

education

Department of Education
FREE STATE PROVINCE

GRADE 12

MARKS: 50
DURATION: 60 MINUTES

This question paper consists of 4 pages.

Downloaded from St anmorephysics. com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of $\mathbf{5}$ questions.
2. $\cap \cap$ Answer ALL the questions.
3. Number the answers correctly according to the numbering system used in this question paper.
4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
5. Answers only will NOT necessarily be awarded full marks.
6. You may use an approved scientific calculator (non-programmable and nongraphical), unless otherwise stated.
7. If necessary, round off answers to TWO decimal places, unless stated otherwise

Downloaded from St anmorephysics. com

QUESTION 1

nn

1. \cap Given: $(x+3)(3 x-1)=p$
1.1 Solve for x if $p=0$
1.2 Solve for x, rounded to TWO decimal places, if $p=0$
$1.3 \quad 3^{x}\left(x+\frac{1}{3}\right)<0$

QUESTION 2

Given the geometric series: $x+90+81+$ \qquad
2.1 Calculate the value of x .
2.2 Show that the sum of first n terms is $S_{n}=1000\left[1-(0,9)^{n}\right]$
2.3 Hence, or otherwise, calculate the sum to infinity.

QUESTION 3

3 An arithmetic and a geometric sequence are combined to form the pattern, which is given by: $P_{n}=x ; \frac{1}{3} ; 2 x ; \frac{1}{9} ; 3 x ; \frac{1}{27}$;
3.1 Write down the next TWO terms of the pattern.
3.2 Determine the general term $\left(T_{n}\right)$ for the odd terms of this pattern.
3.3 Calculate the value of P_{26}.
3.4 If $\sum_{n=1}^{21} P_{n}=33,5$, determine the value of x.

Downloaded from Stanmorephysics. com

QUESTION 4

The graphs of $f(x)=2(x+1)^{2}-8$ and $g(x)=\left(\frac{1}{2}\right)^{x}$ are represented in the sketch below. P and Q are the x-intercepts of f and R is the turning point of f.
$\mathrm{A}(-2 ; 4)$ is a point on the graph of g.

4.1 Write down the equation of the axis of symmetry of f.
4.2 Write down the coordinates of R , the turning point of f.
4.3 Determine the equation of the g^{-1}, the inverse of g, in the form $y=\ldots$.
4.4 Sketch the graph of g^{-1}. Clearly indicate the intercept with the axis.
4.5 For which value(s) of x, is :

$$
\begin{equation*}
\text { 4.5.1 } \quad g^{-1}(x) \geq-2 \tag{2}
\end{equation*}
$$

4.5.2 $x . f(x)<0$

QUESTION 5

5.1 Given that: $\cos 26^{\circ}=p$

Express each of the following in terms of p , without using a calculator.
5.1.1 $\tan 154^{\circ}=p$
5.1.2 $\sin 13^{\circ} \cos 13^{\circ}$
5.2 Consider: $\frac{1-\cos 2 x-\sin x}{\sin 2 x-\cos x}=\tan x$
5.2.1 Prove the identity.
5.2.2 For which value(s) of x in the interval $x \in\left[-180^{\circ} ; 180^{\circ}\right]$ is the identity not valid?

GRADE 12

MATHEMATICS

TERM 1
2024 INFORMAL TEST 6 wymonery
MARKING GUIDELINE

This marking guideline consists of 5 pages

QUESTIONOWhloaded from St anmor ephysics. com

1.1	$\begin{aligned} & (x+3)(3 x-1)=0 \\ & x=-3 \text { or } x=\frac{1}{3} \end{aligned}$	$\checkmark \checkmark$ answers (2)
1.2	$\begin{aligned} & (x+3)(3 x-1)=4 \\ & (x+3)(3 x-1)=6 \\ & 3 x^{2}-x+9 x-3-6=0 \\ & 3 x^{2}+8 x-9=0 \\ & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & x=\frac{-(8) \pm \sqrt{(8)^{2}-4(3)(-9)}}{2(3)} \\ & x=\frac{-8 \pm \sqrt{172}}{6} \\ & x=0,85 \text { or } x=-3,52 \end{aligned}$	\checkmark standard form \checkmark substitution $\checkmark \checkmark$ answers
1.3	$3^{x}\left(x+\frac{1}{3}\right)<0$ $3^{x}>0$ for all real values of x $\begin{align*} & x+\frac{1}{3}<0 \\ & x<-\frac{1}{3} \tag{3} \end{align*}$	$\begin{aligned} & \checkmark 3^{x}>0 \\ & \checkmark x+\frac{1}{3}<0 \\ & \checkmark x<-\frac{1}{3} \end{aligned}$

