

MARKS: 50

DURATION: 60 MINUTES

This question paper consists of 4 pages.

INSTRUCTIONS AND INFORMATION **Downloaded from Stanmorephysics.com**

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.

4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.

- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and nongraphical), unless otherwise stated.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise

Downloaded from Stanmorephysics.com

1. Solve for *x*:

$$x(x-1) = 30$$
 (3)

$$3^{x-2} + 3^{x+1} = 28 \tag{4}$$

(4)
$$1.3 \quad 15x - 4 \le 9x^2$$

QUESTION 2

Given the geometric series: $8x^2 + 4x^3 + 2x^2 + \dots$

2.1	Determine the n^{th} term of the series.	(1)
2.2	For what value(s) of x will the series converge?	(3)
2.3	Calculate the sum of the series to infinity if $x = \frac{3}{2}$.	(3)

[7]

QUESTION 3

Given: $h(x) = 4^x$ and $f(x) = 2(x-1)^2 - 8$

3.1	Sketch the graphs of h and f on the diagram sheet provided. Indicate ALL	
	Intercepts with the axes and any turning point.	(8)
3.2	Write down the inverse of $h(x)$ in the form $g(x) =$	(2)
3.3	Sketch the graph of $g(x)$ on the same system of axes.	(2)
3.4	The graph of f is shifted 2 units to the LEFT. Write down the equation of the new graph.	(2)
3.5	Show, algebraically that $h\left(x+\frac{1}{2}\right) = 2h(x)$.	(3)
		[17]

Downloaded from Stanmorephysics.com

Given: $f(x) = \frac{-6}{x-3} - 1$	
4.1 Determine the coordinates of the y-intercept of <i>f</i> .	(1)
4.2 Calculate the coordinates of the <i>x</i> -intercept of <i>f</i> .	(2)
4.3 Write down the equations of the asymptotes of <i>f</i> .	(2)
4.4 Sketch the graph of <i>f</i> on the DIAGRAM SHEET PROVIDED clearly	
indicating. ALL asymptotes and intercepts with the axes.	(3)
	[8]

QUESTION 5

5. Determine the general solution of :

$6\sin^2\theta + \cos\theta = 4$	(7)
Stormorephysics.com	[7]

ወታራቸ loaded NP em Stanmorephysics.com

Downloaded from Stanmorephysics.com

NAME:_____

Downloaded from ISPAMATION SHIFTY SMC31:EMATICS

$$\begin{aligned} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ A &= P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n \\ \sum_{i=1}^n \sum_{j=1}^n i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \\ S_n &= \frac{n}{2}(2a + (n-1)d) \\ T_n = ar^{n-1} \qquad S_n = \frac{d(r^n - 1)}{r-1}; \qquad r \neq 1 \qquad S_n = \frac{a}{1-r}; -1 < r < 1 \\ F &= \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i} \\ f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ d &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \\ y &= nx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta \\ (x - a)^2 + (y - b)^2 = r^2 \\ \ln \Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cos A \\ area \wedge ABC = \frac{1}{2}ab \sin C \\ \sin(\alpha + \beta) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \cos(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\ \cos(2\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\ \cos(2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sin 2\alpha = 2\sin \alpha \cos \beta + \sin \alpha \sin \beta \\ \cos(2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sin 2\alpha = 2\sin \alpha \cos \beta + \sin \alpha \sin \beta \\ P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \end{aligned}$$

$$\hat{y} = a + bx \qquad \qquad b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

