Province of the
EASTERN CAPE

O.R TAMBO INLAND DISTRICT

MARKS: 50
TIME: 1 HOUR

This question paper consists of 8 pages including ANNEXURE A.

INSTRUCTIONS AND INFORMATION

1. This question paper consists of THREE questions.
2. Answer ALL the questions.
3. Number the answers correctly according to the numbering system used in this question paper.
4. Show ALL calculations clearly.
5. Write neatly and legibly.

QUESTION 1

1.1.1 Convert $120 z$ effervescent flour to grams.

1.1.2 If Sybil puts the pie in the oven at 12:15 and lets it bake for the minimum time. What time will she take the pie out of the oven.
1.1.3 If she needs 0,6 litres of boiling water. How much boiling water is needed in millilitres?
1.1.4 Is the unit for the furnace temperature in metric or in imperial unit?
1.1.5 If one pie cost R15 to make and Sybil gets a profit of R10 on each pie. How many pies did she make if she had R300 after a day of selling pies?

1.2.1 What is the name of the measuring instrument?
1.2.2 What is used to measure?
1.2.3 Give the reading using units indicated on the right.
1.2.4 Verify the reading on the left using the formula.

$$
{ }^{\circ} \mathrm{F}=\frac{9}{5}^{\circ} \mathrm{C}+32^{\circ}
$$

1.3.1 Which stand did Jan buy the tickets for?
1.3.2 Give a suggestion of people who may occupy the A seats
1.3.3 During the concept Jan's friend offer them VIP treatment and they moved to occupy seats in front rows. Which seat will it be if they can not have the A seats

QUESTION 2

James, a wendy house contractor, needs to build a wendy house for Mr. Jonas which he wants to use to store his tools. The pictures and diagrams show the dimensions of the wendy house.

2.1 Identify the shape of the face with a window and door
2.2 Show that the length of the house is 3 metres

QUESTION 3

John and his girlfriend drive from Outshoorn to Plettenberg Bay to visit his friend.
ANNEXURE A shows a section of a map of the Southern Cape.

3.1 Determine the probability for John and his girlfriend to randomly take a plane from Outshoorn to Plettenberg Bay.

3.2 Name the National roads on which John will drive.

3.3 John and his girlfriend decided to rest after driving for 130 km from Outshoorn. Write down the name of the town.
3.4 The measured distance (in a straight line) between Outshoorn and Plettenberg Bay is 92 mm . Determine the scale of the map.
(Round off your answer to the nearest hundred thousand)

3.5 John departs from George at 13:38 and drives at an average speed of $100 \mathrm{~km} / \mathrm{h}$. John calls his friend and says he will be in Plettenberg Bay by 14:41.

Verify with calculations whether his timings are correct.

You can use the following formula: Distance $=$ Speed \times Time

Downloaded from Stanmorepfysics.com

Province of the
EASTERN CAPE
EDUCATION

MARKS: 50

Codes	Explanation
M	Method
MA	Method with Accuracy
CA	Consistent Accuracy
A	Accuracy
C	Conversion
D	Define
J	Justification / Reason / Explain
S	Simplification
RT / RD / RG	Reading from a table OR a graph OR a diagram OR a map OR a plan
F	Choosing the correct formula
SF	Substitution in a formula
O	Opinion
P	Penalty, for no units, incorrect rounding-off, etc.
R	Rounding-off
NP	No penalty for rounding-off OR omitting units

QUESTION 1

QNS	SOLUTION	EXPLANATION	MARKS	TL
1.1.1	$\begin{aligned} & 12 \times 28,35 \checkmark \mathrm{M} \\ = & 340,2 \mathrm{~g} \checkmark \mathrm{CA} \end{aligned}$	1M times 28,35 1CA answer in gram	(2)	TL1
$1.1 .2$	$\begin{aligned} & 12: 15+25 \text { minutes } \checkmark \mathrm{M} \\ = & 12: 40 \checkmark \mathrm{CA} \end{aligned}$	1 M plus 25 minutes 1CA correct time	(2)	TL1
1.1.3	$\begin{aligned} & 0,6 \times 1000 \checkmark \mathrm{C} \\ = & 600 \mathrm{ml} \checkmark \mathrm{~A} \end{aligned}$	1C multiply by 1000 1A answer in millilitre	(2)	TL2
1.1.4	Metric unit $\checkmark \checkmark$ O	2 O correct unit	(2)	TL3
1.1.5	$\begin{aligned} & \mathrm{SP}=\mathrm{R} 15+\mathrm{R} 10=\mathrm{R} 25 \checkmark \mathrm{MA} \\ & =\frac{300}{25} \checkmark=12 \text { pies } \checkmark \mathrm{A} \end{aligned}$	1MA addition 1M division 1A	(3)	TL2
1.2.1	thermometer $\checkmark \checkmark$ A	2 A correct answer	(2)	
1.2.2	temperature $\checkmark \checkmark$ A	2 A correct answer	(2)	
1.2.3	$21^{\circ} \mathrm{C} \checkmark \checkmark \mathrm{A}$ accept [20,5-21,5]	2 A correct answer	(2)	
1.2.4	$\begin{aligned} & { }^{\circ} \mathrm{F}=\frac{9}{5} \times 21^{\circ} \mathrm{C}+32 \checkmark \\ & { }^{\circ} \mathrm{F}=69,8^{\circ} \mathrm{C} . \checkmark \mathrm{S} \checkmark \mathrm{~A} \\ & \text { accept }[69-71] \end{aligned}$	1 SF substitution 1 S simplification 1 A answer	(3)	
1.3.1	West stand $\checkmark \checkmark$ A	2A	(2)	
1.3.2	VIP, musicians, security $\checkmark \checkmark$ A	2A any correct	(2)	
1.3.3	B3 /B2/B4 \checkmark A	2 A correct answer	(2)	
			[22]	

