

education

Department of Education FREE STATE PROVINCE

GRADE 12

MATHEMATICS

GRADE 12

INFORMAL TEST 6

23 FEBRUARY 2024

MARKS: 50

п

DURATION: 60 MINUTES

This question paper consists of 4 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of **5** questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and nongraphical), unless otherwise stated.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise

QUEST	FION 1	
1.	Given: $(x+3)(3x-1) = p$	
	1.1 Solve for x if $p = 0$	(2)
	Solve for x, rounded to TWO decimal places, if $p = 0$	(4)
	$1.3 \qquad 3^x \left(x + \frac{1}{3} \right) < 0$	(3)
		[09]
QUEST	FION 2	
Given t	the geometric series: $x + 90 + 81 + \dots$	
2.1	Calculate the value of x.	(2)
2.2	Show that the sum of first n terms is $S_n = 1000 \left[1 - (0,9)^n \right]$	(2)
2.3	Hence, or otherwise, calculate the sum to infinity.	(2)
		[06]
QUES	TION 3	
3	An arithmetic and a geometric sequence are combined to form the pattern,	

which is given by: $P_n = x; \frac{1}{3}; 2x; \frac{1}{9}; 3x; \frac{1}{27};$

3.1	Write down the next TWO terms of the pattern.	(2)
3.2	Determine the general term (T_n) for the odd terms of this pattern.	
. ~	Write down your answer in terms of <i>x</i> .	(2)
3.3	Calculate the value of P_{26} .	(3)
3.4	If $\sum_{n=1}^{21} P_n = 33, 5$, determine the value of <i>x</i> .	(6)
		[13]

QUESTION 4

The graphs of $f(x) = 2(x+1)^2 - 8$ and $g(x) = \left(\frac{1}{2}\right)^x$ are represented in the sketch below. P and Q are the x-intercepts of f and R is the turning point of f. A(-2,4) is a point on the graph of g.

4.1	Write down the equation of the axis of symmetry of <i>f</i> .	(1)
4.2	Write down the coordinates of R, the turning point of f .	(1)
4.3	Determine the equation of the g^{-1} , the inverse of g, in the form $y =$	(2)
4.4	Sketch the graph of g^{-1} . Clearly indicate the intercept with the axis.	(2)
4.5	For which value(s) of x, is :	
	$4.5.1 g^{-1}(x) \ge -2$	(2)
	4.5.2 $x.f(x) < 0$	(3)
		[11]

QUES	TION	5	
5.1	Given	that: $\cos 26^\circ = p$	
	Expre	ess each of the following in terms of p, without using a calculator.	
	5.1.1	$\tan 154^\circ = p$	(2)
	5.1.2	sin13°cos13°	(2)
5.2	Consid	der: $\frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x} = \tan x$	
	5.2.1	Prove the identity.	(4)
	5.2.2	For which value(s) of x in the interval $x \in [-180^\circ; 180^\circ]$ is the	
		identity not valid?	(3)
			[11]
	$\langle . \rangle$		

QUESTION Downloaded from Stanmorephysics.com

1.1	(x+3)(3x-1)=0	✓ ✓ answers	(2)
	$x = -3$ or $x = \frac{1}{3}$		(2)
1.2	(x+3)(3x-1) = 4		
	(x+3)(3x-1) = 6		
	$3x^2 - x + 9x - 3 - 6 = 0$		
	$3x^2 + 8x - 9 = 0$	✓ standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{4ac}$	✓ substitution	
	2a	• • allswels (4)	
	$x = \frac{-(8) \pm \sqrt{(8)^2 - 4(3)(-9)}}{(8)^2 - 4(3)(-9)}$		
	2(3)		
	$x = \frac{-8 \pm \sqrt{172}}{6}$ hysics com		
	x = 0,85 or $x = -3,52$		
1.3	$3^x \left(x + \frac{1}{3} \right) < 0$		
	$3^x > 0$ for all real values of x	$\checkmark 3^x > 0$	
	$r + \frac{1}{2} \leq 0$	$\checkmark x + \frac{1}{2} < 0$	
	$x + \frac{1}{3} < 0$	3	
	$x < -\frac{1}{2}$	$\checkmark x < -\frac{1}{3}$	(3)
	3		
		1	[09]

