Willy Willies ✓
- 1.1.2 Tropical Easterlies √/Easterlies √
- 1.1.3 Cumulonimbus√
- 1.1.4 Eye√
- 1.1.5 Between $5^{0}N/S 25^{0}N/S'$ /Over Tropical ocean/ warm ocean [26,5⁰C or more]/

(5)

1.2

1.2.1 A. C.	South Atlantic High ✓ Kalahari High ✓	(2 x 1) (2)
1.2.2 Line t	hunderstorm VV	(1 x 2)(2)
1.2.3 (a) (b)	 A. Summer ✓ {removed due to technical error in the dia B. Winter ✓ 	gram} (2 x 1) (2)
1.2.4 (a)	Summer- Low pressure trough over the interior of the land-✓✓ Moisture being fed in from the eastern coast by the Kalahari High Pressure Cell✓✓ (ANY ONE) NB: Removed due to technical error in the diagram	
(b) NB: Remov	Winter- Movement of the mid-latitude cyclone over the interior of the country ✓ ✓ Kalahari High Pressure Cell dominant over the interior ✓ ✓ High Pressure Cells closer to the sub-continent ✓ ✓ (ANY ONE) ed due to technical error in the diagram	(2 x 2) (4)
High War n High	dry air moves in over the interior from the South Atlantic Pressure Cell. $\checkmark\checkmark$ In Moist air moves in over the interior from the South Indian pressure cell. $\checkmark\checkmark$ dry air and warm moist air meet along the moisture front	

Cool dry air and warm moist air meet along the moisture front over the interior. $\checkmark\checkmark$

Cool dry air moves in under the warm moist air and forces it to rise whereby clouds form towards the East of the front with heavy rain and thunder. $\checkmark\checkmark$ (ANY THREE)

(2 x 3) (6)

1	3
•	.0

1.3.1 A – katabatic \checkmark {do not accept mountain/downslope because these are discriptive words}

```
B – anabatic \checkmark { do not accept valley/upslope because these are discriptive words} (2 x 1) (2)
```

- 1.3.2 The circulation of the air is modified by solar heating and changes its direction depending on whether it is day time or night time. ✓✓ During the night at A, the slopes are cooled off and air in contact with it also cools off and descends under the influence of gravity. ✓✓ During the day at B, the slopes are heated and air in contact with it also heats up, rises subsequently up the slope. ✓✓ (ANY ONE)
- 1.3.3 Windless, cloudless conditions. ✓ ✓
 Cold air accumulates on the valley floor. ✓ ✓
 The warmer air from the valley floor is displaced by cold air and a temperature inversion forms. ✓ ✓
 A temperature inversion may lead to the formation of frost if the temperature drops to below 0°C. ✓ ✓
 (ANY ONE)
 (1 x 2) (2)
- 1.3.4 They avoid planting fruit trees and frost sensitive crops in frost pockets. ✓✓
 Plant thick skinned citrus fruit such as oranges✓✓
 Install electric fans which automatically switch on when the temperature drops below 0°C. ✓✓
 Install fuel lamps to increase temperatures. ✓✓
 (ANY TWO)
 (2 x 2) (4)

QUESTION 2: GEOMORPHOLOGY

2.1

2.1.2 $D \checkmark$ 2.1.3 $A \checkmark$ 2.1.4 $C \checkmark$ 2.1.5 $B \checkmark$	(5)
2.1.3 A ✓	
2.1.2 D√	
2.1.1 E ✓	

2.2

2.2.1 Drainage density is the total length of streams in a drainage basin divided by the total area of the drainage basin / The relationship between the length of streams in a drainage basin and the size of the drainage basin/ The total number of streams per unit area in a drainage basin. ✓✓

[CONCEPT]	(1 x 2) (2)

- 2.2.2 A has less tributaries ✓ B has more tributaries ✓ The total length of the streams at A is shorter than that for B. ✓ There are less first order streams in A. ✓ There are more first order streams in B ✓ (Any ONE) (1 x 1) (1)
 2.2.3 Dendritic ✓ (1 x 1) (1)
- 2.2.4 Tributaries join the main stream at acute angles. ✓✓
 Tributaries resembles the branches of a tree. ✓✓
 (Any ONE)
 (1 x 2) (2)