QUESTION 2

QNS	SOLUTION	EXPLANATION	MARKS	TL
2.1	Square $\checkmark \checkmark$ A	2A answer	(2)	
2.2	$\begin{aligned} & 3000 \div 1000 \checkmark \mathrm{C} \\ & =3 \mathrm{~m} \checkmark \mathrm{~A} \end{aligned}$	1C conversion 1A answer in m	(2)	
			[4]	

QUESTION 3

QNS	SOLUTION	EXPLANATION	MARKS	TL
3.1	$\stackrel{0}{2} \checkmark \mathrm{~A} \checkmark \mathrm{~A}$	1A numerator 1A Denominator	(2)	
3.2	$\begin{aligned} & \mathrm{N} 12 \checkmark \mathrm{~A} \\ & \mathrm{~N} 2 \checkmark \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1A for } \mathrm{N} 12 \\ & 1 \mathrm{~A} \text { for } \mathrm{N} 2 \\ & \hline \end{aligned}$	(2)	
3.3	$\begin{aligned} & 60+70=130 \mathrm{~km} \checkmark \mathrm{~A} \checkmark \mathrm{~A} \\ & \text { Knysna } \checkmark \mathrm{A} \end{aligned}$	2 M addition 1 A answer	(3)	
3.4	$\begin{aligned} & 60+70+35=165 \mathrm{Km} \checkmark \\ & 92 \mathrm{~mm}: 165 \mathrm{~km} \checkmark \\ & 92: 165 \times 1000000 \vee \mathrm{C} \\ & 92: 165000000 _ \\ & 92 \div(92): 165000000 \div(92) \vee \mathrm{MA} \\ & 1: 1793478,26 \checkmark \text { CA } \\ & 1: 1800000 \curvearrowright \mathrm{R} \text {. } \end{aligned}$	1 RT correct values 1RT ratio 1C conversion to mm 1 MA share with 92 1CA answer 1 R rounding	(6)	

```
3.5 Time = Distance }\div\mathrm{ Speed }\checkmark\textrm{F
    Distance = 70+35
        = 105 km \checkmark A
    Time = 105km \div100km/h \checkmarkSF
        = 1,05h
    Time = 1 hour (0,05 × 60) \checkmarkMA
        = 1 hour 3 minutes
    Arrival time = 13:38+1 hour 3
    minutes }\sqrt{}{MA
    = 14:41 \checkmark CA
He is correct }\checkmark\textrm{O
```

1F correct formula 1A correct distance 1 SF replaced in formula
1MA times 60
1MA adds time
1CA correct arrival time
10 explanation

TAXONOMY LEVELS					
GRADE 10					
MATHEMATICAL LITERACY					
PAPER 2 TERM 2-2022					
MARKS: 50					
QUESTION	KNOWLEDGE	ROUTINE PROCEDURES	COMPLEX PROCEDURES	PROBLEM SOLVING	TOTAL
$\begin{gathered} \hline \text { DESIRED } \\ \% \\ \hline \end{gathered}$	30\%	30\%	20\%	20\%	100\%
1.1.1	2				2
1.1.2		2			2
1.1.3		2			2
1.1.4	2				2
1.1.5				3	3
1.2.1	2				2
1.2.2	2				2
1.2.3	2				2
1.2.4		3			3
1.3.1	2				2
1.3.2		2		$1 \times$	2
1.3.3			2		2
2.1	2				2
2.2			2	$1 /$	2
3.1	2				2
3.2		2		-	2
3.3		3			3
3.4			6		6
3.5				7	7
Total	16	14	10	10	50
Actual \%	32,0	28,0	20,0	20,0	100,0
Desired \%	30\%	30\%	20\%	20\%	100