QUESTION 2

| 2.1 | $x+90+81+\ldots \ldots .$.
 $r=\frac{81}{90}=\frac{9}{10}$
 $x=100$ | |
| :--- | :--- | :--- | :--- |
| 2.2 | $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ | |
| $S_{n}=\frac{100\left(\left(\frac{9}{10}\right)^{n}-1\right)}{\frac{9}{10}-1}$ | | |
| $S_{n}=-1000\left((0,9)^{n}-1\right)$ | \checkmark substitution answer | |

$$
S_{n}=1000\left((1-0,9)^{n}\right)
$$

$2.3 \mathrm{~S}_{\infty}=\frac{\text { Donaloaded-from-Stan }}{1-r}$
$S_{\infty}=\frac{100}{1-\left(\frac{9}{10}\right)}$
\checkmark substitution
$S_{\infty}=1000$
\checkmark answer

QUESTION 3

3.1	$4 x ; \frac{1}{81}$	$\checkmark \checkmark$ answer (2)
3.2	$\begin{aligned} & T_{n}=x+(n-1) x \\ & T_{n}=x+x n-x \\ & T_{n}=x n \end{aligned}$	\checkmark substitution \checkmark answer (2)
3.3	$\begin{aligned} & T_{n}=a r^{n-1} \\ & T_{13}=\frac{1}{3}\left(\frac{1}{3}\right)^{13-1} \\ & T_{13}=\left(\frac{1}{3}\right)^{13} \end{aligned}$	$\begin{array}{ll} \checkmark & n \\ \checkmark & r \\ \checkmark & \text { answer } \\ (3) \end{array}$
3.4	$\begin{aligned} & \sum_{n=1}^{21} P_{n}=S_{11}+S_{10} \\ & =\frac{11}{2}[2 x+10 x]+\frac{\frac{1}{3}\left[1-\left(\frac{1}{3}\right)^{10}\right]}{1-\frac{1}{3}} \\ & =66 x+0,5 \\ & 66 x+0,5-=33,5 \\ & x=\frac{1}{2} \end{aligned}$	$\checkmark S_{11}$ $\checkmark S_{11}$ \checkmark geometric \checkmark arithmetic $\checkmark=66 x+0,5$ \checkmark answer

QUESTIEAthlloaded from St anmor ephysics. com

4.1	$x=-1$	\checkmark answer (1)
4.2	$R(-1 ;-8)$	\checkmark answer (1)
4.3	$\begin{aligned} & g: y=\left(\frac{1}{2}\right)^{x} \\ & g^{-1}: x=\left(\frac{1}{2}\right)^{y} \\ & \therefore g^{-1}: y=\log _{\frac{1}{2}} x \end{aligned}$	$\begin{aligned} & \checkmark \text { swap } x \text { and } y \\ & \checkmark \text { answer (2) } \end{aligned}$
4.4		$\begin{aligned} & \checkmark x \text {-intercept } \\ & \checkmark \text { shape (2) } \end{aligned}$
4.5.1	$0<x \leq 4$ or $x \in(0 ; 4]$	$\checkmark \checkmark$ answer(2)
4.5.2	$x<-3$ or $0<x<1$	$\begin{aligned} & \checkmark x<-3 \\ & \checkmark \text { or } \\ & \checkmark 0<x<1(3) \end{aligned}$
		[11]

QUESTION 5

| | (an $154^{\circ}=-\tan 26^{\circ}$
 $=\frac{-\sqrt{1-p^{2}}}{p}$ | \checkmark reduction |
| :--- | :--- | :--- | :--- |
| 5.1 .1 | | \checkmark answer (2) |

5.1.2	sin 1 Biobaritioaded from Stanmorephysics. com $\begin{aligned} & \sin 26^{\circ}=2 \sin 13^{\circ} \cos 13^{\circ} \\ & \sin 13^{\circ} \cos 13^{\circ}=\frac{\sin 26^{\circ}}{2} \\ & \sin 13^{\circ} \cos 13^{\circ}=\frac{\sqrt{1-p^{2}}}{2} \end{aligned}$	\checkmark reduction \checkmark answer (2)
5.2.1	$\frac{1-\cos 2 x-\sin x}{\sin 2 x-\cos x}=\tan x$ LHS: $\begin{aligned} & \frac{1-\left(1-2 \sin ^{2} x\right)-\sin x}{2 \sin x \cos x-\cos x} \\ & =\frac{2 \sin ^{2} x-\sin x}{2 \sin x \cos x-\cos x} \\ & =\frac{\sin x(2 \sin x-1)}{\cos x(2 \sin x-1)} \\ & =\tan x=\text { RHS } \end{aligned}$	\checkmark expansion $\cos 2 x$ \checkmark expansion $\sin 2 x$ \checkmark simplification \checkmark answer
5.2.2	$\begin{aligned} & \sin 2 x=\sin x \\ & x=-90^{\circ} ; x=30^{\circ} ; x=90^{\circ} \text { and } x=150^{\circ} \end{aligned}$	$\checkmark \sin 2 x=\sin x$ $\checkmark \checkmark$ any two (3)
		[11]

Downloaded from Stanmorephysics. com