2.2.5 3rd order ✓ ✓

 $(1 \times 2)(2)$

2.3

2.2.6 **A large amount** of vegetation will decrease the drainage density as the water is trapped by the vegetation and cannot flow as surface run-off. \checkmark

There will be fewer streams as the vegetation retards the flow of water. $\checkmark\checkmark$

As vegetation traps water it promotes infiltration and less surface run-off will be experienced. $\checkmark\checkmark$

OR

A small amount of vegetation will increase the drainage density as the water is not trapped in the vegetation and will flow as surface run-off. $\checkmark \checkmark$ There will be more streams as the vegetation does not retard the flow of water. $\checkmark \checkmark$ As vegetation does not trap water, infiltration is reduced and it increases direct run-off. $\checkmark \checkmark$ (Any TWO) (2 x 2) (4)

- 2.3.1 Longitudinal profile \checkmark (1 x 1) (1)
 - 2.3.2 It shows a side view of the river from source to mouth. $\checkmark \checkmark$ It indicates the gradient and length of the river. $\checkmark \checkmark$ (Any ONE) (1 x 2) (2)
 - 2.3.3 A meander \checkmark B – oxbow lake \checkmark (2 x 1) (2)

2.3.4 Lower course ✓

2.3.5 It forms at the point where the river enters the sea and deposits its load. $\checkmark \checkmark$ The current of the river keeps fine sediments such as clay and silt in suspension. $\checkmark \checkmark$ The saline conditions in the sea causes fine clay particles to stick together making the particles larger and heavier which then sink. $\checkmark \checkmark$ The deposited material accumulates to form a delta. $\checkmark \checkmark$ (Any THREE) (3 x 2) (6) **TOTAL: 30**

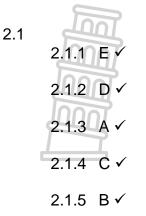
NB: Learner mark÷ 54×60

Copyright Reserved

GRAND TOTAL: [60]

 $(1 \times 1)(1)$

Geography Downloaded from Statumarking Cliffic StrateOpp QUESTION 1: CLIMATE AND WEATHER


1.1	1.1.1	Willy	Willies✓	
	1.1.2	Tropi	cal Easterlies√/Easterlies√	
	1.1.3	Cumu	ılonimbus√	
	1.1.4	Eye√		
	1.1.5	Betwe	een 5⁰N/S – 25ºN/S✓ /Over Tropical ocean/ warm ocean [26	,5⁰C or more]√ (5)
1.2				
	1.2.1	А. С.	South Atlantic High ✓ Kalahari High ✓	(2 x 1) (2)
	1.2.2	Line t	hunderstorm VV	(1 x 2) (2)
	1.2.3	(a) (b)	 A. Summer ✓ {removed due to technical error in the dia B. Winter ✓ 	gram} (2 x 1) (2)
	1.2.4	(a)	Summer- Low pressure trough over the interior of the land ✓✓ Moisture being fed in from the eastern coast by the Kalahari High Pressure Cell ✓ ✓ (ANY ONE) NB: Removed due to technical error in the diagram	
		(b)	Winter- Movement of the mid-latitude cyclone over the interior of the country \checkmark Kalahari High Pressure Cell dominant over the interior \checkmark High Pressure Cells closer to the sub-continent \checkmark \checkmark (ANY ONE)	(2 x 2) (4)
	NB: F	Remov	ed due to technical error in the diagram	
	1.2.5	High Warm High Cool over t Cool rise w	dry air moves in over the interior from the South Atlantic Pressure Cell. $\checkmark \checkmark$ Moist air moves in over the interior from the South Indian pressure cell. $\checkmark \checkmark$ dry air and warm moist air meet along the moisture front the interior. $\checkmark \checkmark$ dry air moves in under the warm moist air and forces it to thereby clouds form towards the East of the front with heavy and thunder. $\checkmark \checkmark$	
		(ANY	THREE)	(2 x 3) (6)