QUESTION 2

	$S_n = 1000((1-0,9)^n)$		
2.3	Downloaded from Stanmorephysics.com		
	$S_{\infty} = \frac{1}{1-r}$		
	$S_{\infty} = \frac{100}{1 - \left(\frac{9}{10}\right)}$	✓ substitution	
	$S_{\infty} = 1000$	✓ answer	(2)
			[06]

QUESTION 3

3.1	$4x;\frac{1}{81}$	✓ ✓ answer(2)
3.2	$T_n = x + (n-1)x$	✓ substitution✓ answer
	$T_n = x + xn - x$ $T_n = xn$	(2)
3.3	$T_n = ar^{n-1}$	$\checkmark n$ $\checkmark r$
	$T_{13} = \frac{1}{3} \left(\frac{1}{3}\right)^{13-1}$	✓ answer (3)
	$T_{13} = \left(\frac{1}{3}\right)^{13}$	
3.4	$\sum_{n=1}^{21} P_n = S_{11} + S_{10}$	$\checkmark S_{11}$
		$\checkmark S_{11}$
	$\begin{bmatrix} 11 \\ -11 \end{bmatrix} \begin{bmatrix} 2n+10n \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1-\left(\frac{1}{3}\right) \end{bmatrix}$	✓ geometric
	$=\frac{1}{2}[2x+10x]+\frac{1}{1-\frac{1}{3}}$	✓arithmetic
	= 66x + 0,5	$\checkmark = 66x + 0, 5$
	66x + 0, 5 - = 33, 5	✓ answer
		(6)
	$x = \frac{1}{2}$	

QUESTION 4 grow Stanmorephysics.com

4.1	x = -1	✓ answer (1)
4.2	R(-1;-8)	✓ answer (1)
4.3	$g: y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $g^{-1} x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\therefore g^{-1}: y = \log_{\frac{1}{2}} x$	✓ swap x and y ✓ answer (2)
4.4	y g^{-1} (1,0) x storporephysics con (4;-2)	 ✓ x -intercept ✓ shape (2)
4.5.1	$0 < x \le 4 \text{ or } x \in (0; 4]$	$\checkmark \checkmark$ answer(2)
4.5.2	x < -3 or 0 < x < 1	✓ $x < -3$ ✓ or ✓ $0 < x < 1$ (3) [11]

5.1.2	sin Downloaded from Stanmorephysics.com	
	$\sin 26^\circ = 2\sin 13^\circ \cos 13^\circ$	✓ reduction
	$\sin 13^{\circ} \cos 13^{\circ} = \frac{\sin 26^{\circ}}{2}$ $\sin 13^{\circ} \cos 13^{\circ} = \frac{\sqrt{1-p^{2}}}{2}$	✓ answer (2)
5.2.1	$\frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x} = \tan x$ LHS: $\frac{1 - (1 - 2\sin^2 x) - \sin x}{2\sin x \cos x - \cos x}$ $= \frac{2\sin^2 x - \sin x}{2\sin x \cos x - \cos x}$ $= \frac{\sin x(2\sin x - 1)}{\cos x(2\sin x - 1)}$ $= \tan x = \text{RHS}$	 ✓ expansion cos 2x ✓ expansion sin 2x ✓ simplification ✓ answer (4)
5.2.2	$\sin 2x = \sin x$ $x = -90^{\circ} \cdot x = 30^{\circ} \cdot x = 90^{\circ} \text{ and } x = 150^{\circ}$	$\checkmark \sin 2x = \sin x$ $\checkmark \checkmark \text{ any two}$ (3)
	x = 50, x = 50, x = 50 and $x = 150$	(3)
		[11]