GRADE 12

MATHEMATICS

TERM 1

2024 INFORMAL TEST 5

MARKING GUIDELINE

This marking guideline consists of 6 pages

QUESTION Inloaded from Stanmorephysics.com

1.1	x(x-1) = 30 $x^{2} - x - 20 = 0$ (x+4)(x-5) = 0 x = -4 or x = 5	 ✓ standard form ✓ factors ✓ answers 	(3)
1.2	$3^{x-2} + 3^{x+1} = 28$ $3^{x} \cdot 3^{-2} + 3^{x} \cdot 3 = 28$ $3^{x} \left(\frac{1}{9} + 3\right) = 28$ $3^{x} = 28 \div \frac{28}{9}$ $3^{x} = 9$ $3^{x} = 3^{2}$ x = 2	 ✓ common factor ✓ simplification ✓ same base ✓ answer 	(4)
1.3	$15x - 4 \le 9x^{2}$ -9x ² + 16x - 4 \le 0 9x ² - 16x + 4 \ge 0 (9x + 2)(x - 2) \ge 0 CV: -\frac{2}{9} and 2 x \le -\frac{2}{9} or x \ge 2	 ✓ standard form ✓ factors ✓ ✓ answer 	(4)
			[11]

QUESTION 2

2.1	$8x^2 + 4x^3 + 2x^4 + \dots$	✓ answer	(1)
	$r = \frac{4x^3}{8x^2} = \frac{x}{2}$		
	$T_n = 8x^2 \left(\frac{x}{2}\right)^{n-1}$		
2.2	For a series to converge $-1 < r < 1$	$\sqrt{-1} < x < 1$	
	$-1 < \frac{x}{2} < 1$	✓ substitution	
	-2 < x < 2	✓ answer	(3)

2.3	Downloaded from Stanmorephysics.com		
	$8\left(\frac{3}{2}\right)^{2} + 4\left(\frac{3}{2}\right)^{3} + 2\left(\frac{3}{2}\right)^{4} + \dots$		
	$18 + \frac{27}{2} + \frac{81}{8} + \dots$	$\checkmark a$ and r	
	$S_{\pi} = -\frac{18}{5}$	\checkmark substitution	
	$\left(\frac{3}{4}\right)$	✓ answer	(3)
	$S_{\infty} = 72$		
			[7]

Raumloaded from Stanmorephysics.com

QUESTION 4

r		
4.1	Dowgloaded from Stanmorephysics.com	
	$f(x) = \frac{1}{x-3} - 1$	\checkmark
		(1)
	For y-intercept let $x = 0$	
	-6 101	
	$y = \frac{1}{0-3} - 1 = 1$	
1.2		
4.2	$v = \frac{-6}{-1}$	
	x-3	
	For r-intercent let $y = 0$	$\checkmark y = 0$
	f of x intercept let $y = 0$	
	$0 = \frac{-6}{-1}$	v
	x-3	answer
	-6	
	$1 = \frac{1}{2}$	(2)
	x-3	
	x - 3 = -6	
	x = -3	
		()
4.3	x = 3	$\checkmark x = 3$
	y = -1	\checkmark
		y = -1
		(2)

Quanloaded from Stanmorephysics.com

5 $6\sin^2 \theta + \cos \theta = 4$ $6(1 - \cos^2 \theta) + \cos \theta = 4$ $6 - 6\cos^2 \theta + \cos \theta - 4 = 0$ $-6\cos^2 \theta + \cos \theta + 2 = 0$ $6\cos^2 \theta + \cos \theta - 2 = 0$	 ✓ for/vir 1-cos² θ ✓ for the two general solutions/ vir die twee algemene oplossings ✓ for standard form/ vir standaardvorm
$(3\cos\theta - 2)(2\cos\theta + 1) = 0$ $\cos\theta = \frac{2}{3} \text{or/of} \cos\theta = -\frac{1}{2}$ $\theta = 48,19^{\circ} + 360^{\circ}.k \text{or/of} \theta = 311,81^{\circ} + 360^{\circ}.k$ OR/OF $\theta = 120^{\circ} + 360^{\circ}.k \text{or/of} \theta = 240^{\circ} + 360^{\circ}.k$ where/waar $k \in \mathbb{Z}$	 ✓ for factors / vir faktore ✓ for the other two general solutions/ vir die ander twee algemene oplossings ✓ for answers of cos θ = 2/3 vir antwoorde van cos θ = 2/3 ✓ for answers of cos θ = -1/2 vir antwoorde van cos θ = -1/2