Geography Downloaded from Statumarking Culture Strateon

1.3		
1.3.1 words}	A – katabatic√ {do not accept mountain/downslope because these	are discriptive
	B – anabatic√ { do not accept valley/upslope because these are di (2 x 1) (2)	scriptive words}
1.3.2	The circulation of the air is modified by solar heating and changes its direction depending on whether it is day time or night time. $\checkmark \checkmark$ During the night at A, the slopes are cooled off and air in contact with it also cools off and descends under the influence of gravity. \checkmark During the day at B, the slopes are heated and air in contact with it also heats up, rises subsequently up the slope. $\checkmark \checkmark$	<i>′</i> √
	(ANY ONE)	(1 x 2)(2)
1.3.3	Windless, cloudless conditions. $\checkmark \checkmark$ Cold air accumulates on the valley floor. $\checkmark \checkmark$ The warmer air from the valley floor is displaced by cold air and a temperature inversion forms. $\checkmark \checkmark$ A temperature inversion may lead to the formation of frost if the temperature drops to below 0°C. $\checkmark \checkmark$ (ANY ONE)	(1 x 2) (2)
1.3.4	They avoid planting fruit trees and frost sensitive crops in frost pockets. $\checkmark \checkmark$ Plant thick skinned citrus fruit such as oranges $\checkmark \checkmark$ Install electric fans which automatically switch on when the temperature drops below 0°C. $\checkmark \checkmark$ Install fuel lamps to increase temperatures. $\checkmark \checkmark$ (ANY TWO)	(2 x 2) (4)

QUESTION 2: GEOMORPHOLOGY

(5 x 1) (5)

2.2

2.2.1 Drainage density is the total length of streams in a drainage basin divided by the total area of the drainage basin / The relationship between the length of streams in a drainage basin and the size of the drainage basin/ The total number of streams per unit area in a drainage basin. √√

[CONCEPT]
$$(1 \times 2)(2)$$

2.2.2 A has less tributaries \checkmark

- B has more tributaries \checkmark The total length of the streams at **A** is shorter than that for **B**. \checkmark There are less first order streams in **A**. \checkmark There are more first order streams in **B** \checkmark (Any ONE) (1 x 1) (1)
- 2.2.3 Dendritic ✓
- 2.2.4 Tributaries join the main stream at acute angles. ✓✓ Tributaries resembles the branches of a tree. ✓✓ (Any ONE)
- $(1 \times 2) (2)$ $(1 \times 2) (2)$

 $(1 \times 1)(1)$

2.2.5 3rd order ✓✓

Geography Downloaded from Statemarking Quidenic Brace Da

2.2.6 A large amount of vegetation will decrease the drainage density as the water is trapped by the vegetation and cannot flow as surface run-off. \checkmark	
There will be fewer streams as the vegetation retards the flow of water. $\checkmark \checkmark$	
As vegetation traps water it promotes infiltration and less surface run-off will be experienced. $\checkmark \checkmark$	
OR	
A small amount of vegetation will increase the drainage density as the water is not trapped in the vegetation and will flow as surface run-off. $\checkmark \checkmark$	
There will be more streams as the vegetation does not retard the flow of water. \checkmark	
As vegetation does not trap water, infiltration is reduced and it increases direct run-off. $\checkmark \checkmark$	
(Any TWO)	(2 x 2) (4)
2.3.1 Longitudinal profile ✓	(1 x 1)(1)
 2.3.2 It shows a side view of the river from source to mouth. ✓✓ It indicates the gradient and length of the river. ✓✓ (Any ONE) 	(1 x 2)(2)
2.3.3 A – meander ✓ B – oxbow lake ✓	(2 x 1) (2)
2.3.4 Lower course ✓	(1 x 1)(1)
 2.3.5 It forms at the point where the river enters the sea and deposits its load. ✓✓ The current of the river keeps fine sediments such as clay and silt in suspension. ✓✓ The saline conditions in the sea causes fine clay particles to stick together making the particles larger and heavier which then sink. ✓✓ The deposited material accumulates to form a delta. ✓✓ 	
(Any THREE)	(3 x 2)(6)
	TOTAL: 30

NB: Learner mark÷ 54×60

GRAND TOTAL: [60]

2.3